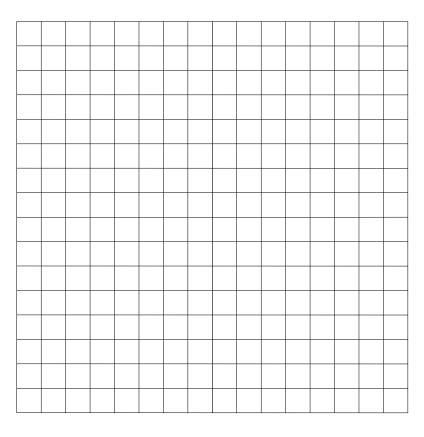
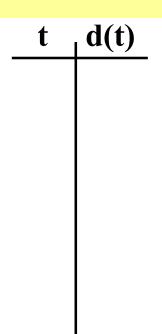
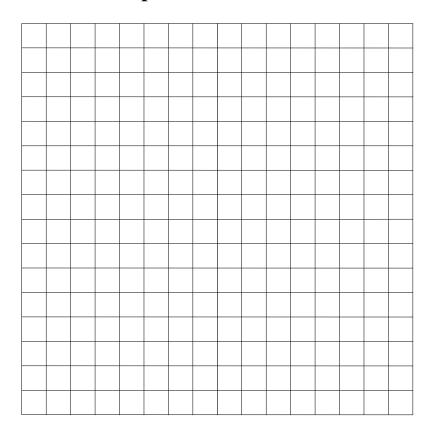

Algebra I Lesson #3 Unit 8 Class Worksheet #3 For Worksheets #5&6


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

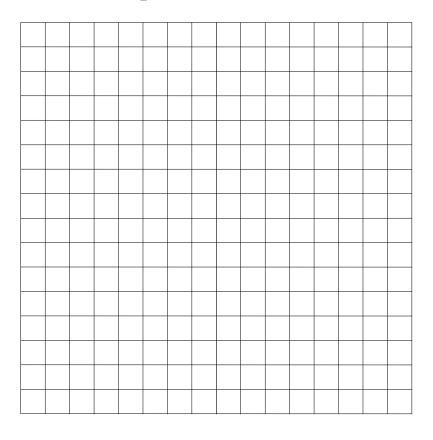
1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).


1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

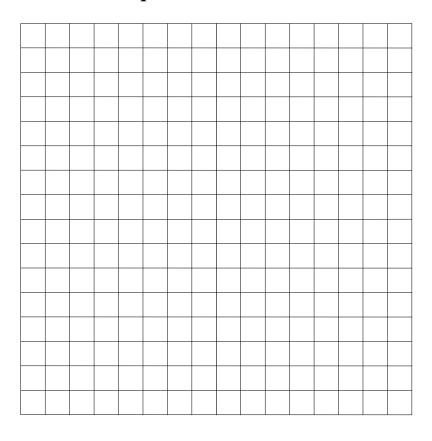
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.



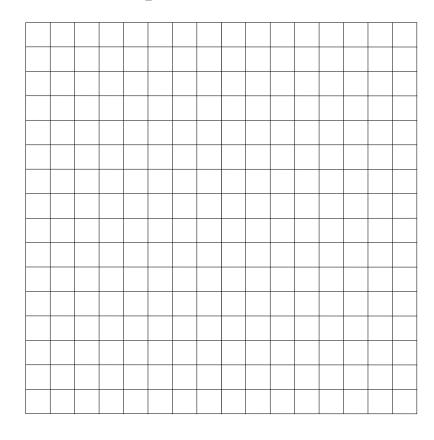
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	

