Algebra I Lesson \#5 Unit 8

 Class Worksheet \#5 For Worksheets \#9\&10
Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes).
Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? \qquad

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes).
Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? \qquad
$\mathbf{V}=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? \qquad

$\mathbf{V}=\mathbf{L W H}$

V =

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$$
\begin{aligned}
V & =L W H \\
V & =(12 \mathrm{ft} .)(
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$$
\begin{aligned}
& V=L W H \\
& V=(12 \mathrm{ft} .)(6 \mathrm{ft} .)(
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$$
\begin{aligned}
& V=L W H \\
& V=(12 \mathrm{ft} .)(6 \mathrm{ft} .)(5 \mathrm{ft} .)
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$.

V =

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$$
\begin{aligned}
& V=L W H \\
& V=(12 \mathrm{ft} .)(6 \mathrm{ft} .)(5 \mathrm{ft} .) \\
& V=360
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=\mathbf{3 6 0} \mathbf{c u}$. ft.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$.
 $\mathrm{V}=\mathbf{3 6 0} \mathrm{cu}$. ft.

Time $=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=360 \mathrm{cu}$. ft. Time $=360 \mathrm{cu}$. ft.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=\mathbf{3 6 0} \mathrm{cu}$. ft. Time $=\mathbf{3 6 0}$ cu. ft. \div

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=\mathbf{3 6 0} \mathbf{c u}$. ft.
 Time $=\mathbf{3 6 0} \mathbf{c u}$. ft. $\div \mathbf{9}$ cu. ft. per min.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=\mathbf{3 6 0} \mathrm{cu}$. ft.
 Time $=\mathbf{3 6 0}$ cu. ft. $\div \mathbf{9}$ cu. ft. per min. Time $=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=\mathbf{3 6 0} \mathrm{cu}$. ft.
 Time $=360$ cu. ft. $\div 9$ cu. ft. per min. Time $=40$ minutes

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes

$\mathbf{V}=\mathbf{L W H}$ $V=(12 \mathrm{ft}).(6 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=360 \mathrm{cu}$. ft.
 Time $=360$ cu. ft. $\div 9$ cu. ft. per min. Time $=40$ minutes

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$
every 4 minutes from $t=0$ until
the tank is full.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	

When $\mathbf{t}=\mathbf{0}$,

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	

When $t=0$, the tank is empty.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	

When $t=0$, the tank is empty. The water is 0 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
$\mathbf{0}$	0

When $t=0$, the tank is empty. The water is 0 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
$\mathbf{0}$	0

When $\mathrm{t}=0$, the tank is empty. The water is 0 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathrm{t})$
$\mathbf{0}$	0

When $t=0$, the tank is empty. The water is 0 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathrm{t})$
$\mathbf{0}$	0

When $t=0$, the tank is empty. The water is 0 inches deep. When $\mathbf{t}=\mathbf{4 0}$,

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
4	
8	
12	
16	
20	
24	
28	
32	
36	
$\mathbf{4 0}$	

When $t=0$, the tank is empty. The water is 0 inches deep. When $t=40$, the tank is full.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
4	
8	
12	
16	
20	
24	
28	
32	
$\mathbf{3 6}$	
$\mathbf{4 0}$	

When $t=0$, the tank is empty. The water is 0 inches deep. When $t=40$, the tank is full. The water is 60 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	
8	
12	
16	
20	
24	
28	
32	
36	$\mathbf{4 0}$

When $t=0$, the tank is empty. The water is 0 inches deep. When $t=40$, the tank is full. The water is 60 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
4	
12	
16	
20	
24	
28	
36	
40	60

The water depth increases 60 inches

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

The water depth increases 60 inches in 40 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

The water depth increases 60 inches in 40 minutes.
 It increases at

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

The water depth increases 60 inches in 40 minutes.
 It increases at 1.5 inches per minute.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute. It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches
every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	
8	
12	
16	
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches
every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	
12	
16	
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches
every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	
12	
16	
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	
16	
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches
every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	
16	
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
$\mathbf{1 2}$	18
16	
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches
every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	
20	
24	
28	
32	
36	$\mathbf{6 0}$
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches
every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches
every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	
28	
32	
36	
40	$\mathbf{6 0}$

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	
32	
36	
40	$\mathbf{6 0}$

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	
36	
40	$\mathbf{6 0}$

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.
It increases 6 inches
every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	
36	
40	60

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	
40	60

The water depth increases 60 inches in 40 minutes.
 It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
$\mathbf{3 6}$	
40	$\mathbf{6 0}$

The water depth increases 60 inches in 40 minutes.

