Algebra I Lesson \#4 Unit 8 Class Worksheet \#4 For Worksheets \#7\&8

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.
2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.
2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	$\mathbf{3 2}$

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4
2. Graph function P. hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	
0	0	
4	32	$\$ 8$ per hour for 4 hours.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	$\mathbf{3 2}$

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	0
4	32
8	

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$P(t)$
0	0
4	32
8	64
12	96

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathrm{t})$
0	0
4	32
8	64
12	96
16	128
20	

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathrm{t})$
0	0
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	32
8	$\mathbf{6 4}$
12	96
16	128
20	160

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	$\mathbf{6 4}$
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	$\mathbf{6 4}$
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	32
8	$\mathbf{6 4}$
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	32
8	$\mathbf{6 4}$
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

	\mathbf{t}
$\mathbf{0}$	$\mathbf{P}(\mathbf{t})$
$\mathbf{4}$	$\mathbf{0}$
$\mathbf{8}$	$\mathbf{6 4}$
	12
	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

	\mathbf{t}
$\mathbf{0}$	$\mathbf{P}(\mathbf{t})$
$\mathbf{4}$	$\mathbf{0}$
$\mathbf{8}$	$\mathbf{6 4}$
	12
	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P (t)}$
0	0
4	32
$\mathbf{8}$	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P (t)}$
0	0
4	32
$\mathbf{8}$	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	32
$\mathbf{8}$	$\mathbf{6 4}$
$\longrightarrow 12$	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	32
$\mathbf{8}$	$\mathbf{6 4}$
$\longrightarrow 12$	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	0
4	32
8	$\mathbf{6 4}$
12	96
$\longrightarrow 16$	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	0
4	32
8	$\mathbf{6 4}$
12	96
$\longrightarrow 16$	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	32
8	$\mathbf{6 4}$
12	96
16	128
$\longrightarrow 20$	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
$\mathbf{0}$	$\mathbf{0}$
4	32
8	$\mathbf{6 4}$
12	96
16	128
$\longrightarrow 20$	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

3. Write an equation giving $P(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

3. Write an equation giving $P(t)$ in terms of t. $\quad \mathbf{P}(t)$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

3. Write an equation giving $\mathrm{P}(\mathrm{t})$ in terms of t .

$$
\mathbf{P}(\mathbf{t})=
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

3. Write an equation giving $\mathrm{P}(\mathrm{t})$ in terms of t .

$$
\mathbf{P}(\mathbf{t})=\mathbf{8 t}
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathrm{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

3. Write an equation giving $P(t)$ in terms of $t \quad P(t)=8 t$
$\$ 8$ per hour for \mathbf{t} hours.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

3. Write an equation giving $\mathrm{P}(\mathrm{t})$ in terms of t .

$$
\mathbf{P}(\mathbf{t})=\mathbf{8 t}
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

3. Write an equation giving $\mathrm{P}(\mathrm{t})$ in terms of t .

$$
\mathbf{P}(\mathbf{t})=\mathbf{8 t}
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	64
12	96
16	128
20	160

2. Graph function P.

3. Write an inequality to describe the domain of function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	$\mathbf{0}$
4	32
8	$\mathbf{6 4}$
12	96
16	$\mathbf{1 2 8}$
20	160

4. Write an inequality to describe the domain of function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(t)$
0	0
4	32
8	64
12	96
16	128
20	160

4. Write an inequality to describe the domain of function P.
5. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

4. Write an inequality to describe the domain of function P.
5. Graph function P.

$0 \leq$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

4. Write an inequality to describe the domain of function P.
5. Graph function P.

$0 \leq t$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

4. Write an inequality to describe the domain of function P.
5. Graph function P.

$0 \leq \mathbf{t} \leq$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$
0	0
4	32
8	64
12	96
16	128
20	160

4. Write an inequality to describe the domain of function P.
5. Graph function P.

$0 \leq t \leq 20$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$		domain
$\mathbf{0}$	$\mathbf{0}$		$\mathbf{0} \leq \mathbf{t} \leq \mathbf{2 0}$
$\mathbf{4}$	$\mathbf{3 2}$		
$\mathbf{8}$	$\mathbf{6 4}$		
$\mathbf{1 2}$	$\mathbf{9 6}$		
$\mathbf{1 6}$	$\mathbf{1 2 8}$		
20	$\mathbf{1 6 0}$		

4. Write an inequality to describe the domain of function P.
5. Graph function P.

$\mathbf{0} \leq \mathrm{t} \leq 20$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$		domain
$\mathbf{0}$	$\mathbf{0}$		$0 \leq \mathbf{t} \leq 20$
4	32		
8	$\mathbf{6 4}$		
12	96		
16	128		
20	160		