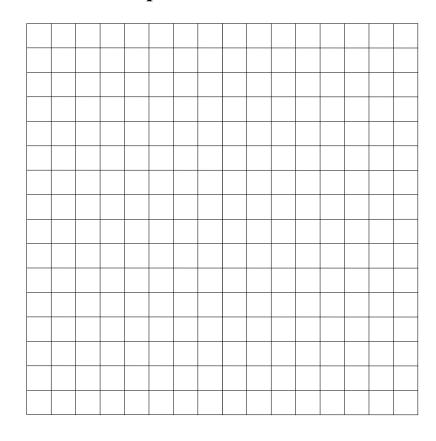
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0

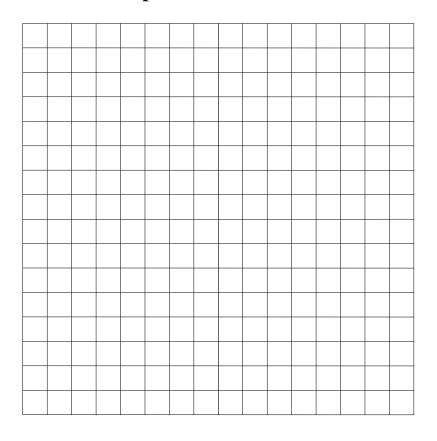
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	

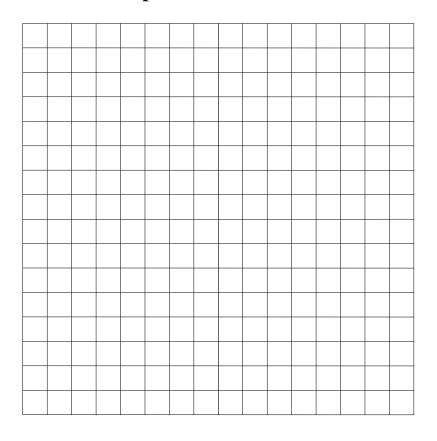
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60

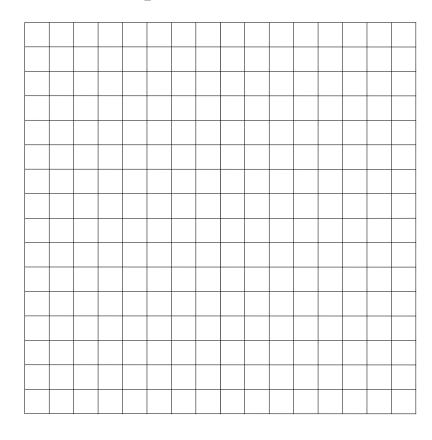
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	

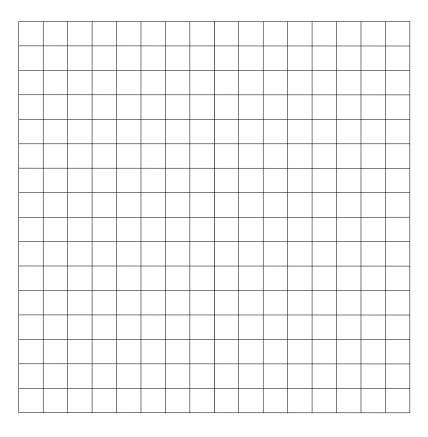
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120

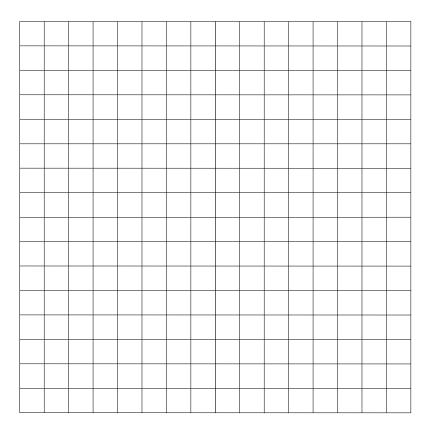
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	

