Algebra I Worksheet \#6 Unit 9 page 1

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 5 . The first number is six less than three times the second. What are the numbers?
2. The sum of two numbers is 100 . The first number is two less than five times the second. What are the numbers?
3. The sum of two numbers is 5 . The first number is one more than three times the second. What are the numbers?
4. Coffee worth $80 \notin$ per pound is mixed with coffee worth $50 \notin$ per pound to produce a twenty pound blend worth 68ϕ per pound. How many pounds of each type of coffee is used?

Algebra I Worksheet \#6 Unit 9 page 2

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $90 \notin$ per pound to produce a fifty pound blend worth a total of $\$ 54$. How many pounds of each type of coffee is used?
6. Coffee worth $\$ 1.20$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a ten pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
7. Coffee worth $\$ 3$ per pound is mixed with coffee worth $\$ 1.25$ per pound to produce a ten pound blend worth $\$ 2.44$ per pound. How many pounds of each type of coffee is used?

Algebra I Worksheet \#6 Unit 9 page 3

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. A collection of ordinary dimes and nickels is worth $\$ 6.65$. The number of nickels is seven less than two times the number of dimes. How many coins of each type are in the collection?
9. A collection of fifty ordinary dimes and quarters is worth a total of $\$ 10.55$. How many coins of each type are in the collection?
10. $\$ 5000$ is to be divided between two people so that one receives $\$ 500$ more than twice what the other receives. How much will each person receive?