It increases at 1.5 inches per minute.

It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	$\mathbf{1 2}$
12	$\mathbf{1 8}$
16	$\mathbf{2 4}$
20	$\mathbf{3 0}$
24	$\mathbf{3 6}$
28	$\mathbf{4 2}$
$\mathbf{3 2}$	$\mathbf{4 8}$
$\mathbf{3 6}$	$\mathbf{5 4}$
$\mathbf{4 0}$	$\mathbf{6 0}$

The water depth increases 60 inches in 40 minutes.
 It increases at 1.5 inches per minute.
 It increases 6 inches every 4 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	$\mathbf{3 0}$
24	36
28	42
32	$\mathbf{4 8}$
36	54
40	$\mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	$\mathbf{6}$
8	12
12	$\mathbf{1 8}$
16	24
20	$\mathbf{3 0}$
24	$\mathbf{3 6}$
28	42
$\mathbf{3 2}$	$\mathbf{4 8}$
$\mathbf{3 6}$	$\mathbf{5 4}$
$\mathbf{4 0}$	$\mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	$\mathbf{6}$
8	12
12	$\mathbf{1 8}$
16	24
20	$\mathbf{3 0}$
24	$\mathbf{3 6}$
28	42
$\mathbf{3 2}$	$\mathbf{4 8}$
$\mathbf{3 6}$	$\mathbf{5 4}$
$\mathbf{4 0}$	$\mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{0}$
4	$\mathbf{6}$
$\mathbf{8}$	$\mathbf{1 2}$
$\mathbf{1 2}$	$\mathbf{1 8}$
$\mathbf{1 6}$	$\mathbf{2 4}$
20	$\mathbf{3 0}$
$\mathbf{2 4}$	$\mathbf{3 6}$
28	$\mathbf{4 2}$
$\mathbf{3 2}$	$\mathbf{4 8}$
$\mathbf{3 6}$	$\mathbf{5 4}$
$\mathbf{4 0}$	$\mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{0}$
4	$\mathbf{6}$
$\mathbf{8}$	$\mathbf{1 2}$
$\mathbf{1 2}$	$\mathbf{1 8}$
$\mathbf{1 6}$	$\mathbf{2 4}$
20	$\mathbf{3 0}$
$\mathbf{2 4}$	$\mathbf{3 6}$
28	$\mathbf{4 2}$
$\mathbf{3 2}$	$\mathbf{4 8}$
$\mathbf{3 6}$	$\mathbf{5 4}$
$\mathbf{4 0}$	$\mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{0}$
4	$\mathbf{6}$
$\mathbf{8}$	$\mathbf{1 2}$
$\mathbf{1 2}$	$\mathbf{1 8}$
$\mathbf{1 6}$	$\mathbf{2 4}$
20	$\mathbf{3 0}$
$\mathbf{2 4}$	$\mathbf{3 6}$
28	$\mathbf{4 2}$
$\mathbf{3 2}$	$\mathbf{4 8}$
$\mathbf{3 6}$	$\mathbf{5 4}$
$\mathbf{4 0}$	$\mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes
2. Graph function f .
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

4. Write an equation giving $f(t)$ in terms of t.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

4. Write an equation giving $f(t)$ in terms of t.
$\mathrm{f}(\mathrm{t})=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

4. Write an equation giving $f(t)$ in terms of t.

$$
f(t)=1.5 t
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

4. Write an equation giving $f(t)$ in terms of t.

$$
f(t)=1.5 t
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

4. Write an equation giving $f(t)$ in terms of t.

$$
f(t)=1.5 t
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

5. Write an inequality to describe the domain of function f.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

5. Write an inequality to describe the domain of function f.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

5. Write an inequality to describe the domain of function f. $0 \leq$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

5. Write an inequality to describe the domain of function $\mathbf{f} . \quad \mathbf{0} \leq \mathbf{t}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

