Algebra I Worksheet \#9 Unit 8 Selected Solutions

A rectangular water tank is 10 feet long, 3 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 7.5 cubic feet per minute until the tank is full.
Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches). Answer each of the following.

1. How long will it take to fill the tank? $\mathbf{2 0}$ minutes
$\mathrm{V}=\mathrm{LWH}=(10 \mathrm{ft}).(3 \mathrm{ft}).(5 \mathrm{ft})=$.150 cubic feet The tank is empty to start with. Water is pumped in at 7.5 cubic feet per minute.

The time to fill the tank $=(150$ cu.ft. $) /(7.5$ cu.ft. per minute $)=20$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.
\(\left.\begin{array}{c|c}t \& f(t)

minutes \& inches\end{array}\right]\)| 0 |
| :---: |
| 4 |
| 8 |
| 12 |
| 16 |
| 20 |
| 26 |

3. Graph function f.

4. Write an equation giving $f(t)$ in terms of $t . \quad \underline{f(t)=\mathbf{3 t}}$

The depth of the water increases at a constant rate. Since the depth increases a total of 60 inches in 20 minutes, it increases at 3 inches per minute. This is the slope of the graph. Since the depth is 0 initially, the ' y-intercept' is 0 .
Using the slope-intercept model, the equation is $f(t)=3 t+0$.
5. Write an inequality to describe the domain of function $\mathrm{f} . \quad \mathbf{0} \leq \mathbf{t} \leq \mathbf{2 0}$
7. Evaluate $f(6)$. What does $f(6)$ represent in terms of the problem?

$$
f(6)=3(6)=\mathbf{1 8} \text { inches }
$$

$f(6)$ represents the depth of the water in the tank after 6 minutes.
6. Write an inequality to describe the range of function f . $\mathbf{0} \leq \mathbf{f}(\mathbf{t}) \leq \mathbf{6 0}$
8. If $f(t)=45$, then find the value of t.

Describe what this value of t represents

$$
\begin{gathered}
3 \mathrm{t}=45 \\
\mathbf{t}=\mathbf{1 5} \text { minutes }
\end{gathered}
$$

This value of t represents the time it takes for the water in the tank to be 45 inches deep.

