2. The sum of two numbers is 100. The first number is two less than five times the second. What are the numbers?

first number : x	x + y = 100	(5y-2) + y = 100
second number : y	$\mathbf{x} = 5\mathbf{y} - 2$	6y - 2 = 100
		6y = 102
		y = 17
The first number is 83, and the second is 17.		is 17. $x = 83$

4. Coffee worth 80ϕ per pound is mixed with coffee worth 50ϕ per pound to produce a twenty pound blend worth 68ϕ per pound. How many pounds of each type of coffee is used?

Am't of coffee @ 80¢ per pound: x	x + y = 20 (pounds)	-5x - 5y = -100
Am't of coffee @ 50¢ per pound: y	80x + 50y = 1360 (cents)	8x + 5y = 136
Note: 20 pounds @ 68¢ per per pour	nd has a total value of 1360¢.	3x = 36
Use 12 pounds @ 80¢ per pound an	nd 8 pounds @ 50¢ per pound.	x = 12 and $y = 8$

8. A collection of ordinary dimes and nickels is worth \$6.65. The number of nickels is seven less than two times the number of dimes. How many coins of each type are in the collection?

Number of dimes: d	n = 2d - 7	10d + 5(2d - 7) = 665	
Number of nickels: n	10d + 5n = 665	10d + 10d - 35 = 635	
Value of the dimes: 10d (cents)		20d - 35 = 635	
Value of the nickels 5n (cents)		20d = 700	
There are 35 dimes and 63 nickels.		d = 35 and $n = 63$	

10. \$5000 is to be divided between two people so that one receives \$500 more than twice what the other receives. How much will each person receive?

Am't received by one person: x	x + y = 5000	x + (2x + 500) = 5000
Am't received by other person: y	$\mathbf{y} = \mathbf{2x} + 500$	3x + 500 = 5000
		3x = 4500
One receives \$1500, and the other receives \$3500.		500. $x = 1500$
		y = 3500