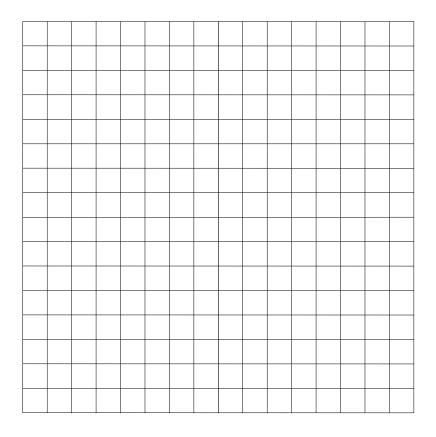
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180

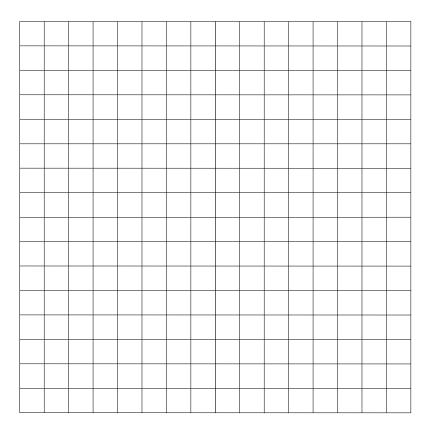
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	

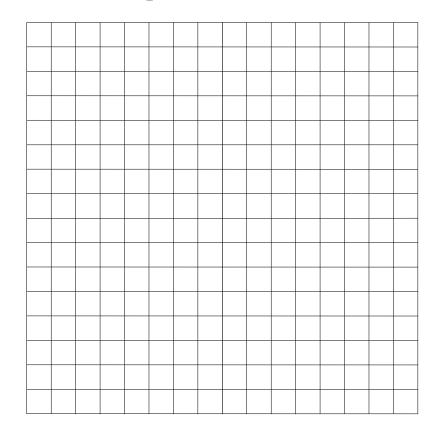
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240

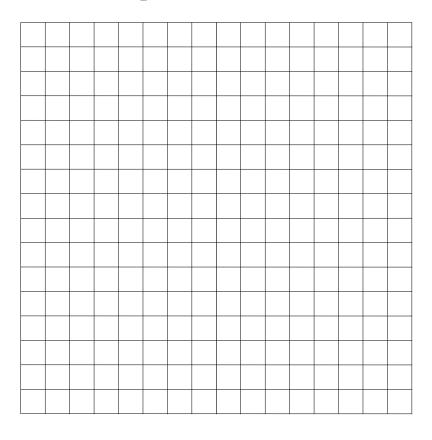
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	

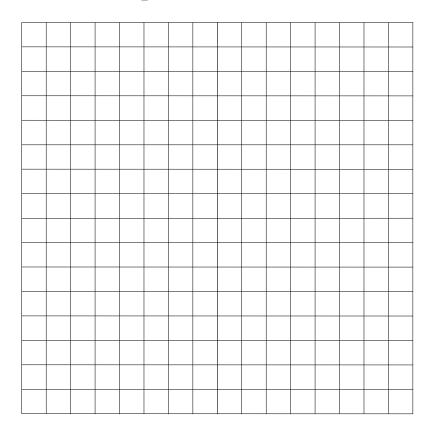
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300

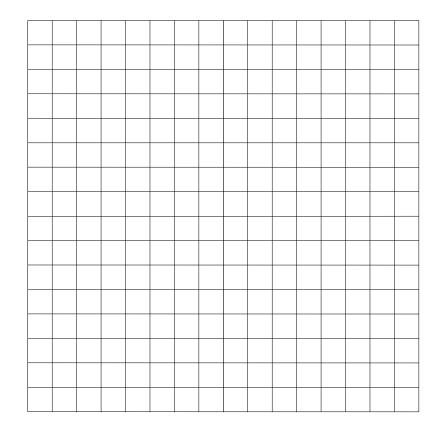
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	

