Algebra I Worksheet \#6 Unit 8 Selected Solutions

Bill walks for $\mathbf{2}$ minutes at a constant speed of $\mathbf{3 . 5}$ feet per second. Let t represent his walking time (in seconds) and $d(t)$ represent the distance he has walked (in feet). Answer each of the following. Show your process neatly organized.

1. Make a table giving t and $\mathrm{d}(\mathrm{t})$ every 20 seconds from $t=0$ to the end of the walk.
$\left.\begin{array}{c|c}\mathbf{t} \\ \text { seconds }\end{array} \begin{array}{c}\mathbf{d}(\mathbf{t}) \\ \text { feet }\end{array}\right]$
2. Graph function d .

3. Write an equation giving $d(t)$ in terms of t. distance $=($ rate $)($ time $)$
4. Write an inequality to describe the domain of function d.

$$
\mathbf{0} \leq \mathrm{t} \leq \mathbf{1 2 0}
$$

13. Evaluate $d(70)$. What does $d(70)$ represent in terms of the problem?
$\mathrm{d}(70)=3.5(70)=\mathbf{2 4 5}$ feet
d(70) represents the distance Bill walks in 70 seconds.
$\mathrm{d}(\mathrm{t})=\mathbf{3 . 5 t}$
14. Write an inequality to describe the range of function d .

$$
0 \leq \mathrm{d}(\mathrm{t}) \leq 420
$$

14. If $d(t)=70$, then find the value of t.

Describe what this value of t represents in terms of the problem.

$$
\begin{aligned}
& 3.5 \mathrm{t}=70 \\
& \mathbf{t}=\mathbf{2 0} \text { seconds }
\end{aligned}
$$

This represents the time it takes Bill to walk 70 feet.