5. Write an inequality to describe the domain of function $f . \quad 0 \leq t \leq$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

5. Write an inequality to describe the domain of function $f . \quad 0 \leq t \leq 40$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? $\mathbf{4 0}$ minutes
2. Graph function \mathbf{f}.
3. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

5. Write an inequality to describe the domain of function $f . \quad 0 \leq t \leq 40$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$	domain
0	0	$0 \leq t \leq 40$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

5. Write an inequality to describe the domain of function $f . \quad 0 \leq t \leq 40$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

		domain
t	$\mathbf{f}(\mathrm{t})$	$0 \leq t \leq 40$
0	0	
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$	domain
0	0	$0 \leq t \leq 40$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

6. Write an inequality to describe the range of function f.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$	domain
0	0	$0 \leq t \leq 40$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

6. Write an inequality to describe the range of function f.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$	domain
0	0	$0 \leq t \leq 40$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

6. Write an inequality to describe the range of function f.
$0 \leq$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$	domain
0	0	$0 \leq t \leq 40$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

6. Write an inequality to describe the range of function $f . \quad 0 \leq \mathbf{f}(\mathbf{t})$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

		domain
t	f(t)	$0 \leq t \leq 40$
0	0	
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

6. Write an inequality to describe the range of function $f . \quad 0 \leq f(t) \leq$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$	domain
0	0	$0 \leq \mathbf{t} \leq \mathbf{4 0}$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

6. Write an inequality to describe the range of function $f . \quad 0 \leq f(t) \leq \mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$	domain
0	0	$0 \leq t \leq 40$
4	6	
8	12	
12	18	
16	24	
20	30	
24	36	
28	42	
32	48	
36	54	
40	60	

6. Write an inequality to describe the range of function f.
$0 \leq f(t) \leq 60$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

6. Write an inequality to describe the range of function $f . \quad 0 \leq \mathbf{f}(\mathbf{t}) \leq \mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathbf{f}(\mathbf{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain
$0 \leq t \leq 40$
range
$0 \leq f(t) \leq 60$

7. Evaluate f(20).

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$	$0<t<40$
0	0	
4	6	range
8	12	$0 \leq f(t) \leq 60$
12	18	
16	24	7. Evaluate f(20).
20	30	7. Evaluate (20).
24	36	
28	42	
32	48	
36	54	
40	60	

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$	$0<t<40$
0	0	range
4	6	range
8	12	$0 \leq f(t) \leq 60$
12	18	
16	24	7. Evaluate f(20).
20	30	7. Evaluate (20).
24	36	
28	42	
32	48	
36	54	
40	60	f(20)

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$	$0<t<40$
0	0	
4	6	range
8	12	$0 \leq f(t) \leq 60$
12	18	
16	24	7. Evaluate f(20).
20	30	7. Evaluate (20).
24	36	
28	42	
32	48	
36	54	
40	60	$f(20)=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$	$0<t<40$
0	0	range
4	6	range
8	12	$0 \leq f(t) \leq 60$
12	18	
16	24	7. Evaluate f(20).
20	30	7. Evaluate (20).
24	36	
28	42	
32	48	
36	54	
40	60	$f(20)=30$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$	domain
0	0	$0 \leq t \leq 40$
4	6	range
8	12	$0 \leq f(t) \leq 60$
12	$\mathbf{1 8}$	
16	$\mathbf{2 4}$	7. Evaluate $\mathbf{f}(\mathbf{2 0})$.
20	$\mathbf{3 0}$	
24	$\mathbf{3 6}$	
28	42	
$\mathbf{3 2}$	$\mathbf{4 8}$	
36	54	$\mathbf{f}(\mathbf{2 0})=\mathbf{3 0}$
40	$\mathbf{6 0}$	

