Algebra I Lesson #4 Unit 9 Class Worksheet #4 For Worksheets #5 - #8

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first:

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. **The sum of two numbers is 20.** The first number is 4 less than three times the second. What are the numbers?

first: x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. **The sum of two numbers is 20.** The first number is 4 less than three times the second. What are the numbers?

first: $\mathbf{x} = \mathbf{x} + \mathbf{y}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. **The sum of two numbers is 20.** The first number is 4 less than three times the second. What are the numbers?

first:
$$x = x + y = 20$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first:
$$x = x + y = 20$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x = x + y = 20

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x + y = 20

second: y x =

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x = x + y = 20

second: y x = 3y - 4

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first:
$$x = x + y = 20$$

second: y x + y = 20x = 3y - 4

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x
$$x + y = 20$$
 (3y - 4)

second: y = 3y - 4

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x
$$x + y = 20$$
 $(3y - 4) + y$

second: y = 3y - 4

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$
second: y $x = 3y - 4$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ second: y $x = 3y - 4$ $4y$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ second: y $x = 3y - 4$ $4y - 4$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ second: y $x = 3y - 4$ $4y - 4 = 20$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ second: y $x = 3y - 4$ $4y - 4 = 20$ 4y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ second: y $x = 3y - 4$ $4y - 4 = 20$ $4y = 24$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y = 20 (3y - 4) + y = 20second: y x = 3y - 4 4y - 4 = 204y = 24y = 6

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ $x = 3y - 4$
second: y $x = 3y - 4$ $4y - 4 = 20$
 $4y = 24$
 $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y = 20 (3y - 4) + y = 20 x = 3y - 4second: y x = 3y - 4 4y - 4 = 20 x = 4y = 24y = 6

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y = 20 (3y - 4) + y = 20 x = 3y - 4second: y x = 3y - 4 4y - 4 = 20 x = 3(6) - 44y = 24y = 6

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ $x = 3y - 4$
second: y $x = 3y - 4$ $4y - 4 = 20$ $x = 3(6) - 4$
 $4y = 24$ $x =$
 $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ $x = 3y - 4$
second: y $x = 3y - 4$ $4y - 4 = 20$ $x = 3(6) - 4$
 $4y = 24$ $x = 18 - 4$
 $y = 6$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x
$$x + y = 20$$
 $(3y - 4) + y = 20$ $x = 3y - 4$ second: y $x = 3y - 4$ $4y - 4 = 20$ $x = 3(6) - 4$ $4y = 24$ $x = 18 - 4$ $y = 6$ $x = 14$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

1. The sum of two numbers is 20. The first number is 4 less than three times the second. What are the numbers?

first: x x + y = 20 (3y - 4) + y = 20 x = 3y - 4second: y x = 3y - 4 4y - 4 = 20 x = 3(6) - 44y = 24 x = 18 - 4y = 6 x = 14

The first number is 14, and the second number is 6.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first:

second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = 15 second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = 15 second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x	$\mathbf{x} + \mathbf{y} = 15$
second: y	$\mathbf{x} - \mathbf{y}$
Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x	$\mathbf{x} + \mathbf{y} = 15$
second: y	$\mathbf{x} - \mathbf{y} = 9$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x	$\mathbf{x} + \mathbf{y} = 15$
second: y	$\mathbf{x} - \mathbf{y} = 9$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x	x + y = 15
second: y	$\mathbf{x} - \mathbf{y} = 9$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x	x + y = 15
second: y	$\mathbf{x} - \mathbf{y} = 9$
	2 x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x	x + y = 15
second: y	$\mathbf{x} - \mathbf{y} = 9$
	2x = 24

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: xx + y = 15second: yx - y = 92x = 24x = 12

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x x + y = 15 x + y = 15second: y x - y = 92x = 24x = 12

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x	$\mathbf{x} + \mathbf{y} = 15$	$\mathbf{x} + \mathbf{y} = 15$
second: y	$\mathbf{x} - \mathbf{y} = 9$	12 + y
	2x = 24	
	x = 12	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x	$\mathbf{x} + \mathbf{y} = 15$	$\mathbf{x} + \mathbf{y} = 15$
second: y	$\mathbf{x} - \mathbf{y} = 9$	12 + y = 15
	2x = 24	
	x = 12	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

first: x	x + y = 15	$\mathbf{x} + \mathbf{y} = 15$
second: y	$\mathbf{x} - \mathbf{y} = 9$	12 + y = 15
	2x = 24	y = 3
	x = 12	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

2. The sum of two numbers is 15. Their difference is 9. What are the numbers?

first: x	x + y = 15	$\mathbf{x} + \mathbf{y} = 15$
second: y	$\mathbf{x} - \mathbf{y} = 9$	12 + y = 15
	2x = 24	y = 3
	x = 12	

The numbers are 12 and 3.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

dimes: nickels:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins

dimes:

nickels:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins dimes: x nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins dimes: x nickels: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

number of coins dimes: x nickels: y total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins
dimes:	X
nickels:	У
total	40

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

3. A coin collection consists of ordinary dimes and nickels and is worth a total of \$3.20. If there are 40 coins in the collection, then how many coins of each type are there?