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$	
$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0} \leq \mathbf{0} \leq \mathbf{t} \leq \mathbf{2 0}$		
$\mathbf{4}$	$\mathbf{3 2}$	
$\mathbf{8}$	$\mathbf{6 4}$	
$\mathbf{1 2}$	$\mathbf{9 6}$	
16	$\mathbf{1 2 8}$	
20	$\mathbf{1 6 0}$	

5. Write an inequality to describe the range of function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$	
$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0} \leq \mathbf{0} \leq \mathbf{t} \leq \mathbf{2 0}$		
$\mathbf{4}$	$\mathbf{3 2}$	
$\mathbf{8}$	$\mathbf{6 4}$	
$\mathbf{1 2}$	$\mathbf{9 6}$	
$\mathbf{1 6}$	$\mathbf{1 2 8}$	
$\mathbf{2 0}$	$\mathbf{1 6 0}$	
	4	

5. Write an inequality to describe the range of function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$		domain
$\mathbf{0}$	$\mathbf{0}$		$\mathbf{0} \leq \mathbf{t} \leq \mathbf{2 0}$
$\mathbf{4}$	$\mathbf{3 2}$		
$\mathbf{8}$	$\mathbf{6 4}$		
$\mathbf{1 2}$	$\mathbf{9 6}$		
16	$\mathbf{1 2 8}$		
$\mathbf{2 0}$	$\mathbf{1 6 0}$		
	4		

5. Write an inequality to describe the range of function P.
6. Graph function P.

0

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	
12	96	
16	128	
20	160	
	4	

5. Write an inequality to describe the range of function P.
6. Graph function P.

$0 \leq$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	
12	96	
16	128	
20	160	
	4	

5. Write an inequality to describe the range of function P.
6. Graph function P.

$\mathbf{0} \leq \mathbf{P}(\mathbf{t})$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	
12	96	
16	128	
20	160	
	4	

5. Write an inequality to describe the range of function P.
6. Graph function P.

$\mathbf{0} \leq \mathbf{P}(\mathbf{t}) \leq$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$		domain
$\mathbf{0}$	$\mathbf{0}$		$0 \leq \mathbf{t} \leq \mathbf{2 0}$
4	$\mathbf{3 2}$		
8	$\mathbf{6 4}$		
$\mathbf{1 2}$	$\mathbf{9 6}$		
$\mathbf{1 6}$	$\mathbf{1 2 8}$		
$\mathbf{2 0}$	$\mathbf{1 6 0}$		
	4		

5. Write an inequality to describe the range of function P.
6. Graph function P.

$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$	domain	
$\mathbf{0}$	$\mathbf{0}$		$0 \leq \mathbf{t} \leq \mathbf{2 0}$
4	$\mathbf{3 2}$		range
$\mathbf{8}$	$\mathbf{6 4}$		$0 \leq \mathbf{P}(\mathbf{t}) \leq \mathbf{1 6 0}$
$\mathbf{1 2}$	$\mathbf{9 6}$		
$\mathbf{1 6}$	$\mathbf{1 2 8}$		
$\mathbf{2 0}$	$\mathbf{1 6 0}$		
	4		

5. Write an inequality to describe the range of function P.
6. Graph function P.

$\mathbf{0} \leq \mathbf{P}(\mathbf{t}) \leq \mathbf{1 6 0}$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$	domain	
$\mathbf{0}$	$\mathbf{0}$		$0 \leq \mathbf{t} \leq 20$
4	32		range
$\mathbf{8}$	$\mathbf{6 4}$		$\mathbf{0} \leq \mathbf{P}(\mathbf{t}) \leq \mathbf{1 6 0}$
$\mathbf{1 2}$	$\mathbf{9 6}$		
$\mathbf{1 6}$	$\mathbf{1 2 8}$		
20	160		

2. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate $\mathbf{P (8)}$.
7. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathrm{t})$	domain
0	0	$\mathbf{0} \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate P(8).
7. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathrm{t})$	domain
0	0	$\mathbf{0} \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate P(8).
7. Graph function P.

$\mathbf{P (8)}$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$0 \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate P(8).
7. Graph function P.

$\mathbf{P}(\mathbf{8})=$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathrm{t})$	domain
0	0	$\mathbf{0} \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate $\mathbf{P (8)}$.
7. Graph function P.

$$
P(8)=64
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate $\mathbf{P (8)}$.
7. Graph function P.

$$
P(8)=64
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	range
12	96	$\mathbf{0} \leq \mathbf{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate $\mathbf{P}(8)$. What does $\mathbf{P}(8)$ represent in terms of the problem?
7. Graph function P.