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f .
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathbf{f}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{0}$
4	$\mathbf{6}$
$\mathbf{8}$	$\mathbf{1 2}$
$\mathbf{1 2}$	$\mathbf{1 8}$
16	$\mathbf{2 4}$
$\mathbf{2 0}$	$\mathbf{3 0}$
$\mathbf{2 4}$	$\mathbf{3 6}$
28	$\mathbf{4 2}$
$\mathbf{3 2}$	$\mathbf{4 8}$
$\mathbf{3 6}$	$\mathbf{5 4}$
$\mathbf{4 0}$	$\mathbf{6 0}$

domain
$0 \leq \mathbf{t} \leq \mathbf{4 0}$
range
$0 \leq \mathbf{f}(\mathbf{t}) \leq \mathbf{6 0}$

7. Evaluate $f(20)$.

What does $f(20)$ represent in terms of the problem?

$$
\mathbf{f}(20)=30
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f .
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain
$0 \leq \mathbf{t} \leq \mathbf{4 0}$
range
$0 \leq \mathbf{f}(\mathbf{t}) \leq \mathbf{6 0}$

7. Evaluate $f(20)$.

What does $f(20)$ represent in terms of the problem?

$$
\mathbf{f}(\mathbf{2 0})=\mathbf{3 0}
$$

$f(20)$ represents

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f .
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	$\mathbf{1 8}$
16	$\mathbf{2 4}$
20	$\mathbf{3 0}$
24	$\mathbf{3 6}$
28	$\mathbf{4 2}$
32	$\mathbf{4 8}$
$\mathbf{3 6}$	$\mathbf{5 4}$
40	$\mathbf{6 0}$

domain
$0 \leq \mathbf{t} \leq \mathbf{4 0}$
range
$0 \leq \mathbf{f}(\mathbf{t}) \leq \mathbf{6 0}$
7. Evaluate $f(20)$.

What does $f(20)$ represent in terms of the problem?

$$
\mathbf{f}(\mathbf{2 0})=\mathbf{3 0}
$$

$f(20)$ represents the depth of the water

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain
$0 \leq t \leq 40$
range
$0 \leq f(t) \leq 60$
7. Evaluate $f(20)$.

What does $f(20)$ represent in terms of the problem?

$$
\mathbf{f}(\mathbf{2 0})=\mathbf{3 0}
$$

$f(20)$ represents the depth of the water after 20 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	$\mathbf{6}$
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	$\mathbf{6 0}$

domain
$0 \leq \mathbf{t} \leq \mathbf{4 0}$
range
$0 \leq \mathbf{f}(\mathbf{t}) \leq \mathbf{6 0}$

7. Evaluate f(20).

What does $f(20)$ represent in terms of the problem?

$$
f(20)=30 \text { inches }
$$

$f(20)$ represents the depth of the water after 20 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f .
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathrm{f}(\mathrm{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain
$0 \leq \mathbf{t} \leq \mathbf{4 0}$
range
$0 \leq \mathbf{f}(\mathbf{t}) \leq \mathbf{6 0}$

7. Evaluate $f(20)$.

What does $f(20)$ represent in terms of the problem?

$$
f(20)=30 \text { inches }
$$

$f(20)$ represents the depth of the water after 20 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain
$0 \leq t \leq 40$
range
$0 \leq f(t) \leq 60$
8. If $f(t)=20$, then find the value of t.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$	domain
0	0	$0 \leq t \leq 40$
4	6	range
8	12	$0 \leq f(t) \leq \mathbf{6 0}$
12	18	
16	24	8. If $f(t)=20$, then find
20	30	the value of t.
24	36	
28	42	
32	48	
36	54	
40	60	$f(t)=20$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

$1.5 \mathrm{t}=20$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

$1.5 \mathrm{t}=\mathbf{2 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

$1.5 \mathrm{t}=\mathbf{2 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function \mathbf{f}.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

$1.5 \mathrm{t}=\mathbf{2 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	$\mathbf{6 0}$

domain
$0 \leq \mathbf{t} \leq \mathbf{4 0}$
range
$0 \leq f(t) \leq 60$
8. If $f(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?
$\mathbf{f}(\mathbf{t})=\mathbf{2 0} \Longrightarrow \mathbf{t}=13 \frac{1}{3}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank?