У

	number of coins	x +
dimes:	X	
nickels:	У	
total	40	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	
nickels:	У	
total	40	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	
nickels:	У	
total	40	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X		
nickels:	У		
total	40		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	10x¢	
nickels:	У		
total	40		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	10x¢	
nickels:	У	5y¢	
total	40		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	10x¢	
nickels:	У	5y¢	
total	40		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	10x¢	
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	10x¢	10x + 5y
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	10x¢	10x + 5y = 320
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$\mathbf{x} + \mathbf{y} = 40$
dimes:	X	10x¢	10x + 5y = 320
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$x + y = 40 \xrightarrow{-5}$
dimes:	X	10x¢	10x + 5y = 320
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$x + y = 40 \xrightarrow{-5} -5x$
dimes:	X	10x¢	10x + 5y = 320
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	x + y = 40 -5 -5x - 5y
dimes:	X	10x¢	10x + 5y = 320
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	x + y = 40 -5 -5 $x - 5y = -200$
dimes:	X	10x¢	10x + 5y - 520
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	x + y = 40 -5 -5 $x - 5y = -200$
dimes:	X	10x¢	10x + 5y = 320
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$x + y = 40 \xrightarrow{-5} -5x - 5y = -200$
dimes:	X	10x¢	10x + 5y = 320 FIOX + 5y 520
nickels:	У	5y¢	
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	$x + y = 40 \xrightarrow{-5} -5x - 5y = -200$ 10x + 5y = 320 $\longrightarrow 10x + 5y = 320$
dimes:	X	10x¢	10x + 5y = 320
nickels:	У	5y¢	
total	40	320¢	
Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	number of coins X	value of the coins 10x ¢	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$
nickels:	x y	10x¢ 5y¢	5 x
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes•	number of coins X	value of the coins 10x ¢	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$
nickels:	x y	10x¢ 5y¢	5x = 120
total	40	320¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes•	number of coins X	value of the coins	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$
nickels.	A	10AC	5x = 120
total	y 40	320¢	x = 24

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	number of coins X	value of the coins 10x ¢	$x + y = 40$ $\xrightarrow{-5}$ $-5x - 5y = -200$ $10x + 5y = 320$ \longrightarrow $10x + 5y = 320$
nickels:	y	5y¢	5x = 120
total	40	320¢	x = 24 $x + y = 40$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	number of coins X	value of the coins 10x ¢	x + y = 40 -5 $-5x - 5y = -20010x + 5y = 320$ $-5x - 5y = -20010x + 5y = 320$
nickels:	У	5y¢	5x = 120
total	40	320¢	x = 24 $x + y = 40$
			24 + y = 40

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	number of coins X	value of the coins 10x¢	$x + y = 40 \xrightarrow{-5} -5x - 5y = -200$ $10x + 5y = 320 \xrightarrow{-5} 10x + 5y = 320$
nickels:	У	5y¢	5x = 120
total	40	320¢	x = 24 $x + y = 40$
			24 + y = 40
			y = 16

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

dimes:	number of coins X	value of the coins 10x¢	$x + y = 40 \xrightarrow{-5} -$ $10x + 5y = 320 \xrightarrow{-10} 10$	5x - 5y = -200 0x + 5y = 320
nickels:	У	5y¢		5x = 120
total	40	320¢		x - 24 $x + y = 40$
	T	here are	e 24 dimes and 16 nickels.	24 + y = 40
				y = 16

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

dimes: quarters:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number of coins

dimes:

quarters:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number of coins dimes: x quarters: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number of coins dimes: x quarters: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number value of of coins the coins

dimes: x

quarters: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number value of of coins the coins dimes: x 10x¢ quarters: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins
dimes:	X	10x¢
quarters	: y	25y¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins
dimes:	X	10x¢
quarters	: y	25y¢
total		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins
dimes:	X	10x¢
quarters	: y	25y¢
total		800¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

10x + 25y

	number of coins	value of the coins
dimes:	X	10x¢
quarters	: y	25y¢
total		800¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	value of the coins
dimes:	X	10x¢
quarters	: y	25y¢
total		800¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	nur of c	nber coins	value of the coins
dimes:	J	K	10x¢
quarters	: y	Y	25y¢
total			800¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

 $\mathbf{x} =$

	number of coins	value of the coins
dimes:	X	10x¢
quarters	y :	25y¢
total		800¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

r	number of coins	value of the coins	$\mathbf{x} = 2\mathbf{y} - \mathbf{z}$
dimes:	X	10x¢	
quarters:	y	25y¢	
total		800¢	

10x + 25y =	800
-------------	-----

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	10x + 25y = 800 x = 2y - 1
dimes:	X	10x¢	
quarters	: y	25y¢	
total		800¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	10x + 25y = 80 $x = 2y - 1$	00
dimes:	X	10x¢	10(
quarters	: y	25y¢	10(
total		800¢		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	number of coins	value of the coins	10x + 25y = 800 x = 2y - 1
dimes:	X	10x¢	10(2v - 1)
quarters	: y	25y¢	10(2, 1)
total		800¢	

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

nu of	mber coins	value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2v - 1) + 25v
quarters:	У	25y¢	
total		800¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

 $10_{\rm W} \perp 25_{\rm W} = 900$

	number of coins	value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2v - 1) + 25v = 800
quarter	s: y	25y¢	
total		800¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

 $10_{\rm W} + 25_{\rm W} = 900$

	number of coins	value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2v - 1) + 25v = 800
quarter	s: y	25y¢	20w
total		800¢	20 y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

 $10x \perp 25x - 900$

	number of coins	value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2v - 1) + 25v = 800
quarter	s: y	25y¢	20v - 10
total		800¢	20y - 10

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2v - 1) + 25v = 800
quarter	s: y	25y¢	20x - 10 + 25x
total		800¢	20y - 10 + 23y

10x + 25y = 800
$\mathbf{x} = 2\mathbf{y} - 1$
10(2y - 1) + 25y = 800
20y - 10 + 25y

 $10_{\rm W} \perp 25_{\rm W} = 900$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2v - 1) + 25v = 800
quarters	s: y	25y¢	20y - 10 + 25y = 800
total		800¢	20y - 10 + 23y - 000

10x + 25y = 000
$\mathbf{x} = \mathbf{2y} - 1$
10(2y-1) + 25y = 800
$20_{\rm M}$ $10 \pm 25_{\rm M} = 800$

 $10v \pm 25v = 900$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

numbe of coin	er value of as the coins	x = 2y - 1
dimes: x	10x¢	10(2v - 1) + 25v = 800
quarters: y	25y¢	20y - 10 + 25y = 800
total	800¢	20y 10 + 25y 000 45v
		тоу

10x + 23y = 800
$\mathbf{x} = 2\mathbf{y} - 1$
0(2y-1) + 25y = 800
20v - 10 + 25v = 800

