Algebra I Lesson \#4 Unit 9 Class Worksheet \#4 For Worksheets \#5 - \#8

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first:
second:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: \mathbf{x}
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}$
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: $\mathbf{y} \quad \mathrm{x}=$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $x \quad x+y=20$
second: $y \quad x=3 y-4$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: $y \quad x=3 y-4$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $x \quad x+y=20 \quad(3 y-4)$
second: $y \quad x=3 y-4$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$$
(3 y-4)+y
$$

second: $y \quad x=3 y-4$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: x

$$
x+y=20
$$

$$
(3 y-4)+y=20
$$

second: $y \quad x=3 y-4$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: \mathbf{x}

$$
x+y=20
$$

$(3 y-4)+y=20$
second: y
$x=3 y-4$
$4 y$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: \mathbf{x}

$$
x+y=20
$$

$$
(3 y-4)+y=20
$$

second: y
$x=3 y-4$
$4 y-4$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: \mathbf{x}

$$
x+y=20
$$

$$
(3 y-4)+y=20
$$

second: y
$x=3 y-4$
$4 y-4=20$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $x \quad x+y=20 \quad(3 y-4)+y=20$
second: $y \quad x=3 y-4$

$$
4 y-4=20
$$

4y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $x \quad x+y=20$
second: $y \quad x=3 y-4$

$$
\begin{gathered}
(3 y-4)+y=20 \\
4 y-4=20 \\
4 y=24
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $x \quad x+y=20$
second: $y \quad x=3 y-4$

$$
\begin{gathered}
(3 y-4)+y=20 \\
4 y-4=20 \\
4 y=24 \\
y=6
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: $y \quad x=3 y-4$

$$
(3 y-4)+y=20 \quad x=3 y-4
$$

$$
4 y-4=20
$$

$$
4 y=24
$$

$$
y=6
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $x \quad x+y=20$
second: $y \quad x=3 y-4$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x= \\
4 y=24 & \\
y=6 &
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: $y \quad x=3 y-4$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4
\end{array}
$$

$$
4 y=24
$$

$$
y=6
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: $y \quad x=3 y-4$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4 \\
4 y=24 & x= \\
y=6 &
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: $y \quad x=3 y-4$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4 \\
4 y=24 & x=18-4 \\
y=6 &
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: $y \quad x=3 y-4$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4 \\
4 y=24 & x=18-4 \\
y=6 & x=14
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20 . The first number is 4 less than three times the second. What are the numbers?
first: $\mathbf{x} \quad \mathbf{x}+\mathbf{y}=\mathbf{2 0}$
second: $y \quad x=3 y-4$

$$
\begin{array}{cl}
(3 y-4)+y=20 & x=3 y-4 \\
4 y-4=20 & x=3(6)-4 \\
4 y=24 & x=18-4 \\
y=6 & x=14
\end{array}
$$

The first number is 14 , and the second number is $\mathbf{6}$.

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

first:

second:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: \mathbf{x} second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: x second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: \mathbf{x}

$$
\mathbf{x}+\mathbf{y}=
$$ second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: $x \quad x+y=15$ second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?
first: $x \quad x+y=15$ second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rl}
\text { first: } x & x+y=15 \\
\text { second: } y & x-y
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rl}
\text { first: } x & x+y=15 \\
\text { second: } y & x-y=9
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rl}
\text { first: } x & x+y=15 \\
\text { second: } y & x-y=9
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rl}
\text { first: } x & x+y=15 \\
\text { second: } y & x-y=9 \\
\hline
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

first: x	
second: y	$x+y=15$ $-y=9$
$2 x$	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rr}
\text { first: } x \\
\text { second: } y & \begin{array}{c}
x+y=15 \\
x-y=9
\end{array} \\
& 2 x=24
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{rr}
\text { first: } x \\
\text { second: } y & \begin{array}{r}
x+y
\end{array}=15 \\
-y=9 \\
2 x & =24 \\
x & =12
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{ccc}
\text { first: } x & x+y=15 & x+y=15 \\
\text { second: } y & \begin{aligned}
x-y & =9
\end{aligned} \\
\cline { 2 - 2 } & 2 x=24 & \\
& x=12 &
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{ccc}
\text { first: } x & x+y=15 & x+y=15 \\
\text { second: } y & \begin{array}{c}
x-y=9
\end{array} & \mathbf{1 2 + y} \\
\cline { 2 - 2 } & 2 x=24 & \\
& x=12 &
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{ccc}
\text { first: } x & x+y=15 & x+y=15 \\
\text { cond: } y & x-y=9 & 12+y=15 \\
\cline { 2 - 2 } & 2 x=24 & \\
& x=12 &
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

$$
\begin{array}{ccc}
\text { first: } x & x+y=15 & x+y=15 \\
\text { cond: } y & \mathbf{x}-\mathbf{y}=9 & 12+y=15 \\
\cline { 2 - 2 } & 2 x=24 & y=3 \\
& x=12 &
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
2. The sum of two numbers is 15 . Their difference is 9 . What are the numbers?

second: y	$\begin{aligned} & x+y=15 \\ & x-y=9 \end{aligned}$	$\begin{gathered} x+y=15 \\ 12+y=15 \end{gathered}$
	$2 \mathrm{x}=24$	$y=3$
	$\mathrm{x}=12$	

The numbers are 12 and 3.

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:

nickels:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
of coins
```

dimes:
nickels:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
of coins
```

dimes: x
nickels: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
of coins
```

dimes: \mathbf{x}
nickels: \mathbf{y}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