40 minutes
3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain
$0 \leq \mathbf{t} \leq \mathbf{4 0}$
range
$0 \leq f(t) \leq \mathbf{6 0}$
8. If $f(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?
$f(t)=20 \Longleftrightarrow t=13 \frac{1}{3}$

This represents

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f .
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

\mathbf{t}	$\mathbf{f}(\mathbf{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	$\mathbf{6 0}$

domain
$0 \leq \mathbf{t} \leq \mathbf{4 0}$
range
$0 \leq f(t) \leq 60$
8. If $f(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?
$f(t)=20 \Longleftrightarrow t=13 \frac{1}{3}$

This represents the time

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f .
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$\mathbf{f}(\mathbf{t})$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain

$$
0 \leq t \leq 40
$$

range $0 \leq f(t) \leq 60$
8. If $f(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
f(t)=20 \Longleftrightarrow t=13 \frac{1}{3}
$$

This represents the time it took for the water to be 20 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $\mathrm{f}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f.
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	60

domain

$$
0 \leq t \leq 40
$$

range

$$
0 \leq f(t) \leq 60
$$

8. If $f(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?
$f(t)=20 \Longrightarrow t=13 \frac{1}{3}$ minutes

This represents the time it took for the water to be 20 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 12 feet long, 6 feet wide, and 5 feet deep. The tank is empty initially and water is pumped into the tank at 9 cubic feet per minute until the tank is full. Let t represent the time that water has been pumped into the tank (in minutes). Let $f(t)$ represent the depth of the water in the tank (in inches).

1. How long will it take to fill the tank? 40 minutes 3. Graph function f .
2. Make a table giving t and $f(t)$ every 4 minutes from $t=0$ until the tank is full.

t	$f(t)$
0	0
4	6
8	12
12	18
16	24
20	30
24	36
28	42
32	48
36	54
40	$\mathbf{6 0}$

domain

$$
0 \leq t \leq 40
$$

range

$$
0 \leq f(t) \leq 60
$$

8. If $f(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
f(t)=20 \Longrightarrow t=13 \frac{1}{3} \text { minutes }
$$

This represents the time it took for the water to be 20 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$$
\begin{aligned}
& \mathbf{V}=\mathbf{L W H} \\
& \mathbf{V}=
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$$
\begin{aligned}
& \mathbf{V}=\mathbf{L W H} \\
& \mathbf{V}=(\mathbf{f f t})(
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathbf{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).($

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$.

$\mathrm{V}=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$$
\begin{aligned}
& V=L W H \\
& V=(6 \mathrm{ft} .)(4 \mathrm{ft} .)(5 \mathrm{ft} .) \\
& \mathrm{V}=\mathbf{1 2 0}
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$. $V=120 \mathrm{cu} . \mathrm{ft}$.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=120 \mathrm{cu} . \mathrm{ft}$.

Time $=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$. $V=120 \mathrm{cu} . \mathrm{ft}$. Time $=120 \mathrm{cu} . \mathrm{ft}$.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=120 \mathrm{cu} . \mathrm{ft}$. Time $=120$ cu. ft. \div

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $V=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$. $V=120 \mathrm{cu} . \mathrm{ft}$. Time $=120$ cu. ft. $\div 8$ cu. ft. per min.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=120 \mathrm{cu} . \mathrm{ft}$. Time $=\mathbf{1 2 0}$ cu. ft. $\div \mathbf{8}$ cu. ft. per min. Time $=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank?

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=120 \mathrm{cu} . \mathrm{ft}$. Time $=120$ cu. ft. $\div \mathbf{8} \mathbf{~ c u}$. ft. per min. Time $=15$ minutes

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes

$\mathbf{V}=\mathbf{L W H}$ $\mathrm{V}=(6 \mathrm{ft}).(4 \mathrm{ft}).(5 \mathrm{ft}$. $\mathrm{V}=120 \mathrm{cu} . \mathrm{ft}$. Time $=120$ cu. ft. $\div \mathbf{8} \mathbf{~ c u}$. ft. per min. Time $=15$ minutes

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	
3	
6	
9	
12	
15	

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

| t | $F(t)$ |
| :---: | :--- |\quad When $t=0$,

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	
3	
6	
9	
12	
15	

When $\mathbf{t}=\mathbf{0}$,

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	
3	
6	
9	
12	
15	

When $t=0$, the tank is full.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $\mathbf{t}=0$ until the tank is empty.