 $10_{\rm W} \perp 25_{\rm W} - 900$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

	number of coins	value of the coins	x = 2y - 1
dimes:	X	10x¢	10(2v - 1) + 25v = 800
quarters	: y	25y¢	20y - 10 + 25y = 800
total 8		800¢	20y 10 + 25y 000 45v - 10
			4 <i>3y</i> – 10

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

number value of of coins the coins	x = 2y - 1
dimes: x 10x¢	10(2v - 1) + 25v = 800
quarters: y 25y¢	20v - 10 + 25v = 800
total 800¢	45v - 10 = 800

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

			IUA + 25 y 000
	number of coins	value of the coins	$\mathbf{x} = 2\mathbf{y} - 1$
dimes:	X	10x¢	10(2v-1) + 25v = 800
quarter	s: y	25y¢	20v - 10 + 25v = 800
total		800¢	45y - 10 = 800
			45y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

 $10v \pm 25v = 900$

			10A + 2Jy = 000
nu of	mber coins	value of the coins	$\mathbf{x} = 2\mathbf{y} - 1$
dimes:	X	10x¢	10(2v-1) + 25v = 800
quarters:	У	25y¢	20v - 10 + 25v = 800
total		800¢	45v - 10 = 800
			10y 10 000
			45v = 810
Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

		10A + 25y = 000
num of co	ber value of ins the coins	x = 2y - 1
dimes: x	10x¢	10(2v-1) + 25v = 800
quarters: y	25y¢	20v - 10 + 25v = 800
total	800¢	45v - 10 = 800
		45y = 810
		y = 18

$\mathbf{x} = 2\mathbf{y} - 1$
0(2y-1) + 25y = 800
20y - 10 + 25y = 800
45y - 10 = 800
45y = 810

10x + 25y = 800

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

10 - 10 - 000

			10x + 25y = 800	
	number of coins	value of the coins	$\mathbf{x} = 2\mathbf{y} - 1$	
dimes:	X	10x¢	10(2y-1) + 25y = 800	$\mathbf{x} = 2\mathbf{y} - 1$
quarters	y	25y¢	20v - 10 + 25v = 800	
total		800¢	45y - 10 = 800	
			45y = 810	
			y = 18	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

000

			10x + 25y = 800	
	number of coins	value of the coins	x = 2y - 1	
dimes:	X	10x¢	10(2y-1) + 25y = 800	x = 2y - 1
quarters	s: y	25y¢	20v - 10 + 25v = 800	x =
total		800¢	45y - 10 = 800	
			45y = 810	
			y = 18	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

000

			10x + 25y = 800	
	number of coins	value of the coins	x = 2y - 1	
dimes:	X	10x¢	10(2y-1) + 25y = 800	x = 2y - 1
quarters	s: y	25y¢	20v - 10 + 25v = 800	x = 2(18) - 1
total		800¢	45y - 10 = 800	
			45y = 810	
			y = 18	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

1 0

			10x + 25y = 800	
	number of coins	c value of s the coins	$\mathbf{x} = 2\mathbf{y} - 1$	
dimes:	X	10x¢	10(2y-1) + 25y = 800	x = 2y - 1
quarter	s: y	25y¢	20v - 10 + 25v = 800	x = 2(18) - 1
total		800¢	45y - 10 = 800	x = 35
			45y = 810	
			y = 18	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

4. A collection of ordinary dimes and quarters is worth \$8. The number of dimes is one less than two times the number of quarters. How many coins of each type are in the collection?

000

			10x + 25y = 800	
	number of coins	value of the coins	$\mathbf{x} = 2\mathbf{y} - 1$	
dimes:	X	10x¢	10(2y-1) + 25y = 8	$00 \qquad x = 2y - 1$
quarters	s: y	25y¢	20v - 10 + 25v = 80	x = 2(18) - 1
total		800¢	45y - 10 = 800	$\mathbf{x} = 35$
			45y = 810	There are 35 dimes
			y = 18	and 18 quarters.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:

Sue:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:xSue:y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. **Bill and Sue earned a total of \$1000.** If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:xSue:y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. **Bill and Sue earned a total of \$1000.** If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill: x Sue: y total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. **Bill and Sue earned a total of \$1000.** If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

Bill:xSue:ytotal1000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	$\mathbf{x} + \mathbf{y}$
Sue:	Y	
total	1000	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. **Bill and Sue earned a total of \$1000.** If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

 Bill: x x + y = 1000

 Sue: y y

 total 1000
 x + y = 1000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

5. Bill and Sue earned a total of \$1000. If Sue earned \$25 more than 4 times the amount earned by Tom, then how much did each person earn?

 Bill: x x + y = 1000

 Sue: y y

 total 1000
 x + y = 1000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	$\mathbf{x} + \mathbf{y} = 1000$
Sue:	y	$\mathbf{y} =$
total	1000	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	Y	y = 4x + 25
total	1000	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$
total	1000	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	У	y = 4x + 25
total	1000	x +

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	y	y = 4x + 25
total	1000	x + (4x + 25)

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	<u> </u>	y = 4x + 25
total	1000	x + (4x + 25) = 1000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$
total	1000	x + (4x + 25) = 1000
		5x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$
total 1000		x + (4x + 25) = 1000
		5x + 25

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$
total	1000	x + (4x + 25) = 1000
		5x + 25 = 1000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$
total	1000	x + (4x + 25) = 1000
		5x + 25 = 1000
		5 x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$
total	1000	x + (4x + 25) = 1000
		5x + 25 = 1000
		5x = 975

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$
total	1000	x + (4x + 25) = 1000
		5x + 25 = 1000
		5x = 975
		x = 195