$P(8)=64$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	range
12	96	$\mathbf{0} \leq \mathbf{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate $\mathbf{P}(8)$. What does $\mathbf{P}(8)$ represent in terms of the problem?
7. Graph function P.

$P(8)=64$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathrm{t})$	domain
0	0	$\mathbf{0} \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq P(t) \leq 160$
16	128	
20	160	

6. Evaluate $\mathbf{P}(8)$. What does $\mathbf{P}(8)$ represent in terms of the problem?
7. Graph function P.

$P(8)=64$
$\mathbf{P}(8)$ represents Tom's total pay

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	0 \leq t ≤ 20
4	32	
8	64	range
12	96	$0 \leq P(t) \leq 160$
16	128	
20	160	

6. Evaluate $\mathbf{P}(8)$. What does $\mathbf{P}(8)$ represent in terms of the problem?
7. Graph function P.

$P(8)=64$
$P(8)$ represents Tom's total pay for working 8 hours.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	0 \leq t ≤ 20
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

6. Evaluate $\mathbf{P}(8)$. What does $\mathbf{P}(8)$ represent in terms of the problem?
7. Graph function P.

$P(8)=64$ dollars
$P(8)$ represents Tom's total pay for working 8 hours.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$		domain
$\mathbf{0}$	$\mathbf{0}$		$0 \leq \mathbf{t} \leq 20$
4	$\mathbf{3 2}$		
$\mathbf{8}$	$\mathbf{6 4}$		range
12	$\mathbf{9 6}$		$0 \leq \mathbf{P}(\mathbf{t}) \leq 160$
16	128		
20	160		

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$\mathbf{0} \leq \mathbf{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$		domain
$\mathbf{0}$	$\mathbf{0}$		$0 \leq \mathbf{t} \leq 20$
4	$\mathbf{3 2}$		
$\mathbf{8}$	$\mathbf{6 4}$		range
12	$\mathbf{9 6}$		$0 \leq \mathbf{P}(\mathbf{t}) \leq 160$
16	128		
20	160		

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$8 t=$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	0 \leq t ≤ 20
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 t=28
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$\mathbf{0} \leq \mathbf{P}(\mathbf{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 t=28
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

\mathbf{t}	$\mathbf{P}(\mathbf{t})$		domain
$\mathbf{0}$	$\mathbf{0}$		$0 \leq \mathbf{t} \leq 20$
4	$\mathbf{3 2}$		
$\mathbf{8}$	$\mathbf{6 4}$		range
12	$\mathbf{9 6}$		$0 \leq \mathbf{P}(\mathbf{t}) \leq 160$
16	128		
20	160		

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 \mathbf{t}=\mathbf{2 8} \Longrightarrow \mathbf{t}=
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathrm{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 \mathrm{t}=28 \Longleftrightarrow \mathrm{t}=3.5
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	0 \leq t ≤ 20
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 \mathrm{t}=28 \Longrightarrow \mathrm{t}=3.5
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$\mathbf{0} \leq \mathbf{P}(\mathbf{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 \mathrm{t}=28 \Longrightarrow \mathrm{t}=3.5
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 \mathrm{t}=\mathbf{2 8} \Longleftrightarrow \mathrm{t}=3.5
$$

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathrm{t} \leq 20$
4	32	
8	64	range
12	96	$\mathbf{0} \leq \mathbf{P}(\mathbf{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 \mathrm{t}=28 \Longleftrightarrow \mathrm{t}=3.5
$$

This represents the number of hours Tom works.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.

$$
8 \mathrm{t}=28 \Longleftrightarrow \mathrm{t}=3.5
$$

This represents the number of hours Tom works to earn 28 dollars.

Algebra I Class Worksheet \#4 Unit 8

Tom has a part-time job. He can work up to 20 hours a week. He gets paid $\$ 8.00$ per hour. Let t represent the number of hours he works. Let $P(t)$ represent his total pay.