```
number
of coins
```

dimes: \mathbf{x}
nickels: \mathbf{y}
total

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of coins
dimes:	x
nickels:	y
total	\mathbf{y}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
number
of coins

dimes: x

nickels:	$\frac{y}{40}$
total	40

total 40

$$
\mathbf{x}+\mathbf{y}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
number
of coins

dimes: x

nickels:	$\frac{y}{40}$
total	40

total 40

$$
x+y=40
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?
number
of coins

dimes: x

nickels:	$\frac{y}{\text { total }}$
40	

total 40

$$
x+y=40
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of coins
dimes:	\mathbf{x}
nickels:	\mathbf{y}
total	$\mathbf{4 0}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of colue of of coins the coins
dimes:	$\mathbf{x} \quad 10 x$
nickels:	\mathbf{y}
total	$\frac{\mathbf{y y}}{40}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

| | number
 of colue of
 of coins | \mathbf{x} the coins |
| :---: | :---: | :---: |$\quad \mathbf{y}=\mathbf{4 0}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

| | number
 ofalue of
 of coins | \mathbf{x} the coins |
| :---: | :---: | :---: |$\quad \mathbf{x}+\mathbf{y}=\mathbf{4 0}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of coins	
value of coins		
dimes:	\mathbf{x}	$\mathbf{1 0 x}$
nickels:	\mathbf{y}	$\mathbf{5 y c}$
total	$\mathbf{4 0}$	$\mathbf{3 2 0}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:	number of coins \mathbf{X}	value of the coins $10 x c$	$\begin{aligned} & x+y=40 \\ & 10 x+5 y \end{aligned}$
nickels:	y	$5 y d$	
total	40	320d	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of colue of of coins the coins	$\mathbf{x}+\mathbf{y}=\mathbf{4 0}$
dimes:	\mathbf{x}	$\mathbf{1 0 x}$
nickels:	\mathbf{y}	$\mathbf{5 y c}$
total	$\mathbf{4 0}$	$\mathbf{3 2 0}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of coins the coins of	$\mathbf{x}+\mathbf{y}=\mathbf{4 0}$
dimes:	\mathbf{x}	$\mathbf{1 0 x}$
nickels:	\mathbf{y}	$\mathbf{5 y c}$
total	$\mathbf{4 0}$	$\mathbf{3 2 0}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of coins	value of the coins 10xc	$\begin{gathered} x+y=40 \\ 10 x+5 y=320 \end{gathered}$
dimes:	\mathbf{x}	10×5	
nickels:	y	5 yc	
total	40	320d	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:	number of coins \mathbf{x}	value of the coins 10xc	$\begin{gathered} x+y=40 \\ 10 x+5 y=320 \end{gathered}$	$-5 x-5 y=-200$
nickels:	y	5 yc		
total	40	320¢		

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

	number of coins	value of the coins 10xc	$\begin{gathered} x+y=40 \quad \xrightarrow{-5} \\ 10 x+5 y=320 \end{gathered}$	$-5 x-5 y=-200$
dimes:	X	10xc		
nickels:	y	5yc		
total	40	320¢		

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:	number of coins x	value of the coins 10xc	$\begin{aligned} x+y=40 & \xrightarrow{-5}-5 x-5 y=-200 \\ 10 x+5 y=320 & \longrightarrow 10 x+5 y=320 \end{aligned}$
nickels:	y	5yc	
total	40	320¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

dimes:	number of coins \qquad	value of the coins 10x	$$
nickels:	y	5 yc	
total	40	320¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

es:	number of coins X	value of the coins 10x	$\begin{gathered} x+y=40 \\ 10 x+5 y=320 \end{gathered}$	$\begin{aligned} & -5 x-5 y=-200 \\ & \longrightarrow 10 x+5 y=320 \end{aligned}$
nickels:	y	$5 y ¢$		$5 \mathrm{x}=120$
				$\mathrm{x}=24$
total	40	$320 ¢$		$x+y=40$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
3. A coin collection consists of ordinary dimes and nickels and is worth a total of $\$ 3.20$. If there are 40 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes:

quarters:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

```
number
of coins
```

dimes:
quarters:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

```
number
of coins
```

dimes: x
quarters: \mathbf{y}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

```
number
of coins
```

dimes: x
quarters: \mathbf{y}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