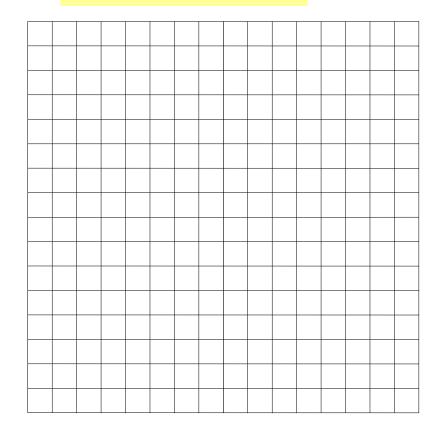
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

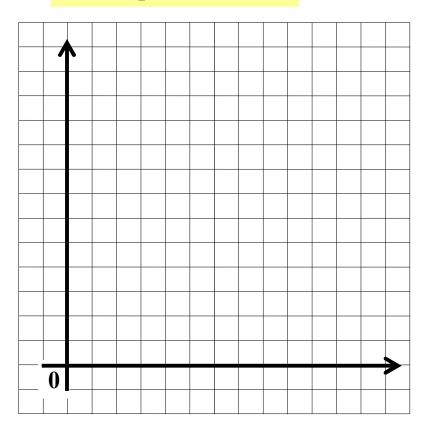
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

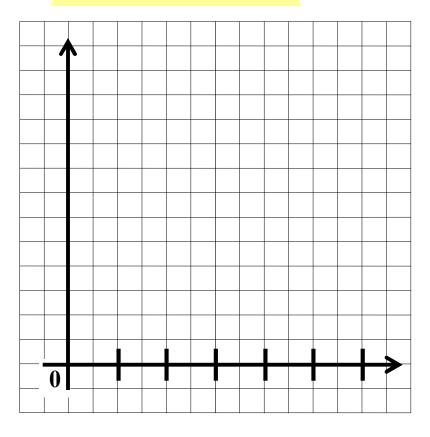
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

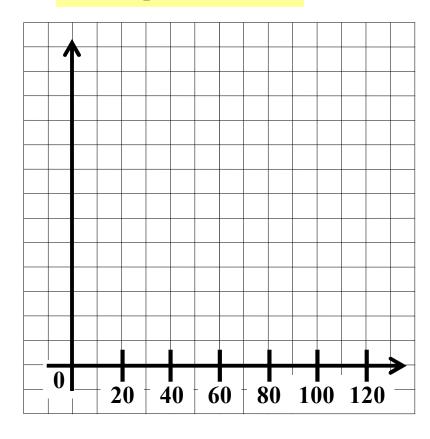
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

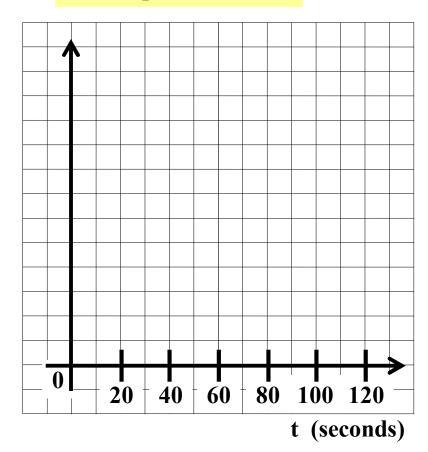
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

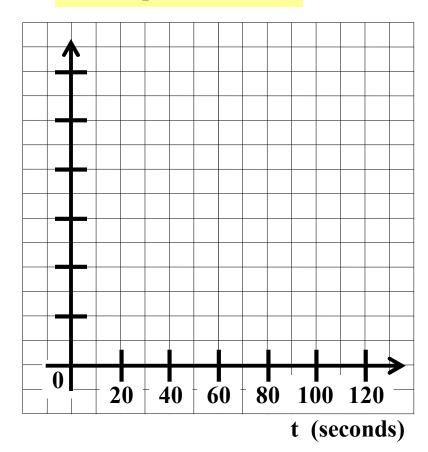
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