1. Make a table giving t and $P(t)$ every 4 hours from $t=0$ to $t=20$.

t	$\mathbf{P}(\mathbf{t})$	domain
0	0	$\mathbf{0} \leq \mathbf{t} \leq 20$
4	32	
8	64	range
12	96	$0 \leq \mathrm{P}(\mathrm{t}) \leq 160$
16	128	
20	160	

7. If $P(t)=28$, then find the value of t.
8. Graph function P.
 What does this value of t represent in terms of the problem?
t (hours)

$$
\mathbf{8 t}=\mathbf{2 8} \Longleftrightarrow \mathbf{t}=3.5 \text { hours }
$$

This represents the number of hours Tom works to earn 28 dollars.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathbf{t})$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathbf{t})$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
$\mathbf{0}$	$\mathbf{3 0}$
$\mathbf{0 . 5}$	

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

\section*{Blue Fin Bay
 8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
 | t | $D(t)$ | |
| :---: | :---: | :---: |
| 0 | 30 | |
| 0.5 | 24 | |
| | | |
| | | 6 miles closer to Bird Island $!!$ |}

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	

In $1 / 2$ hour, the ferry will move 6 miles closer to Bird Island !!

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.

\section*{Blue Fin Bay
 8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
 | t | $D(t)$ |
| :---: | :---: |
| 0 | 30 |
| 0.5 | 24 |
| 1 | 18 |
| 1.5 | 12 |
| 2 | 6 |
| 2.5 | 0 |
 In $1 / 2$ hour, the ferry will move 6 miles closer to Bird Island !!}

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathbf{t})$
0	$\mathbf{3 0}$
0.5	24

1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24

1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

Bird Island
10. Write an equation giving $D(t)$ in terms of t. $\quad D(t)$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that
the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island
10. Write an equation giving $D(t)$ in terms of $t . \quad D(t)=$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

Bird Island
10. Write an equation giving $D(t)$ in terms of t.
$D(t)=-12 t$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

Bird Island
10. Write an equation giving $D(t)$ in terms of t.
$D(t)=-12 t+30$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.

Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
9. Graph function D.

11. Write an inequality to describe the domain of function D.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

10. Write an inequality to describe the domain of function D.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

10. Write an inequality to describe the domain of function D.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

10. Write an inequality to describe the domain of function D.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

10. Write an inequality to describe the domain of function D.

$$
\mathbf{0} \leq \mathbf{t}
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

10. Write an inequality to describe the domain of function D.

$$
\mathbf{0} \leq \mathbf{t} \leq
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$
0	30
0.5	24
1	18
1.5	12
2	6
2.5	0

9. Graph function D.

10. Write an inequality to describe the domain of function D.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$	
0	30	
$0 \leq t \leq 2.5$		
0.5	24	
1	18	
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
9. Graph function D.

12. Write an inequality to describe the range of function D.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
9. Graph function D.

12. Write an inequality to describe the range of function D.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
9. Graph function D.

12. Write an inequality to describe the range of function D.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
9. Graph function D.

12. Write an inequality to describe the range of function D.
$0 \leq$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
9. Graph function D.

12. Write an inequality to describe the range of function D.

$$
\mathbf{0} \leq \mathrm{D}(\mathbf{t})
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
9. Graph function D.

12. Write an inequality to describe the range of function D.

$$
\mathbf{0} \leq \mathbf{D}(\mathrm{t}) \leq
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

Bird Island
9. Graph function D.

12. Write an inequality to describe the range of function D.

$$
\mathbf{0} \leq \mathrm{D}(\mathrm{t}) \leq \mathbf{3 0}
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	
$0 \leq t \leq 2.5$		
0.5	24	range
1	18	
$0 \leq \mathbf{D}(\mathrm{t}) \leq \mathbf{3 0}$		
1.5	12	
2	6	
2.5	0	

9. Graph function D.
10. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

Bird Island 13. Evaluate $\mathbf{D}(1)$.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$	domain
0	30	$0 \leq \mathrm{t} \leq 2.5$
0.5	24	range
$\rightarrow 1$	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 13. Evaluate $\mathbf{D}(1)$.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	D(t)	domain
0	30	$0 \leq \mathrm{t} \leq 2.5$
miles	24	range
$\rightarrow 1$	18	$\mathbf{0} \leq \mathrm{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 13. Evaluate $D(1)$.
D(1) =

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	D(t)	domain
0	30	$0 \leq \mathrm{t} \leq 2.5$
miles 0.5	24	range
$\rightarrow 1$	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 13. Evaluate D(1).

$$
D(1)=18
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	D(t)	domain
0	30	$0 \leq t \leq 2.5$
miles 0.5	24	range
$\rightarrow 1$	18	$\mathbf{0} \leq \mathbf{D}(\mathbf{t}) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island
13. Evaluate $\mathbf{D}(1)$. What does $\mathbf{D}(1)$ represent in terms of the problem?

$$
D(1)=18
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

9. Graph function D.
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
$\rightarrow 1$	18	$0 \leq D(t) \leq 30$
1.5	12	
2	6	
2.5	0	

Bird Island
13. Evaluate $\mathbf{D}(1)$. What does $\mathbf{D}(1)$ represent in terms of the problem?