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000	
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$	
total	1000	x + (4x + 25) = 1000	y = 4x + 25
		5x + 25 = 1000	
		5x = 975	
		x = 195	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000	
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$	
total	1000	x + (4x + 25) = 1000	$\mathbf{y} = \mathbf{4x} + 25$
		5x + 25 = 1000	$\mathbf{y} =$
		5x = 975	
		x = 195	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000	
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$	
total	1000	x + (4x + 25) = 1000	y = 4x + 25
		5x + 25 = 1000	y = 4(195) + 25
		5x = 975	
		x = 195	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000	
Sue:	Y	$\mathbf{y} = \mathbf{4x} + 25$	
total	1000	x + (4x + 25) = 1000	y = 4x + 25
		5x + 25 = 1000	y = 4(195) + 25
		5x = 975	$\mathbf{y} = 805$
		x = 195	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Bill:	X	x + y = 1000	
Sue:	Y	y = 4x + 25	
total	1000	x + (4x + 25) = 1000	y = 4x + 25
		5x + 25 = 1000	y = 4(195) + 25
		5x = 975	y = 805
		x = 195	Bill earned \$195, and
			Sue earned \$805.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

brand A: brand B:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds brand A: brand B:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds brand A: x brand B: y
Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds brand A: x brand B: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds brand A: x brand B: y mixture:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds brand A: x brand B: y mixture: 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds brand A: x brand B: y mixture: 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$\mathbf{x} + \mathbf{y} = 50$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number	$\mathbf{x} + \mathbf{y} = 50$
of pounds	
brand A: x	
brand B: y	
mixture: 50	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number value per of pounds pound	$\mathbf{x} + \mathbf{y} = 50$
brand A: x	
brand B: y	
mixture: 50	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number value per of pounds pound brand A: x $150 \notin$ brand B: y mixture: 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

n of	umber y pounds	value per pound
brand A:	X	150¢
brand B:	У	180¢
mixture: 5	50	

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

n of	umber pounds	value per pound
brand A:	X	150¢
brand B:	У	180¢
mixture:	50	

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number value per of pounds pound		
brand A:	X	150¢
brand B:	У	180¢
mixture: 5	0	159¢

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

 $\mathbf{x} + \mathbf{y} = \mathbf{50}$

n of	umber y pounds	value per pound
brand A:	X	150¢
brand B:	У	180¢
mixture: 5	50	159¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

 $\mathbf{x} + \mathbf{y} = \mathbf{50}$

number of pounds	value per pound	total value
brand A: x	150¢	
brand B: y	180¢	
mixture: 50	159¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	
mixture: 50	159¢	

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pound	value per s pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pound	r value per ls pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$$x + y = 50$$
$$150x + 180y$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pound	value per s pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$$x + y = 50$$

150x + 180y = 7950

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pound	value per ls pound	total value	X - 150x
brand A: x	150¢	150x¢	1302
brand B: y	180¢	180y¢	
mixture: 50	159¢	7950¢	

$$x + y = 50$$

- 150x + 180y = 7950

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number v of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$$x + y = 50$$

- 150x + 180y = 7950
- 15x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	total value	
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$$x + y = 50$$

- 150x + 180y = 7950
 \rightarrow 15x + 18y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$$x + y = 50$$

- 150x + 180y = 7950
 \rightarrow 15x + 18y = 795

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

x + y = 50150x + 180y = 7950 15x + 18y = 795

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

 $\begin{array}{r} -15 \\ x + y = 50 \\ 150x + 180y = 7950 \\ 15x + 18y = 795 \end{array}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

 $\begin{array}{r} \overset{-15}{15} x + y = 50 \\ 150x + 180y = 7950 \\ 15x + 18y = 795 \\ -15x \end{array}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number v of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

 $\begin{array}{r} -15 \\ x + y = 50 \\ 150x + 180y = 7950 \\ 15x + 18y = 795 \\ -15x - 15y \end{array}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

number v of pounds	value per pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

 $\begin{array}{r} \overset{-15}{15} x + y = 50 \\ 150x + 180y = 7950 \\ 15x + 18y = 795 \\ -15x - 15y = -750 \end{array}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

numbe of poun	r value per ds pound	total value	x + y = 50 150x + 180y = 7950
brand A: x	150¢	150x¢	130x + 100y - 7730
brand B: y	180¢	180y¢	15x + 18y = 795 -15x - 15y = -750
mixture: 50	159¢	7950¢	-13x - 13y -730

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

numbe of poun	er value per ds pound	total value	x + y = 50 150x + 180x - 7050
brand A: x	150¢	150x¢	130x + 100y - 7930
brand B: y	180¢	180y¢	15x + 18y = 795 -15y $15y = -750$
mixture: 50	 159¢	7950¢	-13x - 13y730

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number value per total of pounds pound value			x + y = 50 150x + 180y = 7950
brand A: x	150¢	150x¢	130x + 100y = 7730
brand B: y	180¢	180y¢	15x + 18y = 795 -15x - 15y = -750
mixture: 50	159¢	7950¢	$\frac{13x}{3y}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

numbe of poun	r value per ds pound	total value	x + y = 50 150x + 180y = 7950
brand A: x	150¢	150x¢	130x + 100y = 750
brand B: y	180¢	180y¢	15x + 18y = 795 -15x - 15y = -750
mixture: 50	159¢	7950¢	$\frac{-15x}{3y} = 45$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

y = 15

number value per total of pounds pound value			x + y = 50 150 $x + 180x = 7950$
brand A: x	150¢	150x¢	130x + 100y = 7730
brand B: y	180¢	180y¢	15x + 18y = 795 -15x - 15y = -750
mixture: 50	159¢	7950¢	$\frac{-13x - 13y - 730}{3y = 45}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pound	value per s pound	total value	X 150x
brand A: x	150¢	150x¢	1304
brand B: y	180¢	180y¢	15
mixture: 50	159¢	7950¢	-13

$$x + y = 50$$

$$50x + 180y = 7950$$

$$15x + 18y = 795$$

$$-15x - 15y = -750$$

$$3y = 45$$

$$y = 15$$

$$x + y = 50$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pound	value per s pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$\mathbf{x} + \mathbf{y} = 50$
150x + 180y = 7950
15x + 18y = 795
-15x - 15y = -750
3y = 45
y = 15
$\mathbf{x} + \mathbf{y} = 50$
x + 15 = 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

number of pound	value per s pound	total value
brand A: x	150¢	150x¢
brand B: y	180¢	180y¢
mixture: 50	159¢	7950¢

