Algebra I Worksheet \#10 Unit 8 Selected Solutions

A rectangular water tank is 8 feet long, 5 feet wide, and 6 feet deep. The tank is full initially and water is drained out of the tank at a constant rate of 10 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches). Answer each of the following.
9. How long will it take to empty the tank? $\mathbf{2 4}$ minutes

$$
\mathrm{V}=\mathrm{LWH}=(8 \mathrm{ft} .)(5 \mathrm{ft} .)(6 \mathrm{ft} .)=240 \text { cubic feet The tank is full to start with. Water is drained at } 10
$$ cubic feet per minute. The time to empty the tank $=(240 \mathrm{cu} . \mathrm{ft}) /.(10 \mathrm{cu} . \mathrm{ft}$. per minute $)=24$ minutes

10. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is empty.
\(\left.$$
\begin{array}{c|c}\mathbf{t} & \begin{array}{c}f(t) \\
\text { minutes }\end{array}
$$

inches\end{array}\right\}\)| 0 |
| :---: |

12. Write an equation giving $f(t)$ in terms of $t . \quad \underline{f(t)=\mathbf{- 3 t}+\mathbf{7 2}}$

The depth of the water decreases at a constant rate. Since the depth decreases a total of 72 inches in 24 minutes, it decreases at 3 inches per minute. The slope of the graph is -3 (inches per minute). Since the depth is 72 inches initially, the ' y-intercept' is 72 . Using the slope-intercept model, the equation is $f(t)=-3 t+72$.
13. Write an inequality to describe the domain of function f . $\quad \mathbf{0} \leq \mathbf{t} \leq \mathbf{2 4}$
15. Evaluate $f(5)$. What does $f(5)$ represent in terms of the problem?

$$
\mathrm{f}(5)=-3(5)+72=\mathbf{5 7} \text { inches }
$$

$f(5)$ represents the depth of the water in the tank after 5 minutes.
14. Write an inequality to describe the range of function $\mathrm{f} . \quad \mathbf{0} \leq \mathbf{f}(\mathbf{t}) \leq \mathbf{7 2}$
16. If $f(t)=15$, then find the value of t.

Describe what this value of t represents in terms of the problem.

$$
\begin{aligned}
-3 t+72 & =15 \\
-\mathbf{3 t} & =-57 \\
\mathbf{t} & =\underline{\mathbf{1 9}} \text { minutes }
\end{aligned}
$$

This value of t represents the time it takes for the water in the tank to be 15 inches deep.