t	$F(t)$
0	
3	
6	
9	
12	
15	

When $t=0$, the tank is full. The water is 60 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $\mathbf{t}=0$ until the tank is empty.

t	$F(t)$
0	60
3	
6	
9	
12	
15	

When $t=0$, the tank is full. The water is 60 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	
6	
9	
12	
15	

When $\mathrm{t}=0$, the tank is full. The water is 60 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$	When $\mathrm{t}=0$, the tank is full.
$\mathbf{0}$	$\mathbf{6 0}$	The water is 60 inches deep.
3		
6		When $t=15$,
9		
12		
15		

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	
6	
9	
12	
15	

When $\mathrm{t}=0$, the tank is full. The water is 60 inches deep. When $t=15$, the tank is empty.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	
6	
9	
12	
$\square 15$	

When $\mathrm{t}=0$, the tank is full. The water is 60 inches deep. When $t=15$, the tank is empty. The water is 0 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	
6	
9	
12	
$\Rightarrow 15$	0

When $\mathrm{t}=0$, the tank is full. The water is 60 inches deep. When $\mathrm{t}=15$, the tank is empty. The water is 0 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$\mathrm{F}(\mathrm{t})$	When $\mathrm{t}=\mathbf{0}$, the tank is full.
0	60	The water is $\mathbf{6 0}$ inches deep.
3		
6		When $\mathrm{t}=15$, the tank is empty.
9		The water is $\mathbf{0}$ inches deep.
12		

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	
6	
9	
12	
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

The water depth decreases 60 inches

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

The water depth decreases 60 inches

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

The water depth decreases 60 inches in 15 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

The water depth decreases 60 inches in 15 minutes.
 It decreases at 4 inches per minute.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	
6	
9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.
It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	
6	
9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	
9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
$\rightarrow 6$	
9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	
12	
15	0

The water depth decreases 60 inches in 15 minutes.
 It decreases at 4 inches per minute.
 It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.

It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	
15	0

The water depth decreases 60 inches in 15 minutes.

It decreases at 4 inches per minute.
It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
$\mathbf{6}$	36
9	24
$\longrightarrow \mathbf{1 2}$	12
15	0

The water depth decreases 60 inches in 15 minutes.
 It decreases at 4 inches per minute.

It decreases 12 inches every 3 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	60
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
$\mathbf{6}$	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathrm{t})$
0	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
0	60
3	48
6	36
9	24
12	12
15	0

12. Write an equation giving $F(t)$ in terms of t.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
0	60
3	48
6	36
9	24
12	12
15	0

12. Write an equation giving $F(t)$ in terms of $t . F(t)=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
0	60
3	48
6	36
9	24
12	12
15	0

12. Write an equation giving $F(t)$ in terms of t. $F(t)=-4 t$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
0	60
3	48
6	36
9	24
12	12
15	0

12. Write an equation giving $F(t)$ in terms of $t . F(t)=-4 t+$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
$\mathbf{6}$	36
9	24
12	12
15	0

12. Write an equation giving $F(t)$ in terms of $t . F(t)=-4 t+60$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

12. Write an equation giving $F(t)$ in terms of $t . F(t)=-4 t+60$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

12. Write an equation giving $F(t)$ in terms of t. $F(t)=-\mathbf{4 t}+\mathbf{6 0}$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{6 0}$
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

13. Write an inequality to describe the domain of function F.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

13. Write an inequality to describe the domain of function F.

0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

13. Write an inequality to describe the domain of function F.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

13. Write an inequality to describe the domain of function F.

$0 \leq t$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

13. Write an inequality to describe the domain of function F.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

13. Write an inequality to describe the domain of function F.
t (minutes)

$$
0 \leq t \leq 15
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

13. Write an inequality to describe the domain of function F.

t (minutes)

$$
0 \leq t \leq 15
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$	$0 \leq \mathrm{t} \leq 15$
$\mathbf{0}$	60	
3	48	
6	36	
9	24	
12	12	
15	0	

13. Write an inequality to describe the domain of function F.

$$
0 \leq t \leq 15
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$	$0 \leq \mathrm{t} \leq 15$
$\mathbf{0}$	60	
3	48	
6	36	
9	24	
12	12	
15	0	