$\mathbf{x} + \mathbf{y} = 50$
150x + 180y = 7950
15x + 18y = 795
-15x - 15y = -750
3y = 45
y = 15
$\mathbf{x} + \mathbf{y} = 50$
x + 15 = 50
$\mathbf{x} = 35$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

6. Coffee worth \$1.50 per pound is mixed with coffee worth \$1.80 per pound to produce a 50 pound blend worth \$1.59 per pound. How many pounds of each type of coffee is used?

x = 35

i of	number f pound	value per s pound	total value 150x d	x + y = 50 150x + 180y = 7950
Dianu A:	Χ	130¢	IJUX¢	
brand B:	У	180¢	180y¢	15x + 18y = 795 -15x - 15y = -750
mixture:	50	159¢	7950¢	$\frac{15x + 15y + 750}{3y = 45}$
Use 35 and 15	5 pou 5 pou	nds @ \$ nds @ \$	51.50 per po 51.80 per po	y = 15 y = 15 x + y = 50 x + 15 = 50
Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person:

Second person:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. **\$200 is to be divided between two people** so that one receives **\$25 less than four times what the other receives. How much will each person receive?**

First person: x

Second person: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. **\$200 is to be divided between two people** so that one receives **\$25 less than four times what the other receives. How much will each person receive?**

First person: x Second person: y

total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. **\$200 is to be divided between two people** so that one receives **\$25 less than four times what the other receives. How much will each person receive?**

First person: x Second person: y total 200

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. **\$200 is to be divided between two people** so that one receives \$25 less than four times what the other receives. How much will each person receive?

$$\mathbf{x} + \mathbf{y}$$

First person: x

Second person: y

total 200

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

7. **\$200 is to be divided between two people** so that one receives \$25 less than four times what the other receives. How much will each person receive?

$$\mathbf{x} + \mathbf{y} = \mathbf{200}$$

First person: x

Second person: y

200 total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your complete solution neatly organized.

7. \$200 is to be divided between two people so that one receives **\$25 less than four times what the other receives.** How much will each person receive?

$$\mathbf{x} + \mathbf{y} = \mathbf{200}$$

First person: x Second person: y 200 total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your complete solution neatly organized.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y = 200First person: x $\mathbf{v} =$

Second person: y total

200

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your complete solution neatly organized.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? - - -

First person: x Second person: y 200 total

$$x + y = 200$$

 $y = 4x - 25$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive?

First person: xSecond person: ytotal200

$$x + y = 200$$

 $y = 4x - 25$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y = 200

First person: x Second person: y total 200 x + y = 4x - 25

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First per	son: x	$\mathbf{v} = 4\mathbf{x} - 25$
Second pers	son: y	J 1A 23
total	200	x + (4x - 25)

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First person: x		$\mathbf{v} = 4\mathbf{x} - 25$	
Second pers	on: y	у Т А Д Ј	
total	200	x + (4x - 25) = 200	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First person: x Second person: y		$\mathbf{v} = 4\mathbf{x} - 25$
		J TA 20
total	200	x + (4x - 25) = 200
		5x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First person: x Second person: y total 200		$\mathbf{y} = 4\mathbf{x} - 25$
		x + (4x - 25) = 20
		5x - 25

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First person: x Second person: y		$\mathbf{v} = 4\mathbf{x} - 25$
		J IA ZU
total	200	x + (4x - 25) = 200
		5x - 25 = 200

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y = 200

5x

First person: x		$\mathbf{v} = 4\mathbf{x} - 25$	
Second pers	on: y	у ча – 23	
total	200	x + (4x - 25) = 200	
		5x - 25 = 200	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y = 200

5x = 225

First pers	son: x	y = 4x - 25
total	$\frac{10012}{200}$	x + (4x - 25) = 200 5x - 25 = 200

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First person: x Second person: y		y = 4x - 25
total	200	x + (4x - 25) = 200
		5x - 25 = 200
		5x = 225

$$\mathbf{x} = \mathbf{45}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First pers Second pers	son: x son: y	y = 4x - 25	
total	200	x + (4x - 25) = 200 5x - 25 = 200	y = 4x - 25
		5x = 225	
		x = 45	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First pers Second pers	son: x son: y	y = 4x - 25	
total	200	x + (4x - 25) = 200 5x - 25 = 200	y = 4x - 25 $y = 4x - 25$
		5x = 225	•/
		$\mathbf{x} = 45$	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First pers	son: x son: y	y = 4x - 25	
total	200	x + (4x - 25) = 200	y = 4x - 25
		5x - 25 = 200	y = 4(45) - 25
		5x = 225	• • • •
		$\mathbf{x} = 45$	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

First pers	son: x son: y	y = 4x - 25	
total	200	x + (4x - 25) = 200 5x - 25 = 200	y = 4x - 25 y = 4(45) - 25
		5x = 225	y = 155
		$\mathbf{x} = 45$	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

7. \$200 is to be divided between two people so that one receives \$25 less than four times what the other receives. How much will each person receive? x + y = 200

First person: x Second person: y		y = 4x - 25	
total	200	x + (4x - 25) = 200 5x - 25 = 200	y = 4x - 25 y = 4(45) - 25
		5x = 225	y = 155
		x = 45	