```
number value of
of coins the coins
```

dimes: x
quarters: \mathbf{y}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?
dimes: $\left.\quad \begin{array}{c}\text { number } \\ \text { of coins }\end{array} \begin{array}{c}\text { value of } \\ \text { the coins }\end{array}\right\}$
quarters: \mathbf{y}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	value of the coins
dimes:	\mathbf{x}	$\mathbf{1 0 x c}$
quarters:	y	$25 y c$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	value of the coins
dimes:	\mathbf{x}	$\mathbf{1 0 x}$
quarters:	\mathbf{y}	$\mathbf{2 5 y} \boldsymbol{y}$

total

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes:		value of
	\mathbf{x}	10xc
quarters:		25yc
total		800¢

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes:	number of coins	value of the coins
	\mathbf{x}	10x¢
quarters	: y	25yc
total		800¢

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?
$10 x+25 y=800$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

4. A collection of ordinary dimes and quarters is worth $\$ 8$. The

 number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?$$
10 x+25 y=800
$$

dimes:		value of
	\mathbf{x}	10x¢
quarters:		25yc
total		800¢

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

4. A collection of ordinary dimes and quarters is worth $\$ 8$. The

 number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?| | number of coins | value of the coins | $\begin{gathered} 10 x+25 y=800 \\ x= \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| dimes: | \mathbf{x} | 10x¢ | |
| quarters: | : y | 25yc | |
| total | | 800¢ | |

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	x	10x¢	
quarters:	: y	25yc	
total		800¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?
number value of of coins the coins
dimes: x 10x¢
quarters: y 25yc
total 800c

$$
\begin{gathered}
10 x+25 y=800 \\
x=2 y-1
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	$\begin{aligned} & \text { numbe } \\ & \text { of coin } \end{aligned}$	value of the coins		$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:	\mathbf{x}	10xc	10(
quarters:	: y	25yc		
total		800¢		

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	of coins	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	\mathbf{x}	10xc	10(2y-1) + 25y
	y	25yc	
total		800¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
		10x¢	$10(2 y-1)+25 y=800$
	: y	25yc	
total		800¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
		10xc	10(2y-1) + $25 y=800$
		25yc	
total		800 c	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number of coins	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
		10x¢	$10(2 y-1)+25 y=800$
		25yc	
total		800 c	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:	number	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
		10x¢	10(2y-1) + $25 y=800$
	y	25yc	
total		800¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

		$10 x+25 y=800$
$\begin{array}{c}\text { number } \\ \text { of coilue of } \\ \text { of coins } \\ \text { the coins }\end{array}$		$x=2 y-1$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
dimes:		10xc	$10(2 y-1)+25 y=800$
quarters:	y	25yc	
total		800¢	$45 y$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$
	10xc	$10(2 y-1)+25 y=800$
	$25 y \mathrm{c}$	$20 y-10+25 y=8$
	800¢	$45 y-10=800$
		$45 y=810$
		$y=18$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters: total	value of the coins	$\begin{gathered} 10 x+25 y=800 \\ x=2 y-1 \end{gathered}$	
	$\begin{aligned} & 10 \mathrm{xc} \\ & 25 \mathrm{yc} \end{aligned}$	$\begin{array}{r} 10(2 y-1)+25 y=800 \\ 20 y-10+25 y=800 \end{array}$	$\begin{gathered} x=2 y-1 \\ x=2(18)-1 \end{gathered}$
	800¢	$45 y-10=800$	$\mathrm{x}=35$
		$45 y=810$	
		$y=18$	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
4. A collection of ordinary dimes and quarters is worth $\$ 8$. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:
Sue:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: y
total

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$
Sue: $\quad \underline{y}$
total 1000

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathbf{x} \quad \mathbf{x}+\mathbf{y}$
Sue: $\quad \underline{y}$
total 1000

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$

$$
x+y=1000
$$

Sue: $\quad \underline{y}$
total 1000

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$

$$
x+y=1000
$$

Sue: $\underline{\underline{y}}$
total 1000

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: $\quad \mathrm{y} \quad \mathrm{y}=$

$$
x+y=1000
$$

$$
\mathbf{y}=
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

total 1000

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\mathbf{\$ 1 0 0 0}$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: $\quad \mathrm{y}$
total 1000

$$
\begin{aligned}
& x+y=1000 \\
& y=4 x+25
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

$$
y=4 x+25
$$

total 1000

$$
\mathbf{x}+
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

total 1000

$$
x+(4 x+25)
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

total 1000

$$
x+(4 x+25)=1000
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

$$
y=4 x+25
$$

total 1000

$$
\begin{aligned}
& x+(4 x+25)=1000 \\
& 5 x
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

total 1000

$$
\begin{aligned}
& x+(4 x+25)=1000 \\
& 5 x+25
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

$$
y=4 x+25
$$

total 1000

$$
\begin{gathered}
x+(4 x+25)=1000 \\
5 x+25=1000
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

$$
y=4 x+25
$$

total 1000

$$
\begin{gathered}
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$
Sue: $\quad \mathrm{y}$

$$
x+y=1000
$$

$$
y=4 x+25
$$

total 1000

$$
\begin{gathered}
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=975
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathbf{x}$

$$
x+y=1000
$$

Sue: $\quad \mathrm{y}$

$$
y=4 x+25
$$

total 1000

$$
\begin{gathered}
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=\mathbf{9 7 5} \\
x=195
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathbf{x}$

$$
x+y=1000
$$

Sue: $\quad \mathrm{y}$

$$
y=4 x+25
$$

total 1000

$$
\begin{gathered}
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=\mathbf{9 7 5} \\
x=195
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathbf{x}$

$$
x+y=1000
$$

Sue: $\quad \mathrm{y}$

$$
y=4 x+25
$$

total 1000

$$
\begin{gathered}
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=\mathbf{9 7 5} \\
x=195
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathbf{x}$

$$
x+y=1000
$$

Sue: $\quad \mathrm{y}$

$$
y=4 x+25
$$

total 1000

$$
\begin{gathered}
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=\mathbf{9 7 5} \\
x=195
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad \mathbf{x}$
Sue: $\quad \mathrm{y}$
\qquad
total 1000

$$
\begin{aligned}
& x+y=1000 \\
& y=\mathbf{4} x+\mathbf{2 5}
\end{aligned}
$$

$$
\begin{gathered}
x+(4 x+25)=1000 \\
5 x+25=1000 \\
5 x=\mathbf{9 7 5} \\
x=195