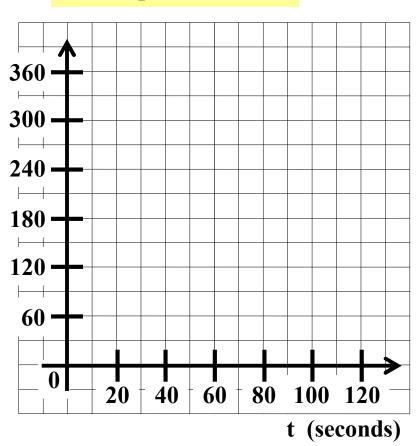
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

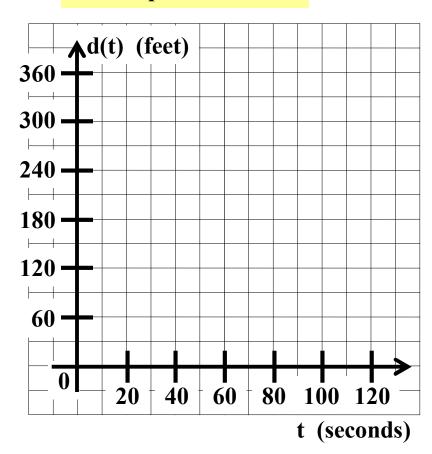
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

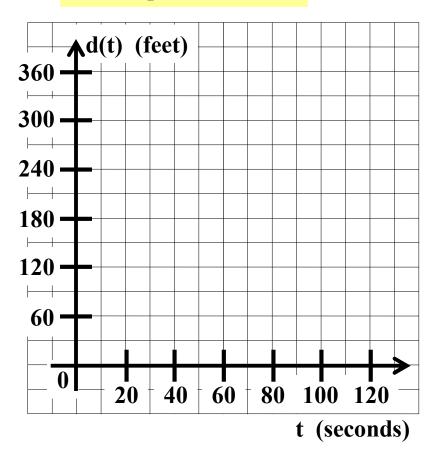
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

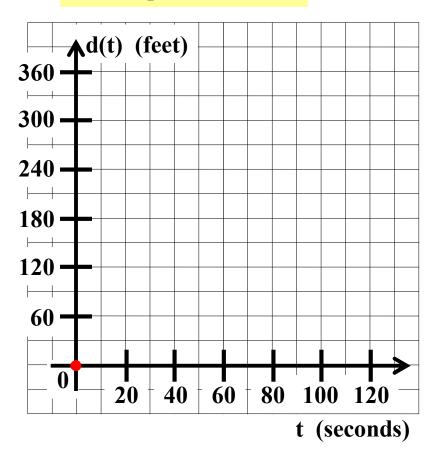
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

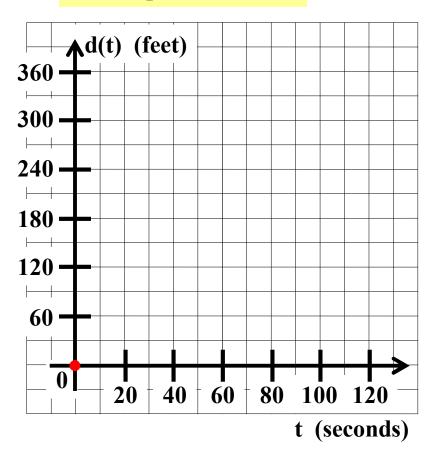
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


<u>t</u>	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

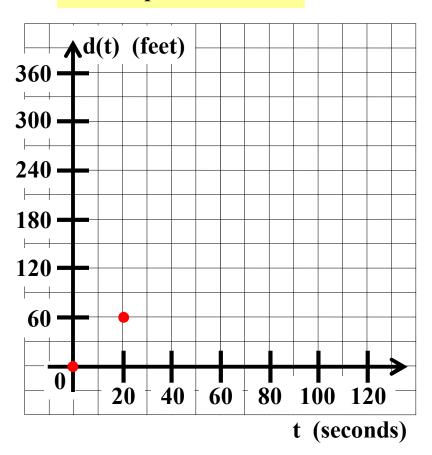
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