One person received \$45, and the other received \$155.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

first: second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested first: second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested first: x second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested first: x second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

amount invested first: x second: y total

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

a i	amount invested	
first:	X	
second:	У	
total \$	5000	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$\mathbf{x} + \mathbf{y}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount invested	x + y = 5000
first: x	
second: y	
total \$5000	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount invested	$\mathbf{x} + \mathbf{y} = 5000$
first: x	
second: y	
total \$5000	
Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount interest invested rate	x + y = 5000
first: x	
second: y	
total \$5000	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

j	amount invested	interest rate
first:	X	3%
second:	У	4%
total \$	5000	

x + y = 5000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first:	X	3%	
second	S Y	4%	
total S	65000		

$$x + y = 5000$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	X	3%	.03x
second	y	4%	
total S	5000		

$$x + y = 5000$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first:	X	3%	.03x
second	S Y	4%	.04y
total S	65000		

$$x + y = 5000$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	X	3%	.03x
second	: y	4%	.04 y
total	\$5000		\$185

$$x + y = 5000$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	: X	3%	.03x
second	: у	4%	.04 y
total	\$5000		\$185

$$x + y = 5000$$

.03x + .04y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	: X	3%	.03x
second	: y	4%	.04 y
total	\$5000		\$185

$$x + y = 5000$$

.03 $x + .04y = 185$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	X	3%	.03x
second	: y	4%	.04 y
total S	\$5000		\$185

$$x + y = 5000$$

.03 $x + .04y = 185$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	<u>100</u> 03
first	x	3%	.03x	.0.
second	l: y	4%	.04y	$ \hookrightarrow $
total	\$5000		\$185	

$$x + y = 5000$$

.03x + .04y = 185

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	
first:	X	3%	.03x	
second	S Y	4%	.04y	
total S	5000		\$185	

$$x + y = 5000$$

 $100 .03x + .04y = 185$
 $3x$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	X	3%	.03x
second	y	4%	.04y
total S	\$5000		\$185

$$x + y = 5000$$

 $100 .03x + .04y = 185$
 $3x + 4y$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	X	3%	.03x
second	: y	4%	.04 y
total S	\$5000		\$185

$$x + y = 5000$$

$$0.03x + .04y = 185$$

$$3x + 4y = 18,500$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	
first	: X	3%	.03x	
second	: y	4%	.04 y	
total	\$5000		\$185	

x + y = 5000
.03x + .04y = 185
3x + 4y = 18,500

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first	X	3%	.03x
second	: y	4%	.04y
total S	\$5000		\$185

 $\begin{array}{c} -3 \\ -3 \\ 03x + y = 5000 \\ 03x + .04y = 185 \\ 3x + 4y = 18,500 \end{array}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	X	3%	.03x
second	: y	4%	.04 y
total	\$5000		\$185

-3	$\mathbf{x} + \mathbf{y} = 5$	000
•	03x + .04y =	= 185
	$3\mathbf{x} + 4\mathbf{y} =$	18,500
	-3x	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

	amount invested	interest rate	interest earned
first	: X	3%	.03x
second	: y	4%	.04 y
total	\$5000		\$185

 $\begin{array}{r} \underline{-3} & x + y = 5000 \\ .03x + .04y = 185 \\ 3x + 4y = 18,500 \\ \hline & -3x - 3y \end{array}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested		interest rate	interest earned	
first	t:	X	3%	.03x	
second	l:	У	4%	.04 y	
total	\$	5000		\$185	

x + y = 5000
.03x + .04y = 185
3x + 4y = 18,500
$\rightarrow -3x - 3y = -15,000$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000 03x + 04y = 185
first:	X	3%	.03x	.03x + .04y - 103
second:	y	4%	.04 y	3x + 4y = 18,500 3x - 3y = 15,000
total §	5000		\$185	-3x - 3y15,000

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned	x + y = 5000 03x + 04y = 185
first:	X	3%	.03x	.03x + .04y - 103
second:	У	4%	.04y	3x + 4y = 18,500 -3x - 3y = -15,000
total \$	5000		\$185	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount	interest	interest	x + y = 5000
invested	rate	earned	.03x + .04y = 185
first: x	3%	.03x	
second: v	4%	.04v	3x + 4y = 18,500
			-3x - 3y = -15,000
total \$5000		\$185	
			y = 3,500

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your complete solution neatly organized.

8. Mary invested \$5000, part at 3% per year and the rest at 4% per year. If the total interest for the year was \$185, then how much was invested at each rate?

5000

x + y = 5000

amount in	nterest interest	$\mathbf{x} + \mathbf{y} = 5000$
invested	rate earned	.03x + .04y = 185
first: x	3% .03x	
second: y	4% .04y	3x + 4y = 18,500
		-3x - 3y = -15,000
total \$5000	\$185	2 500
		y = 3,500

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first	X	3%	.03x
second	y	4%	.04y
total S	\$5000		\$185

x + y = 5000		
.03x + .04y = 185		
3x + 4y = 18,500		
-3x - 3y = -15,000		
y = 3,500		
x + y = 5000		
x + 3500 = 5000		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	amount invested	interest rate	interest earned
first:	X	3%	.03x
second:	У	4%	.04 y
total \$	5000		\$185

x + y = 5000		
.03x + .04y = 185		
3x + 4y = 18,500		
-3x - 3y = -15,000		
y = 3,500		
x + y = 5000		
x + 3500 = 5000		
x = 1500		

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

amount investedinterest rateinterest earnedfirst:x3%.03xsecond:y4%.04ytotal\$5000\$185	x + y = 5000 .03x + .04y = 185 3x + 4y = 18,500 -3x - 3y = -15,000 y = 3,500
She invested \$1500 at 3% and \$3500 at 4%.	x + y = 5000 x + 3500 = 5000
	x = 1500

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

first: second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

volume of solution first: second:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

volume of solution first: x second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

volume of solution first: x second: y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

 $\mathbf{x} + \mathbf{y}$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has **one solution that is 35% acid and another that is 10% acid.** How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

volume percent of solution acid first: x second: y total 50 cc
Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

volume percent of solution acid first: x 35% second: y total 50 cc

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

0	volume f solution	percent acid
first:	X	35%
second:	У	10%
total	50 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$\mathbf{x} + \mathbf{y} = \mathbf{50}$$

	volume	percent
0	f solution	acid
first:	X	35%
second:	У	10%
total	50 cc	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