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
5. Bill and Sue earned a total of $\$ 1000$. If Sue earned $\$ 25$ more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: $\quad x$
Sue: $\quad \mathrm{y}$
\qquad
total 1000

$$
\begin{aligned}
& x+y=1000 \\
& y=\mathbf{4} x+\mathbf{2 5}
\end{aligned}
$$

$$
\begin{array}{cc}
x+(4 x+25)=1000 & y=4 x+25 \\
5 x+25=1000 & y=4(195)+25 \\
5 x=975 & y=805 \\
x=195 & \text { Bill earned } \$ 195, \text { and } \\
& \text { Sue earned } \$ 805 .
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
brand A :
brand B:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number
of pounds

brand A :
brand B:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number
of pounds

brand A: x
brand B: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number
of pounds

brand A: x
brand B: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number
of pounds
brand A: x
brand B: y
mixture:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number
of pounds

brand A: x
brand B: y
mixture: 50

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number

$$
x+y
$$

brand A: x
brand B: y
mixture: 50

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number
of pounds
brand A: x
brand B: y
mixture: 50

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number
of pounds
brand A: x
brand B: y
mixture: 50

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number value per
of pounds pound
brand A: x
brand B: y
mixture: 50

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number value per

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

of pounds pound
brand A: x 150c
brand B: y
mixture: 50

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number value per
of pounds pound
brand A: x 150c
brand B: y 180c
mixture: 50

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number value per

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

of pounds pound
brand A: x 150c
brand B: y 180c
mixture: 50

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number value per
of pounds pound
brand A: x 150c
brand B: y 180c
mixture: 50 159风

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?
number value per
of pounds pound
brand A: x 150c
brand B: y 180c
mixture: 50 159¢

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

	number value per of pounds	pound total value	$\mathbf{x}+\mathbf{y}=\mathbf{5 0}$
brand A: \mathbf{x}	$\mathbf{1 5 0} \boldsymbol{c}$		

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{aligned} & \text { numbe } \\ & \text { of pound } \end{aligned}$	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\mathbf{x}+\mathbf{y}=50$
brand A: x	150¢	150xc	
brand B: y	180¢		
mixture: 50	159¢		

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

numbe of poun	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$x+y=50$
brand A: x	150¢	150xc	
brand B: y	180¢	180yc	
mixture: 50	159¢		

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

numbe	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\mathbf{x}+\mathbf{y}=50$
brand A: x	150¢	150xc	
brand B: y	180¢	180yc	
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number	value per	total value	$x+y=50$
brand A: x	150¢	150xc	
brand B: y	180¢	180yc	
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number value per of pounds	total pound	$x+y=50$ value	$\mathbf{1 5 0 x}+\mathbf{1 8 0 y}=\mathbf{7 9 5 0}$
brand A: \mathbf{x}	$\mathbf{1 5 0 ¢}$	$\mathbf{1 5 0 x}$	
brand B:	\mathbf{y}	$\mathbf{1 8 0 ¢}$	$\mathbf{1 8 0 y c}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pound	$\begin{aligned} & \text { value per } \\ & \text { pound } \end{aligned}$	$\begin{gathered} \text { total } \\ \text { value } \end{gathered}$	$\mathbf{x}+\mathbf{y}=\mathbf{5 0}$
brand A: x	150¢	150xc	$[150 x+180 y=7950$
brand B: y	180¢	180y ${ }^{\text {c }}$	
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{gathered} \text { number } \\ \text { of pounds } \end{gathered}$	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\begin{gathered} x+y=50 \\ 150 x+180 y=7950 \end{gathered}$
brand A: x	150¢	150xc	$150 x+180 y=7950$
brand B: y	180¢	180yc	15
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{gathered} \text { number } \\ \text { of pound } \end{gathered}$	$\begin{aligned} & \text { value per } \\ & \text { pound } \end{aligned}$	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\mathbf{x}+\mathbf{y}=\mathbf{5 0}$
brand A: x	150¢	150xc	$[150 x+180 y=7950$
brand B: y	180¢	180yc	$\longrightarrow 15 \mathrm{x}+18 \mathrm{y}$
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{gathered} \text { number } \\ \text { of pound } \end{gathered}$	$\begin{aligned} & \text { value per } \\ & \text { pound } \end{aligned}$	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	$\mathbf{x}+\mathbf{y}=\mathbf{5 0}$
brand A: x	150¢	150xc	$[150 x+180 y=7950$
brand B: y	180¢	180yc	$15 x+18 y=795$
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pound	value per	$\text { total } \begin{gathered} \text { value } \end{gathered}$	$x+y=50$
brand A: x	150¢	150xc	
brand B: y	180¢	180yc	$15 \mathrm{x}+18 \mathrm{y}=795$
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number value per of pounds pound		$\begin{gathered} \text { total } \\ \text { value } \end{gathered}$	-15 $\mathbf{1 5 0}+\mathrm{y}+180 \mathrm{y}$
brand A: x	150¢	150xc	$150 x+180 y=$
and B: y	180¢	180y	$15 x+18 y=795$
ixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number	value per	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	${ }^{-15} x+y=50$
brand A: x	150¢	150xc	
brand B: y	180¢	180yc	$\begin{aligned} & 15 x+18 y=795 \\ & -15 x \end{aligned}$
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number	value per	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$	${ }^{-15} x+y=50$
brand A: x	150¢	150xc	
brand B: y	180¢	180yc	$\begin{aligned} & 15 x+18 y=795 \\ \rightarrow & -15 x-15 y \end{aligned}$
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number	value per	vatul	${ }^{-15} x+y=50$
brand A: x	150¢	150x¢	50x $+180 y=$
brand B: y	180¢	180y	$15 \mathrm{x}+18 \mathrm{y}=795$
mixture: 50	159¢	7950¢	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

num	$\begin{aligned} & \text { value per } \\ & \text { pound } \end{aligned}$	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$
brand A: x	$150 ¢$	150x¢
brand B: y	180¢	180yc
mixture: 50	159¢	7950 C

$$
\begin{gathered}
x+y=50 \\
150 x+180 y=7950 \\
15 x+18 y=795 \\
-15 x-15 y=-750
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

of pom	value per pound	$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$
brand A: x	150¢	150xc
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$$
\begin{gathered}
x+y=50 \\
150 x+180 y=7950 \\
15 x+18 y=795 \\
-15 x-15 y=-750
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

	$\begin{array}{l}\text { number value per } \\ \text { of pounds }\end{array}$	$\begin{array}{c}\text { total } \\ \text { vound }\end{array}$	$\mathbf{x}+\mathbf{y}=\mathbf{5 0}$
value			