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$	$0 \leq \mathrm{t} \leq 15$
0	60	
3	48	
6	36	
9	24	
12	12	
15	0	

14. Write an inequality to describe the range of function F.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$	$0 \leq \mathrm{t} \leq 15$
$\mathbf{0}$	60	
3	48	
6	36	
9	24	
12	12	
15	0	

14. Write an inequality to describe the range of function F.

0 \longrightarrow

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$	$0 \leq \mathrm{t} \leq 15$
$\mathbf{0}$	$\mathbf{6 0}$	
3	48	
6	36	
9	24	
12	12	
15	0	

14. Write an inequality to describe the range of function F.

$0 \leq$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	60
3	48
6	36
9	24
12	12
15	0

14. Write an inequality to describe the range of function F.

t (minutes)
$0 \leq F(t)$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$	$0 \leq \mathrm{t} \leq 15$
$\mathbf{0}$	60	
3	48	
6	36	
9	24	
12	12	
15	0	

14. Write an inequality to describe the range of function F.

t (minutes)
```
0\leqF(t)\leq
```


Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
0	60
3	48
6	36
9	24
12	12
15	0

14. Write an inequality to describe the range of function F.

t (minutes)

$$
\mathbf{0} \leq \mathrm{F}(\mathrm{t}) \leq \mathbf{6 0}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

| t | F(t) |
| :---: | :---: |$\quad 0 \leq t \leq 15$

14. Write an inequality to describe the range of function F.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

14. Write an inequality to describe the range of function F.

$$
0 \leq F(t) \leq 60
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$\mathrm{F}(\mathrm{t})$
O	60
3	48
6	36
9	24
12	12
15	0

domain
$0 \leq t \leq 15$
range
$0 \leq F(t) \leq 60$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
0	60
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	15.Evaluate $F(9)$. 9 24
12	12	
15	0	
		$F(9)=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	15. Evaluate $F(9)$.
$\Rightarrow 9$	24	
12	12	
15	0	
		$F(9)=$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

$0 \leq t \leq 15$
range
$0 \leq F(t) \leq 60$
15. Evaluate $F(9)$.

$$
F(9)=24
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	15.
9	24	Evaluate $F(9)$.
12	12	
15	0	
		$F(9)=24$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

$0 \leq t \leq 15$
range
$0 \leq F(t) \leq 60$
15. Evaluate F(9).

What does $F(9)$ represent in terms of the problem?

$$
F(9)=24
$$

F(9) represents

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

$F(9)$ represents the depth of the water

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	15. Evaluate $F(9)$.
9	24	What does $F(9)$ represent in
12	12	terms of the problem?
15	0	$F(9)=24$

$F(9)$ represents the depth of the water after 9 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t (minutes)
$F(9)$ represents the depth of the water after 9 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

domain
$0 \leq t \leq 15$
range
$0 \leq F(t) \leq 60$
15. Evaluate F(9).

What does $F(9)$ represent in terms of the problem?

$$
F(9)=24 \text { inches }
$$

$F(9)$ represents the depth of the water after 9 minutes.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

t	$\mathrm{F}(\mathrm{t})$
O	60
3	48
6	36
9	24
12	12
15	0

domain
$0 \leq t \leq 15$
range
$0 \leq F(t) \leq 60$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

\mathbf{t}	$\mathrm{F}(\mathrm{t})$
0	60
3	48
6	36
9	24
12	12
15	0

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	16. If $F(t)=20$, then find
9	24	the value of t.
12	12	
15	0	

$$
F(t)=20
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	16. If $F(t)=20$, then find
9	24	the value of t.
12	12	
15	0	

t (minutes)

$$
F(t)=20
$$

$$
-4 t+60
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	16. If $F(t)=20$, then find
9	24	the value of t.
12	12	
15	0	

$$
\begin{gathered}
F(t)=20 \\
-4 t+60=20
\end{gathered}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	16. If $F(t)=20$, then find
9	24	the value of t.
12	12	
15	0	

$$
\begin{gathered}
F(t)=20 \\
-4 t+60=20
\end{gathered}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	16. If $F(t)=20$, then find
9	24	the value of t.
12	12	
15	0	

t (minutes)