$$
D(1)=18
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
$\rightarrow 1$	18	$0 \leq D(t) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island
$D(1)=18 \quad D(1)$ represents the distance the ferry is from Bird Island

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that
the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
$\rightarrow 1$	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island

$$
D(1)=18
$$

13. Evaluate $D(1)$. What does $D(1)$ represent in terms of the problem?

D(1) represents the distance the ferry is from Bird Island after 1 hour.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	$0 \leq \mathbf{t} \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 13. Evaluate $D(1)$. What does $D(1)$ represent in terms of the problem?
$D(1)=18$ miles $D(1)$ represents the distance the ferry is from Bird Island after $\mathbf{1}$ hour.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

t	$\mathrm{D}(\mathrm{t})$	domain
0	30	
$0 \leq \mathbf{t} \leq 2.5$		
0.5	24	range
1	18	$0 \leq \mathbf{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.
10. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

Bird Island 14. If $D(t)=15$, then find the value of t.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $\mathbf{D}(\mathrm{t})$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

t	$D(t)$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
1	18	$0 \leq D(t) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.
10. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

Bird Island 14. If $D(t)=15$, then find the value of t.

$$
-12 t+30
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t.

$$
-12 t+30=15
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t.

$$
-12 t+30=15 \rightarrow-12 t=
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
1	18	$0 \leq D(t) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t.

$$
-12 t+30=15 \rightarrow-12 t=-15
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	$0 \leq \mathbf{t} \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t.

$$
-12 t+30=15 \rightarrow-12 t=-15 \rightarrow
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t.

$$
-12 t+30=15 \rightarrow-12 t=-15 \rightarrow t=
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$	domain
0	30	
$0 \leq t \leq 2.5$		
0.5	24	range
1	18	$0 \leq \mathbf{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t.

$$
-12 t+30=15 \rightarrow-12 t=-15 \rightarrow t=1.25
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay
8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$	domain
0	30	
$0 \leq \mathrm{t} \leq 2.5$		
0.5	24	range
1	18	
$0 \leq \mathbf{D}(\mathrm{t}) \leq \mathbf{3 0}$		
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island
$t=1.25$
14. If $D(t)=15$, then find the value of t.

$$
-12 t+30=15 \rightarrow-12 t=-15 \rightarrow t=1.25
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

t	$\mathrm{D}(\mathrm{t})$	domain
0	30	
$0 \leq \mathbf{t} \leq 2.5$		
0.5	24	range
1	18	$0 \leq \mathbf{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.
10. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

Bird Island
14. If $D(t)=15$, then find the value of t.

$$
t=1.25
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
1	18	$0 \leq D(t) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island
14. If $D(t)=15$, then find the value of t. Describe what this value of t represents in terms of the problem.

$$
t=1.25
$$

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$D(t)$	domain
0	30	$0 \leq t \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathbf{D}(\mathbf{t}) \leq 30$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t. Describe what this value of t represents in terms of the problem.
$t=1.25 \quad$ This represents the time it takes the ferry

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathrm{D}(\mathrm{t})$	domain
0	30	$0 \leq \mathrm{t} \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathbf{D (t)} \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t. Describe what this value of t represents in terms of the problem.
$t=1.25 \quad$ This represents the time it takes the ferry to be $\mathbf{1 5}$ miles from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.

t	$\mathbf{D}(\mathrm{t})$	domain
0	30	$0 \leq \mathbf{t} \leq 2.5$
0.5	24	range
1	18	$0 \leq \mathrm{D}(\mathrm{t}) \leq \mathbf{3 0}$
1.5	12	
2	6	
2.5	0	

9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t. Describe what this value of t represents in terms of the problem.
$t=1.25$ hrs. \quad This represents the time it takes the ferry to be $\mathbf{1 5}$ miles from Bird Island.

Algebra I Class Worksheet \#4 Unit 8

Bird Island is 30 miles due south of Blue Fin Bay. A Ferry sails from Blue Fin Bay to Bird Island at a constant speed of $\mathbf{1 2}$ miles per hour. Let \mathbf{t} represent the time in hours that the Ferry has been sailing. Let $D(t)$ represent the distance in miles that the Ferry is from Bird Island.
Blue Fin Bay

8. Make a table giving t and $D(t)$ every half-hour from $t=0$ until the ferry reaches Bird Island.
9. Graph function D.

Bird Island 14. If $D(t)=15$, then find the value of t. Describe what this value of t represents in terms of the problem.
$t=1.25$ hrs. \quad This represents the time it takes the ferry to be $\mathbf{1 5}$ miles from Bird Island.