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pound	value per pound	$\text { total } \text { value }$	$\mathbf{x}+\mathbf{y}=\mathbf{5 0}$
brand A: x	150¢	150xc	
brand B: y	180¢	180y	$\begin{aligned} 15 x+18 y & =795 \\ -15 x-15 y & =-750 \end{aligned}$
mixture: 50	159¢	7950¢	$3 \mathrm{y}=45$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	total	$x+y=50$
brand A: x	150¢	150xc	15
brand B: y	180¢	180yc	$15 x+18 y=795$
mixture: 50	159¢	7950 $¢$	$3 y=45$
			$y=15$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number of pounds	value per	total	$x+y=50$
brand A: x	150 c	150xc	$150 x+180 y=7950$
brand B: y	180¢	180yc	$15 x+18 y=795$
			$-15 x-15 y=-750$
mixture: 50	159¢	7950¢	$3 \mathrm{y}=45$
			$y=15$
			$x+y=50$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

number value per of pounds pound		$\begin{aligned} & \text { total } \\ & \text { value } \end{aligned}$
brand A: x	150¢	150xc
brand B: y	180¢	180 yc
mixture: 50	159¢	7950¢

$$
\begin{array}{r}
x+y=50 \\
150 x+180 y=7950 \\
\mathbf{1 5 x}+\mathbf{1 8 y}=\mathbf{7 9 5} \\
\mathbf{- 1 5 x}-\mathbf{1 5 y}=\mathbf{- 7 5 0} \\
\hline \mathbf{3 y}=\mathbf{4 5} \\
\mathbf{y}=\mathbf{1 5} \\
\mathbf{x}+\mathbf{y}=\mathbf{5 0} \\
\mathbf{x}+\mathbf{1 5}=\mathbf{5 0}
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

$\begin{aligned} & \text { numb } \\ & \text { of pou } \end{aligned}$	value per pound	total value
brand A: x	150¢	150xc
brand B: y	180¢	180 yc
mixture: 50	159¢	7950¢

$$
\begin{gathered}
x+y=50 \\
150 x+180 y=7950 \\
\mathbf{1 5 x}+\mathbf{1 8 y}=\mathbf{7 9 5} \\
\mathbf{- 1 5 x}-\mathbf{1 5 y}=\mathbf{- 7 5 0} \\
\hline \mathbf{3 y}=\mathbf{4 5} \\
\mathbf{y}=\mathbf{1 5} \\
\mathbf{x}+\mathbf{y}=\mathbf{5 0} \\
\mathbf{x}+\mathbf{1 5}=\mathbf{5 0} \\
\mathbf{x}=\mathbf{3 5}
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
6. Coffee worth $\$ 1.50$ per pound is mixed with coffee worth $\$ 1.80$ per pound to produce a 50 pound blend worth $\$ 1.59$ per pound. How many pounds of each type of coffee is used?

(e) $\begin{gathered}\text { numbe } \\ \text { of poun }\end{gathered}$	value per pound	total value	$150 x+180 y=7950$
brand A: x	150¢	150xc	
brand B: y	180¢	180yc	$\begin{aligned} 15 x+18 y & =795 \\ -15 x-15 y & =-750 \end{aligned}$
mixture: 50	159¢	7950¢	$3 \mathrm{y}=45$
Use 35 pounds @ and 15 pounds @		$\begin{aligned} & 1.50 \text { per } \\ & 180 \text { ne } \end{aligned}$	$y=15$ d. $\quad x+y=50$
			$x+15=50$
			$\mathrm{x}=35$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person:
Second person:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y
total

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y
total 200

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}
$$

First person: x
Second person: y
total 200

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x
Second person: y
total 200

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives
$\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x
Second person: y
total 200

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives
$\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\begin{aligned}
& x+y=200 \\
& y=
\end{aligned}
$$

Second person: y
total 200

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives
$\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\begin{aligned}
& x+y=200 \\
& y=4 x-25
\end{aligned}
$$

Second person: y
total 200

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y
total 200

$$
\begin{aligned}
& x+y=200 \\
& y=4 x-25
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\begin{aligned}
& x+y=200 \\
& y=4 x-25
\end{aligned}
$$

Second person: y
total $200 \quad \mathbf{x}+$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x
Second person: y

$$
\text { total } \quad \overline{200} \quad x+(4 x-25)
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y
total $\overline{200} \quad x+(4 x-25)=200$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y
total 200

$$
\begin{aligned}
& x+(4 x-25)=200 \\
& 5 x
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y
total 200

$$
\begin{aligned}
& x+(4 x-25)=200 \\
& 5 x-25
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y
total 200

$$
\begin{gathered}
x+(4 x-25)=200 \\
5 x-25=200
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y
total 200

$$
\begin{gathered}
x+(4 x-25)=200 \\
5 x-25=200 \\
5 x
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y
total 200

$$
\begin{gathered}
x+(\mathbf{4} x-25)=\mathbf{2 0 0} \\
\mathbf{5 x}-\mathbf{2 5}=\mathbf{2 0 0} \\
\mathbf{5 x}=\mathbf{2 2 5}
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y
total 200

$$
\begin{gathered}
x+(4 x-25)=200 \\
5 x-25=200 \\
5 x=225 \\
x=45
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y

$$
\begin{array}{cc}
\text { total } \quad \overline{200} \quad \begin{array}{c}
x+(4 x-25)=200 \\
5 x-25=200 \\
5 x=225 \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}=45
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
\mathbf{x}+\mathbf{y}=\mathbf{2 0 0}
$$

First person: x
Second person: y

$$
\text { total } \quad \overline{200} \quad \begin{array}{cc}
x+(4 x-25)=200 & y=4 x-25 \\
5 x-25=200 & y= \\
5 x=225 & \\
& x=45
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x
Second person: y
total 200

$$
\begin{gathered}
x+(4 x-25)=200 \\
5 x-25=200 \\
5 x=225 \\
x=45
\end{gathered}
$$

$$
\begin{aligned}
& y=4 x-25 \\
& y=4(45)-25
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

$$
x+y=200
$$

First person: x
Second person: y

$$
\begin{array}{ccc}
\text { total } & \overline{200} & x+(4 x-25)=200 \\
& 5 x-25=200 & y=4 x-25 \\
& 5 x=225 & y=4(45)-25 \\
& x=45 & y=155
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
7. $\$ 200$ is to be divided between two people so that one receives $\$ 25$ less than four times what the other receives. How much will each person receive?

First person: x
Second person: y

$$
\begin{aligned}
& x+y=200 \\
& y=4 x-25
\end{aligned}
$$

total 200

$$
\begin{array}{cl}
x+(4 x-25)=200 & y=4 x-25 \\
5 x-25=200 & y=4(45)-25 \\
5 x=225 & y=155 \\
x=45 &
\end{array}
$$

One person received $\$ 45$, and the other received $\$ 155$.

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
first:
second:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first:
second:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first: \mathbf{x}
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first: \mathbf{x}
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount
invested
first: \mathbf{x}
second: y
total

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

first: \quadamount invested	
second:	\mathbf{y}
total	$\$ 5000$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount

$$
x+y
$$

first: \mathbf{x}
second: y
total $\$ 5000$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0 0 0}
$$

first: \mathbf{x}
second: \mathbf{y}
total $\$ 5000$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?
amount

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0 0 0}