$$
\begin{aligned}
& F(t)=20 \\
& -4 t+60=20 \Rightarrow-4 t
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$	$0 \leq t \leq 15$
0	60	range
3	48	$0 \leq F(t) \leq 60$
6	36	16. If $F(t)=20$, then find
9	24	the value of t.
12	12	
15	0	

$$
\begin{aligned}
& F(t)=20 \\
& -4 t+60=20 \rightarrow-4 t=
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

$$
\begin{aligned}
& F(t)=20 \\
& -4 t+60=20 \longrightarrow-4 t=-40
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

$$
\begin{aligned}
& F(t)=20 \Longrightarrow \\
& -4 t+60=20 \longrightarrow-4 t=-40
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

$$
\begin{aligned}
& F(t)=20 \Longrightarrow t= \\
& -4 t+60=20 \longrightarrow-4 t=-40
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.

$$
\begin{aligned}
& F(t)=20 \Longrightarrow t=10 \\
& -4 t+60=20 \longrightarrow-4 t=-40
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

$0 \leq \mathrm{t} \leq 15$
range
$0 \leq \mathrm{F}(\mathrm{t}) \leq 60$
16. If $F(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
F(t)=20 \Longleftrightarrow t=10
$$

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$
0	60
3	48
6	36
9	24
12	12
15	0

$0 \leq \mathrm{t} \leq 15$
range

$$
0 \leq F(t) \leq 60
$$

16. If $F(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
F(t)=20 \Longleftrightarrow t=10
$$

This represents

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$F(t)$
0	60
3	48
6	36
9	24
12	12
15	0

$0 \leq$ t ≤ 15
range

$$
0 \leq F(t) \leq 60
$$

16. If $F(t)=20$, then find the value of t.
What does this value of t represent in terms of the problem?

$$
F(t)=20 \Longleftrightarrow t=10
$$

This represents the time

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	60
3	48
6	36
9	24
12	12
15	0

$0 \leq$ t ≤ 15
range

$$
0 \leq F(t) \leq 60
$$

16. If $F(t)=20$, then find

12 the value of t.
What does this value of t represent in terms of the problem?

$$
F(t)=20 \Longleftrightarrow t=10
$$

t (minutes)

This represents the time it took for the water to be 20 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

t	$\mathrm{F}(\mathrm{t})$
$\mathbf{0}$	60
3	48
6	36
9	24
12	12
15	0

$0 \leq$ t ≤ 15
range

$$
0 \leq F(t) \leq 60
$$

16. If $F(t)=20$, then find

12 the value of t.
What does this value of t represent in terms of the problem?

This represents the time it took for the water to be 20 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty. Let t represent the time that water has been draining out of the tank (in minutes). Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until the tank is empty.
domain

\mathbf{t}	$\mathbf{F}(\mathbf{t})$
$\mathbf{0}$	60
3	48
6	36
9	24
12	12
15	0

$0 \leq \mathrm{t} \leq 15$
range

$$
0 \leq F(t) \leq 60
$$

16. If $F(t)=20$, then find

12 the value of t.

15 What does this value of t represent in terms of the problem?

t (minutes)

$$
F(t)=20 \Longrightarrow t=10 \text { minutes }
$$

This represents the time it took for the water to be 20 inches deep.

Algebra I Class Worksheet \#5 Unit 8

A rectangular water tank is 6 feet long, 4 feet wide, and 5 feet deep. The tank is full initially and water is drained out of the tank at 8 cubic feet per minute until the tank is empty.
Let t represent the time that water has been draining out of the tank (in minutes).
Let $\mathrm{F}(\mathrm{t})$ represent the depth of the water in the tank (in inches).
9. How long will it take to empty the tank? 15 minutes 11. Graph function F.
10. Make a table giving t and $F(t)$ every 3 minutes from $t=0$ until

72 个 $\mathrm{F}(\mathrm{t})$ (inches)

Good luck on your homework !!!

0	60	range
3	48	$0 \leq F(t) \leq 60$

9
12
15
36 16. If $F(t)=20$, then find
24 the value of t.
12 What does this value of t represent in terms of the problem?

t (minutes)

$$
F(t)=20 \Longleftrightarrow t=10 \text { minutes }
$$

This represents the time it took for the water to be 20 inches deep.