X	+	У	=	50
---	---	---	---	----

0	volume f solution	percent acid
first:	X	35%
second:	У	10%
total	50 cc	25%

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume f solution	percent acid	volume of acid
first:	X	35%	
second:	У	10%	
total	50 cc	25%	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

x +	У	=	50
------------	---	---	-----------

0	volume f solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	
total	50 cc	25%	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

x +	y	=	50
------------	---	---	-----------

ſ	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

x +	y	=	50
------------	---	---	-----------

	volume of solution	percent acid	volume of acid
first	X	35%	.35x
second	: y	10%	.10y
total	50 cc	25%	12.5 cc

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

	volume of solution	percent acid	volume of acid
first	X	35%	.35x
second	: у	10%	.10y
total	50 cc	25%	12.5 cc

x + y = 50.35x + .10y

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

	volume of solution	percent acid	volume of acid
first	X	35%	.35x
second	: у	10%	.10y
total	50 cc	25%	12.5 cc

x + y = 50.35x + .10y = 12.5

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid?

	volume of solution	percent acid	volume of acid
first	X	35%	.35x
second	: у	10%	.10y
total	50 cc	25%	12.5 cc

x + y = 50.35x + .10y = 12.5

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10 y
total	50 cc	25%	12.5 cc

$$x + y = 50$$

100 $.35x + .10y = 12.5$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume f solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$

100 .35x + .10y = 12.5
35x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$

 $100 .35x + .10y = 12.5$
 $35x + 10y$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$x + y = 50$$

$$100 .35x + .10y = 12.5$$

$$35x + 10y = 1250$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

(volume of solution	percent acid	volume of acid
first	X	35%	.35x
second	y	10%	.10y
total	50 cc	25%	12.5 cc

$\mathbf{x} + \mathbf{y} = 50$
.35x + .10y = 12.5
35x + 10y = 1250

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$\begin{array}{r} -10 \\ x + y = 50 \\ .35x + .10y = 12.5 \\ 35x + 10y = 1250 \end{array}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$\begin{array}{r} -10 \\ x + y = 50 \\ .35x + .10y = 12.5 \\ 35x + 10y = 1250 \\ \rightarrow -10x \end{array}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$\begin{array}{rcl} -10 & x + y = 50 \\ .35x + .10y = 12.5 \\ 35x + 10y = 1250 \\ -10x - 10y \end{array}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume of solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$$\begin{array}{rcl} -10 & x + y = 50 \\ .35x + .10y = 12.5 \\ 35x + 10y = 1250 \\ \hline & -10x - 10y = -500 \end{array}$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

volume of solution		percent acid	volume of acid	
first:	X	35%	.35x	
second:	У	10%	.10y	
total	50 cc	25%	12.5 cc	

$\mathbf{x} + \mathbf{y} = 50$
.35x + .10y = 12.5
35x + 10y = 1250
-10x - 10y = -500

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

volume of solution		percent acid	volume of acid	
first:	X	35%	.35x	
second:	У	10%	.10 y	
total	50 cc	25%	12.5 cc	

$\mathbf{x} + \mathbf{y} = 50$
.35x + .10y = 12.5
35x + 10y = 1250
-10x - 10y = -500

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	volume of solution	percent 1 acid	volume of acid	.35x + .10y = 12.5
first	X	35%	.35x	35x + 10y = 1250
second	: y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	volume of solution	percent 1 acid	volume of acid	.35x + .10y = 12.5
first	X	35%	.35x	35x + 10y = 1250
second	: y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

C	volume of solution	percent 1 acid	volume of acid	.35x + .10y = 12.5
first:	X	35%	.35x	35x + 10y = 1250
second:	y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750
				$\mathbf{x} = 30$

Write a system of two equations with two variables and solve each of the following problems. Show your complete solution neatly organized.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid? $\mathbf{x} + \mathbf{y} = \mathbf{50}$

12.5

1250

-500

x + y = 50

	volume of solution	percent n acid	volume of acid	.35x + .10y = 12.
first	X	35%	.35x	35x + 10y = 123
second	l: y	10%	.10y	-10x - 10y = -50
total	50 cc	25%	12.5 cc	25x = 750
				x = 30

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

0	volume f solution	percent acid	volume of acid
first:	X	35%	.35x
second:	У	10%	.10y
total	50 cc	25%	12.5 cc

$\mathbf{x} + \mathbf{y} = 50$
.35x + .10y = 12.5
35x + 10y = 1250
-10x - 10y = -500
25x = 750
$\mathbf{x} = 30$

$$x + y = 50$$

30 + y = 50

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

(volume of solution		volume of acid	
first	X	35%	.35x	
second	У	10%	.10y	
total	50 cc	25%	12.5 cc	

$\mathbf{x} + \mathbf{y} = 50$
.35x + .10y = 12.5
35x + 10y = 1250
-10x - 10y = -500
25x = 750
x = 30
$\mathbf{x} + \mathbf{y} = 50$
30 + v = 50

$$0 + y = 50$$
$$y = 20$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

9. A chemist has one solution that is 35% acid and another that is 10% acid. How much of each solution should she use to make 50cc of a solution that is 25% acid? x + y = 50

	volume of solution	percent n acid	volume of acid	.35x + .10y = 12.5
first	: X	35%	.35x	35x + 10y = 1250
second	: y	10%	.10y	-10x - 10y = -500
total	50 cc	25%	12.5 cc	25x = 750

She should use 30 cc of the 35% solution and 20 cc of the 10% solution.

x + y = 5030 + y = 50y = 20

x = 30

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

burger: fries:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

cost each burger: fries:

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

cost each burger: x ¢ fries: y ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

cost each burger: x ¢ fries: y ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

	6x
cost each	
х¢	
у¢	
	cost each X¢ Y¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6\mathbf{x} + 4\mathbf{y}$$

cost each

burger: x ¢

fries: y ¢
Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$\mathbf{6x} + \mathbf{4y} = \mathbf{870}$$

cost each

burger: x ¢

fries: y ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. **Three burgers and five orders of fries cost \$6.60.** How much does each item cost?

$$6\mathbf{x} + 4\mathbf{y} = \mathbf{870}$$

cost each

burger: x ¢

fries: y ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. **Three burgers and five orders of fries cost \$6.60.** How much does each item cost?