$$

first: \mathbf{x}
second: \mathbf{y}
total $\$ 5000$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount interest

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0 0 0}
$$

first: \mathbf{x}
second: \mathbf{y}
total $\$ 5000$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate
first:	interest earned	$\mathbf{3 \%}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	\mathbf{x}	$\mathbf{3 \%}$	$\mathbf{. 0 3 x}$
second:	\mathbf{y}	$\mathbf{4 \%}$	
total	$\mathbf{\$ 5 0 0 0}$		

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interes earned
first:	X	3\%	.03x
second:	y	4\%	.04y

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0 0 0}
$$

total $\$ \mathbf{5 0 0 0}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

| | $\begin{array}{r}\text { amount } \\ \text { invested }\end{array}$ | | $\begin{array}{c}\text { interest } \\ \text { rate }\end{array}$ |
| ---: | :---: | :---: | :---: | \(\left.\begin{array}{c}interest

earned\end{array}\right\}\)

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount		
invested	interest rate	interest earned	
first:	\mathbf{x}	$\mathbf{3 \%}$	$\mathbf{. 0 3 x}$
second:	\mathbf{y}	$\mathbf{4 \%}$	$\underline{\mathbf{0 4 y}}$
total	$\overline{\mathbf{5 5 0 0 0}}$		$\underline{\mathbf{\$ 1 8 5}}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate	interes earned
first: \mathbf{x}	3\%	.03x
second: y	4\%	.04y
total \$5000		\$185

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate	interes earned
first: \mathbf{x}	3\%	.03x
second: \mathbf{y}	4\%	.04y
total \$5000		\$185

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	\mathbf{x}	$\mathbf{3 \%}$	$\mathbf{. 0 3 x}$
second:	\mathbf{y}	$\mathbf{4 \%}$	$\underline{\mathbf{. 0 4 y}}$
total	$\overline{\mathbf{5 0 0 0}}$		$\underline{\mathbf{\$ 1 8 5}}$

$x+y=5000$
$100.03 x+.04 y=185$
\longrightarrow
\$185

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	\mathbf{x}	$\mathbf{3 \%}$	$\mathbf{. 0 3 x}$
second:	\mathbf{y}	$\mathbf{4 \%}$	$\underline{\mathbf{. 0 4 y}}$
total	$\overline{\mathbf{5 0 0 0}}$		$\underline{\mathbf{\$ 1 8 5}}$

$x+y=5000$
100
$\longrightarrow \mathbf{3 x}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	\mathbf{x}	$\mathbf{3 \%}$	$\mathbf{. 0 3 x}$
second:	\mathbf{y}	$\mathbf{4 \%}$	$\underline{\mathbf{. 0 4 y}}$
total	$\overline{\mathbf{5 0 0 0}}$		$\underline{\mathbf{\$ 1 8 5}}$

$$
\begin{gathered}
x+y=5000 \\
100 \\
\longrightarrow \mathbf{3 x}+4 y
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest rate ren	interst earned
first:	3\%	.03x
second:	4\%	.04y
total \$5000		\$18

\[

\]

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first:	\mathbf{x}	$\mathbf{3 \%}$	$\mathbf{. 0 3 x}$
second:	\mathbf{y}	$\mathbf{4 \%}$	$\underline{\mathbf{. 0 4 y}}$
total	$\overline{\mathbf{5 0 0 0}}$		$\underline{\mathbf{\$ 1 8 5}}$

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=18,500
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

	interest rate 3\%	interest earned .03x	$\begin{gathered} x+y=5000 \\ .03 x+.04 y=185 \end{gathered}$
first: \mathbf{x}	3\%	.03x	$3 \mathrm{x}+4 \mathrm{y}=18,500$
second: y	4\%	.04y	
total \$5000		\$185	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

first: ${ }^{\text {amount }}$ inved	interest rate rate	interest earned	$\begin{array}{r} -3 \\ .03 x+y=5000 \\ .03 x+.04 y=185 \end{array}$
first: \mathbf{x}	3\%	.03x	.03x $+.04 y=185$
second: y	4\%	.04y	$\xrightarrow{ } \quad 3 x+4 y=18,500$
total \$5000		\$185	

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amoun invested	interest	interes earned
first: \mathbf{x}	3\%	.03x
second: y	4\%	.04y
total \$5000		\$185

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=18,500 \\
\longrightarrow-3 x-3 y
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amoun invested	interest	interes earned
first: \mathbf{x}	3\%	.03x
second: y	4\%	.04y
tal \$5000		\$185

$$
\begin{array}{r}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=18,500 \\
\longrightarrow-3 x-3 y=-15,000
\end{array}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amoun invested	interest rate ren	interest earned
first: x	3\%	.03x
cond: y	4\%	.04y
total \$5000		85

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=18,500 \\
-3 x-3 y=-15,000
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amoun invested	interest rate ren	interest earned
first: x	3\%	.03x
cond: y	4\%	.04y
total \$5000		85

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=\mathbf{1 8 , 5 0 0} \\
\mathbf{- 3 x}-\mathbf{3 y}=\mathbf{- 1 5 , 0 0 0}
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amoun invested	interest rate ate	interest earned
first: x	3\%	.03x
second:	4\%	.04y
tal \$5000		\$185

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=18,500 \\
-3 x-3 y=-15,000 \\
\hline y=3,500
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	interest	interes earned
first: x	3\%	.03x
second:	4\%	.04y
total \$5000		\$185

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
3 x+4 y=18,500 \\
-\mathbf{3 x}-\mathbf{3 y}=\mathbf{- 1 5 , 0 0 0} \\
\hline y=\mathbf{3 , 5 0 0} \\
x+y=5000
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	$\begin{gathered} \text { interest } \\ \text { rate } \end{gathered}$	inters earned
first: x	3\%	.03x
second:	4\%	.04y
total \$5000		\$185

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
\mathbf{3 x}+4 y=\mathbf{1 8 , 5 0 0} \\
\mathbf{- 3 x}-\mathbf{3 y}=\mathbf{- 1 5 , 0 0 0} \\
\hline \mathbf{y}=\mathbf{3 , 5 0 0} \\
x+y=\mathbf{5 0 0 0} \\
x+\mathbf{3 5 0 0}=\mathbf{5 0 0 0}
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amount invested	$\begin{gathered} \text { interest } \\ \text { rate } \end{gathered}$	inters earned
first: x	3\%	.03x
second:	4\%	.04y
total \$5000		\$185

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
\mathbf{3 x}+\mathbf{4 y}=\mathbf{1 8 , 5 0 0} \\
\mathbf{- 3 x}-\mathbf{3 y}=\mathbf{- 1 5 , 0 0 0} \\
\hline \mathbf{y}=\mathbf{3 , 5 0 0} \\
x+y=\mathbf{5 0 0 0} \\
x+\mathbf{3 5 0 0}=\mathbf{5 0 0 0} \\
\mathbf{x}=\mathbf{1 5 0 0}
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
8. Mary invested $\mathbf{\$ 5 0 0 0}$, part at $\mathbf{3 \%}$ per year and the rest at $\mathbf{4 \%}$ per year. If the total interest for the year was $\$ 185$, then how much was invested at each rate?

amoun invested	$\begin{gathered} \text { interest } \\ \text { rate } \end{gathered}$	$\begin{aligned} & \text { interest } \\ & \text { earned } \end{aligned}$
first: \mathbf{x}	3\%	.03x
second: y	4\%	.04y
total \$5000		\$185

$$
\begin{gathered}
x+y=5000 \\
.03 x+.04 y=185 \\
\mathbf{3 x}+\mathbf{4 y}=\mathbf{1 8 , 5 0 0} \\
\mathbf{- 3 x}-\mathbf{3 y}=\mathbf{- 1 5 , 0 0 0} \\
\hline y=\mathbf{3 , 5 0 0} \\
x+y=5000 \\
x+\mathbf{3 5 0 0}=\mathbf{5 0 0 0} \\
\mathbf{x}=\mathbf{1 5 0 0}
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is $\mathbf{1 0 \%}$ acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
first:
second:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