870

		$\mathbf{6x} + \mathbf{4y} =$
	cost each	3 x
burger:	х¢	
fries:	у¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		$\mathbf{6x} + \mathbf{4y} = 870$
	cost each	3x + 5y
burger:	х¢	
fries:	у¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870
	cost each	3x + 5y = 660
burger:	х¢	
fries:	у¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		$\mathbf{6x} + \mathbf{4y} = 870$
	cost each	3x + 5y = 660
burger:	Χ¢	
fries:	у¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$6x + 4y = 870$$

$$3x + 5y = 660$$

$$5x + 4y = 870$$

$$3x + 5y = 660$$

$$5x + 4y = 870$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870 - 5$$

$$cost$$

$$ach$$

$$3x + 5y = 660$$
burger: x ¢ 30x
fries: y ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870 - 5$$

$$cost$$

$$ach$$

$$3x + 5y = 660$$
burger: x ¢
$$30x + 20y$$
fries: y ¢

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		$6x + 4y = 870 - \frac{5}{3}$
	cost each	3x + 5y = 660
burger:	х¢	$30x + 20y = 4350 \longleftarrow$
fries:	у¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		$\mathbf{6x} + \mathbf{4y} = 870$
	cost each	3x + 5y = 660
burger:	х¢	30x + 20y = 4350
fries:	у¢	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$cost$$

$$ach$$

$$3x + 5y = 660$$

$$4$$
burger: $x \notin$

$$30x + 20y = 4350$$
fries: $y \notin$

$$4350$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$cost$$

$$ach$$

$$3x + 5y = 660$$

$$-4$$

$$burger: x \notin \qquad 30x + 20y = 4350$$

$$fries: y \notin \qquad -12x$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$cost$$
each
$$3x + 5y = 660 - 4$$
burger: x ¢
$$30x + 20y = 4350$$
fries: y ¢
$$-12x - 20y$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$cost$$
each
$$3x + 5y = 660 - 4$$
burger: x ¢
$$30x + 20y = 4350$$
fries: y ¢
$$-12x - 20y = -2640 \leftarrow$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870
	cost each	3x + 5y = 660
burger:	х¢	30x + 20y = 4350
fries:	у¢	-12x - 20y = -2640

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870
	cost each	3x + 5y = 660
burger:	х¢	30x + 20y = 4350
fries:	у¢	-12x - 20y = -2640
		18x

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870
	cost each	3x + 5y = 660
burger:	х¢	30x + 20y = 4350
fries:	у¢	-12x - 20y = -2640
		18x = 1710

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

	cost each	6x + 4y = 870 3x + 5y = 660
burger: fries:	x¢ y¢	30x + 20y = 4350 -12x - 20y = -2640
		18x = 1710
		$\mathbf{x} = 95$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: $x \notin$

$$30x + 20y = 4350$$

$$-12x - 20y = -2640$$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870	
	cost each	3x + 5y = 660	
burger:	х¢	30x + 20y = 4350	6x + 4y = 870
fries:	у¢	-12x - 20y = -2640	
		18x = 1710	
		x = 95	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$6x + 4y = 870$$

$$3x + 5y = 660^{-2}$$
burger: x ¢ $30x + 20y = 4350$
fries: y ¢ $-12x - 20y = -2640$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$6x + 4y = 870$$

$$3x + 5y = 660^{-2}$$
burger: x ¢
$$30x + 20y = 4350$$

$$6x + 4y = 870$$

$$6x + 4y = 870$$

$$-12x - 20y = -2640$$

$$-6x$$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660^{-2}$$
burger: x ¢
$$30x + 20y = 4350$$
fries: y ¢
$$-12x - 20y = -2640$$

$$30x + 4y = 870$$

$$-6x - 10y$$

$$18x = 1710$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

$$6x + 4y = 870$$

$$3x + 5y = 660^{-2}$$
burger: x ¢
fries: y ¢
$$-12x - 20y = -2640$$

$$x = 95$$

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870	
	cost each	3x + 5y = 660	
burger:	х¢	30x + 20y = 4350	6x + 4y = 870
fries:	у¢	-12x - 20y = -2640	-6x - 10y = -1320
		18x = 1710	
		x = 95	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870	
	cost each	3x + 5y = 660	
burger:	х¢	30x + 20y = 4350	6x + 4y = 870
fries:	у¢	-12x - 20y = -2640	-6x - 10y = -1320
		18x = 1710	-6y
		x = 95	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870	
	cost each	3x + 5y = 660	
burger:	х¢	30x + 20y = 4350	6x + 4y = 870
fries:	у¢	-12x - 20y = -2640	-6x - 10y = -1320
		18x = 1710	-6y = -450
		x = 95	

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

		6x + 4y = 870	
	cost each	3x + 5y = 660	
burger:	х¢	30x + 20y = 4350	6x + 4y = 870
fries:	у¢	-12x - 20y = -2640	-6x - 10y = -1320
		18x = 1710	-6y = -450
		x = 95	y = 75

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

$$6x + 4y = 870$$

$$3x + 5y = 660$$
burger: x ¢ $30x + 20y = 4350$ $6x + 4y = 870$
fries: y ¢ $-12x - 20y = -2640$ $-6x - 10y = -1320$

$$18x = 1710$$
 $-6y = -450$

$$x = 95$$
 $y = 75$

A burger costs 95 ¢ each, and an order of fries costs 75 ¢ each.

Write a system of **two equations** with **two variables** and solve each of the following problems. Show your **complete** solution **neatly organized**.

10. Six burgers and four orders of fries cost \$8.70. Three burgers and five orders of fries cost \$6.60. How much does each item cost?

Goo	bd	luck on your	homework !!		
burger: fries:	x¢ y¢	30x + 20y = 4350 -12x - 20y = -2640	6x + 4y = 870 - $6x - 10y = -1320$		
		18x = 1710	-6y = -450		
		x = 95	y = 75		

A burger costs 95 ¢ each, and an order of fries costs 75 ¢ each.