```
volume
of solution
```

first:
second:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
volume
of solution
first: \mathbf{x}
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
volume
of solution
first: \mathbf{x}
second: y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
volume
of solution
first: \mathbf{x}
second: \mathbf{y}
total

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
volume
of solution
first: \mathbf{x}
second: y
total 50 cc

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}
$$

volume
of solution
first: \mathbf{x}
second: \mathbf{y}
total 50 cc

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
x+y=50
$$

volume
of solution
first: \mathbf{x}
second: \mathbf{y}
total 50 cc

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume
of solution
first: \mathbf{x}
second: \mathbf{y}
total 50 cc

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume percent of solution acid
first: \mathbf{x}
second: \mathbf{y}
total 50 cc

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume percent
of solution acid
first: $x \quad 35 \%$
second: \mathbf{y}
total 50 cc

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume percent of solution acid
first: x 35\%
second: y 10\%
total 50 cc

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume percent
of solution acid
first: $x \quad 35 \%$
second: y 10\%
total 50 cc

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
x+y=50
$$

volume percent
of solution acid
first: $x \quad 35 \%$
second: y 10\%
total 50 cc 25\%

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume percent	volume of solution acid

first: $\mathbf{x} \quad \mathbf{3 5 \%}$
second: y 10\%
total 50 cc 25\%

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is 25% acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume percent volume
of solution acid of acid
first: x 35\% .35x
second: y 10\%
total 50 cc 25\%

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume percent volume
of solution acid of acid
first: $x \quad 35 \% \quad .35 x$
second: y 10\% .10y
total 50 cc 25\%

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is 25% acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

volume			
of solution	percent		
acid		\quad	volume
:---			
of acid			

first: $x \quad 35 \% \quad .35 x$

| second: | $\frac{y}{10 \%}$ | $\underline{.10 y}$ | |
| :--- | :--- | :--- | :--- | :--- |
| total | $\overline{50} \mathrm{cc}$ | $\mathbf{2 5 \%}$ | $\underline{12.5 \mathrm{cc}}$ |

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is 25% acid?

$$
x+y=50
$$

volume percent volume
of solution acid of acid

$$
.35 x+.10 y
$$

first: x 35\% .35x

| second: | $\frac{y}{10 \%}$ | $\underline{.10 y}$ | |
| :--- | :--- | :--- | :--- | :--- |
| total | $\overline{50} \mathrm{cc}$ | $\mathbf{2 5 \%}$ | $\underline{12.5 \mathrm{cc}}$ |

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is 25% acid?

$$
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5
\end{gathered}
$$

volume percent volume of solution acid of acid
first: x 35\% .35x

total $50 \mathrm{cc} 25 \% 12.5 \mathrm{cc}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5
\end{gathered}
$$

volume percent volume of solution acid of acid
first: x 35\% .35x
second: y 10\% .10y
total $50 \mathrm{cc} 25 \% 12.5 \mathrm{cc}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\mathbf{x}+\mathbf{y}=\mathbf{5 0}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
$x+y=50$
100
\square
$\longrightarrow \mathbf{3 5 x}+.10 y=12.5$

| second: | $\frac{y}{10 \%}$ | $\underline{.10 y}$ | |
| :--- | :--- | :--- | :--- | :--- |
| total | $\overline{50} \mathrm{cc}$ | $\mathbf{2 5 \%}$ | $\underline{12.5 \mathrm{cc}}$ |

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
$x+y=50$
100
\square
$\longrightarrow \mathbf{3 5 x} x+10 y=12.5$
\longrightarrow

| second: | $\frac{y}{10 \%}$ | $\underline{.10 y}$ | |
| :--- | :--- | :--- | :--- | :--- |
| total | $\overline{50} \mathrm{cc}$ | $\mathbf{2 5 \%}$ | $\underline{12.5 \mathrm{cc}}$ |

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is 25% acid?

$$
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
\mathbf{3 5 x}+10 y=1250
\end{gathered}
$$

volume percent volume of solution acid of acid
first: $x \quad 35 \% \quad .35 x$
second: $y \quad 10 \% \quad .10 y$
total $50 \mathrm{cc} 25 \% 12.5 \mathrm{cc}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is $\mathbf{1 0 \%}$ acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=\mathbf{1 2 5 0} \\
\mathbf{- 1 0 x}-10 y=\mathbf{- 5 0 0}
\end{gathered}
$$

volume percent volume of solution acid of acid
first: x 35\% .35x
second: y 10\% .10y
total $50 \mathrm{cc} 25 \% 12.5 \mathrm{cc}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is $\mathbf{1 0 \%}$ acid. How much of each solution should she use to make 50 cc of a solution that is 25% acid?
volume percent volume of solution acid of acid
first: x 35\% .35x
second: y 10\% .10y
total $50 \mathrm{cc} 25 \% 12.5 \mathrm{cc}$

$$
\begin{aligned}
& x+y=50 \\
& .35 x+.10 y=12.5 \\
& 35 x+10 y=1250 \\
&-10 x-10 y=\mathbf{- 5 0 0} \\
& \hline
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is $\mathbf{1 0 \%}$ acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?
volume percent volume of solution acid of acid
first: x 35\% .35x
second: y 10\% .10y
total
50 cc 25\%
12.5 cc

$$
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
35 x+10 y=1250 \\
-\mathbf{- 1 0 x - 1 0 y}=-500 \\
\hline 25 x
\end{gathered}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is $\mathbf{1 0 \%}$ acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
\mathbf{3 5 x}+10 y=1250 \\
-\mathbf{- 1 0 x}-10 y=-500 \\
\hline 25 x=750
\end{gathered}
$$

 volume percent volume
 of solution acid of acid
 first: \(x\) 35\% .35x
 second: y 10\% .10y
 total $50 \mathrm{cc} 25 \% \quad 12.5 \mathrm{cc}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\begin{aligned}
x+y & =50 \\
.35 x+.10 y & =12.5 \\
\mathbf{3 5 x}+10 y & =1250 \\
\mathbf{- 1 0 x}-10 y & =\mathbf{- 5 0 0} \\
\hline 25 x & =750 \\
x & =\mathbf{3 0}
\end{aligned}
$$

 volume percent volume
 of solution acid of acid
 first: \(x\) 35\% .35x
 second: y 10\% .10y
 total \(50 \mathrm{cc} 25 \% \quad 12.5 \mathrm{cc}\)

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is $\mathbf{1 0 \%}$ acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\begin{gathered}
x+y=50 \\
.35 x+.10 y=12.5 \\
\mathbf{3 5 x}+10 y=1250 \\
\mathbf{- 1 0 x - 1 0 y}=\mathbf{- 5 0 0} \\
\hline 25 x=750 \\
x=30 \\
x+y=50
\end{gathered}
$$

 volume percent volume
 of solution acid of acid
 first: x 35\% .35x
second: y 10\% .10y
total $50 \mathrm{cc} 25 \% \quad 12.5 \mathrm{cc}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is $\mathbf{1 0 \%}$ acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\begin{gathered}
x+y=\mathbf{5 0} \\
. \mathbf{3 5 x}+.10 y=\mathbf{1 2 . 5} \\
\mathbf{3 5 x}+\mathbf{1 0 y}=\mathbf{1 2 5 0} \\
\mathbf{- 1 0 x}-\mathbf{1 0 y}=\mathbf{- 5 0 0} \\
\hline \mathbf{2 5 x}=\mathbf{7 5 0} \\
\mathbf{x}=\mathbf{3 0} \\
\mathbf{x}+\mathbf{y}=\mathbf{5 0} \\
\mathbf{3 0}+\mathbf{y}=\mathbf{5 0}
\end{gathered}
$$

 volume percent volume
 of solution acid of acid
 first: x 35\% .35x
second: y 10\% .10y
total $50 \mathrm{cc} 25 \% \quad 12.5 \mathrm{cc}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\begin{gathered}
x+y=\mathbf{5 0} \\
. \mathbf{3 5 x}+. \mathbf{1 0 y}=\mathbf{1 2 . 5} \\
\mathbf{3 5 x}+\mathbf{1 0 y}=\mathbf{1 2 5 0} \\
\mathbf{- 1 0 x}-\mathbf{1 0 y}=\mathbf{- 5 0 0} \\
\hline \mathbf{2 5 x}=\mathbf{7 5 0} \\
\mathbf{x}=\mathbf{3 0} \\
\mathbf{x}+\mathbf{y}=\mathbf{5 0} \\
\mathbf{3 0}+\mathbf{y}=\mathbf{5 0} \\
\mathbf{y}=\mathbf{2 0}
\end{gathered}
$$

 volume percent volume
 of solution acid of acid
 first: x 35\% .35x
second: y 10\% .10y
total $50 \mathrm{cc} 25 \% \quad 12.5 \mathrm{cc}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50 cc of a solution that is $\mathbf{2 5 \%}$ acid?

$$
\begin{gathered}
x+y=50 \\
. \mathbf{3 5 x}+. \mathbf{1 0 y}=\mathbf{1 2 . 5} \\
\mathbf{3 5 x}+\mathbf{1 0 y}=\mathbf{1 2 5 0} \\
\mathbf{- 1 0 x}-\mathbf{1 0 y}=\mathbf{- 5 0 0} \\
\hline \mathbf{2 5 x}=\mathbf{7 5 0} \\
\mathbf{x}=\mathbf{3 0} \\
\text { on } \quad x+y=\mathbf{5 0} \\
\mathbf{3 0}+\mathbf{y}=\mathbf{5 0} \\
\mathbf{y}=\mathbf{2 0}
\end{gathered}
$$

 volume percent volume
 of solution acid of acid
 first: x 35\% .35x
second: y 10\% .10y
total $50 \mathrm{cc} 25 \% \quad 12.5 \mathrm{cc}$

She should use 30 cc of the 35% solution and 20 cc of the $\mathbf{1 0 \%}$ solution.

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?
burger:
fries:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

```
cost
each
```

burger:
fries:

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?
cost
each
burger: $\mathbf{x} \subset$
fries: y \boldsymbol{c}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?
cost
each
burger: $\mathrm{x} \subset$
fries: $\mathbf{y} \boldsymbol{c}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

6x
cost
each
burger: $\mathrm{x} \subset$
fries: $y \subset$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
6 x+4 y
$$

cost
each
burger: $\mathrm{x} \subset$
fries: $y \subset$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

cost
each
burger: $\mathrm{x} \subset$
fries: $y \subset$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\$ \mathbf{6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

cost
each
burger: $\mathrm{x} \subset$
fries: $y \subset$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\$ \mathbf{6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

cost
3x
burger: $\mathbf{x} \subset$
fries: $y \subset$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\$ \mathbf{6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

cost
$3 x+5 y$
burger: $\mathrm{x} \subset$
fries: y \boldsymbol{c}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\$ \mathbf{6 . 6 0}$. How much does each item cost?

	$6 x+4 y=870$
cost	$3 x+5 y=660$

burger: $\mathbf{x} \subset$
fries: $\mathbf{y} \boldsymbol{c}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+1
\end{array}
$$

burger: $\mathrm{x} \subset$
fries: $y \subset$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

fries: $\mathbf{y} \boldsymbol{c}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

	$6 x+4 y=870$
cost each	$3 x+5 y=660$
$x ¢$	$30 x$

fries: $y c$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?
cost each
burger: $\mathrm{x} \subset$

$$
\begin{array}{r}
6 x+4 y \\
3 x+5 y \\
30 x+20 y
\end{array}
$$

fries: y \boldsymbol{c}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?
cost
each

$$
\begin{gathered}
6 x+4 y=870 \\
3 x+5 y=660
\end{gathered}
$$

burger: $\mathrm{x} \subset$
$30 x+20 y=4350$
fries: $y c$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
$$

burger: $x \subset \quad 30 x+20 y=4350$
fries: $\mathbf{y} \boldsymbol{c}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{array}{rc}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & \\
\text { burger: } x & 30 x+20 y=4350
\end{array}
$$

$$
\text { fries: } \quad y \not \subset
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{array}{lll}
& 6 x+4 y=870 \\
& \begin{array}{l}
\text { cost } \\
\text { each }
\end{array} & 3 x+5 y=660 \\
\text { urger: } & x c & 30 x+20 y=4350 \\
\text { fries: } & y c & -12 x
\end{array}
$$

burger: x c

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

	$6 x+4 y=870$
cost each	$3 \mathrm{x}+5 \mathrm{y}=660-4$
\mathbf{x}	30x $+20 y=4350$
yc	-12x-20y

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

cost
each

$$
3 x+5 y=660-4
$$

burger: x c
$30 x+20 y=4350$
fries: $y \subset \quad-12 x-20 y=-2640$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

	$6 x+4 y=870$
cost	$3 x+5 y=660$

burger: $x \nmid \quad 30 x+20 y=4350$
fries: $y \subset \quad-12 x-20 y=-2640$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

	$6 x+4 y=870$
cost	
each	$3 x+5 y=660$

burger: $x \neq 30 x+20 y=4350$
fries: $y \subset \quad-12 x-20 y=-2640$
18x

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

	$6 x+4 y=870$
cost	
each	$3 x+5 y=660$

burger: $x \neq 30 x+20 y=4350$
fries: $y c \quad-12 x-20 y=-2640$

$$
18 x=1710
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+1
\end{array}
$$

burger: $x \subset \quad 30 x+20 y=4350$
fries: $y \subset \quad-12 x-20 y=-2640$

$$
\begin{aligned}
18 x & =1710 \\
x & =95
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{aligned}
& 6 x+4 y=870 \\
& \text { cost } \\
& \text { each } \\
& 3 x+5 y=660 \\
& 30 x+20 y=4350 \\
& 6 x+4 y=870 \\
& -12 x-20 y=-2640 \\
& 18 \mathrm{x}=1710 \\
& x=95
\end{aligned}
$$

burger: $\mathrm{x} \subset$
fries: $\mathbf{y} \boldsymbol{c}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{array}{ll}
& 6 x+4 y=870 \\
\text { cost } & 3 x+5 y=660 \\
\text { each } & 3 x+5
\end{array}
$$

burger: $\mathrm{x} \subset$

$$
6 x+4 y=870
$$

fries: $y \subset \quad-12 x-20 y=-2640$

$$
\begin{aligned}
18 \mathrm{x} & =1710 \\
x & =95
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{aligned}
& 6 x+4 y=870 \\
& \text { cost } \\
& \text { each } \\
& 3 x+5 y=660 \xrightarrow{-2} \\
& 30 \mathrm{x}+20 \mathrm{y}=4350 \\
& 6 x+4 y=870 \\
& -12 x-20 y=-2640 \\
& 18 \mathrm{x}=1710 \\
& x=95
\end{aligned}
$$

burger: $\mathbf{x} \subset$
fries: y \boldsymbol{c}

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{aligned}
& 6 x+4 y=870 \\
& \text { cost } \\
& \text { each } \\
& 3 x+5 y=660 \xrightarrow{-2} \\
& 30 x+20 y=4350 \\
& 6 x+4 y=870 \\
& -12 x-20 y=-2640 \\
& 18 \mathrm{x}=1710 \\
& x=95
\end{aligned}
$$

burger: $\mathrm{x} \subset$
fries: $\mathbf{y} \boldsymbol{c}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{aligned}
& 6 x+4 y=870 \\
& \text { cost } \\
& \text { each } \\
& 3 x+5 y=660 \xrightarrow{-2} \\
& 30 x+20 y=4350 \\
& -12 x-20 y=-2640 \\
& 6 x+4 y=870 \\
& \rightarrow-6 x-10 y
\end{aligned}
$$

burger: $\mathbf{x} \subset$

$$
\begin{aligned}
30 x+20 y & =4350 \\
-12 x-20 y & =-2640 \\
\hline 18 x & =1710 \\
x & =95
\end{aligned}
$$

fries: $y \boldsymbol{c}$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
\begin{aligned}
& 6 x+4 y=870 \\
& \text { cost } \\
& \text { each } \\
& 3 x+5 y=660 \xrightarrow{-2} \\
& 30 x+20 y=4350 \\
& \text { fries: } \quad \mathrm{y} \text { ¢ } \quad \mathbf{- 1 2 x}-\mathbf{2 0 y}=\mathbf{- 2 6 4 0} \longrightarrow \mathbf{- 6 x}-10 y=-1320
\end{aligned}
$$

burger: $\mathbf{x} \subset$

$$
\begin{aligned}
30 x+20 y & =4350 \\
-12 x-20 y & =-2640 \\
\hline 18 x & =1710 \\
x & =95
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

$$
\begin{aligned}
& \text { cost } \\
& \text { each }
\end{aligned} \quad 3 x+5 y=660
$$

burger: $x \not \subset$

$$
\begin{aligned}
30 x+20 y & =4350 \\
-12 x-20 y & =-2640 \\
\hline 18 x & =1710 \\
x & =95
\end{aligned}
$$

$$
6 x+4 y=870
$$

$$
\text { fries: } \quad y \subset \quad-12 x-20 y=-2640
$$

$$
-6 x-10 y=-1320
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

$$
\begin{aligned}
& \text { cost } \\
& \text { each }
\end{aligned} \quad 3 x+5 y=660
$$

burger: $x \not \subset$

$$
30 x+20 y=4350
$$

fries: $\mathbf{y} \not \subset$

$\frac{-12 x-20 y}{}=-2640$	
$18 x$	$=1710$
x	$=95$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

$$
\begin{aligned}
& \text { cost } \\
& \text { each }
\end{aligned} \quad 3 x+5 y=660
$$

burger: $\mathrm{x} \subset$

$$
30 x+20 y=4350
$$

fries: $\mathbf{y} \not \subset$
$\frac{-12 x-20 y=-2640}{18 x}=1710$
$x=95$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

$$
\begin{aligned}
& \text { cost } \\
& \text { each }
\end{aligned} \quad 3 x+5 y=660
$$

burger: $\mathrm{x} \subset$

$$
30 x+20 y=4350
$$

fries: $\mathbf{y} \not \subset$

$$
\begin{gathered}
-12 x-20 y=-2640 \\
\hline 18 x=1710 \\
x=95
\end{gathered}
$$

$$
\begin{aligned}
6 x+4 y & =870 \\
-6 x-10 y & =-1320 \\
\hline-6 y & =-450 \\
y & =75
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

$$
6 x+4 y=870
$$

cost
each

$$
3 x+5 y=660
$$

burger: $\mathrm{x} \subset$

$$
30 x+20 y=4350
$$

fries: $\mathbf{y} \boldsymbol{c}$

$-12 x-20 y=-2640$			
$18 x$	$=1710$		
x	$=95$	\quad	$-6 x-10 y=-1320$
:---:			

A burger costs $95 \not \subset$ each, and an order of fries costs $75 \not \subset$ each.

Algebra I Class Worksheet \#4 Unit 9

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.
10. Six burgers and four orders of fries cost $\$ 8.70$. Three burgers and five orders of fries cost $\mathbf{\$ 6 . 6 0}$. How much does each item cost?

Good luck on your homework !!

burger: $x \neq 30 x+20 y=4350 \quad 6 x+4 y=870$
fries: $y \dot{d} \quad-12 x-20 y=-2640$

$$
18 x=1710
$$

$$
x=95
$$

$$
\begin{gathered}
-6 x-10 y=-1320 \\
-6 y=-450 \\
y=75
\end{gathered}
$$

A burger costs $95 \not \subset$ each, and an order of fries costs $75 \varnothing$ each.