<u>t</u>	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

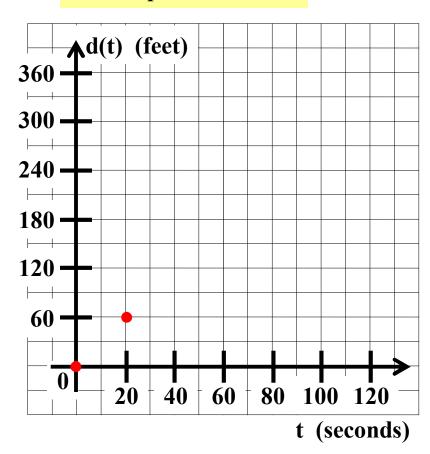
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

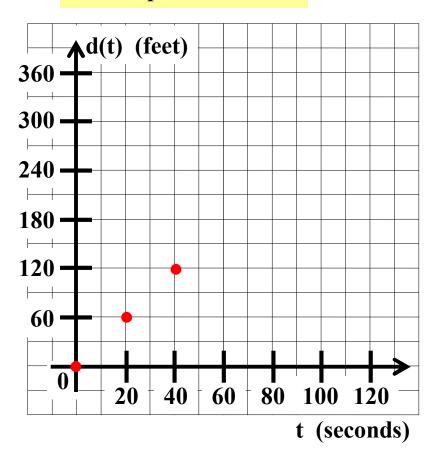
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

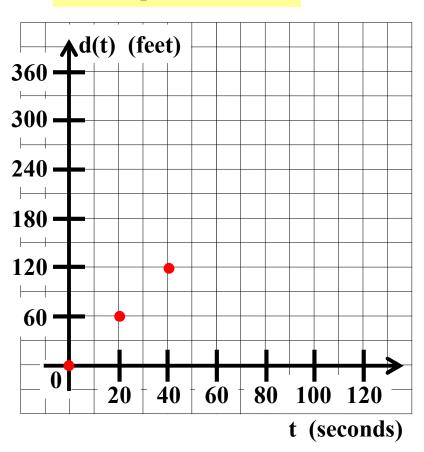
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

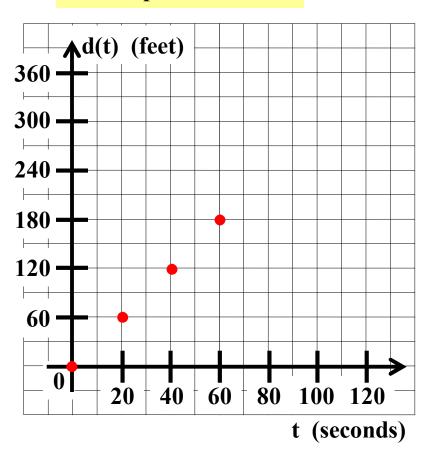
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

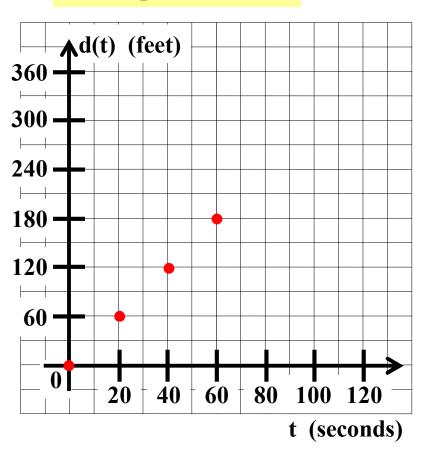
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


_	t	d(t)
	0	0
	20	60
	40	120
	60	180
	80	240
1	100	300
1	120	360

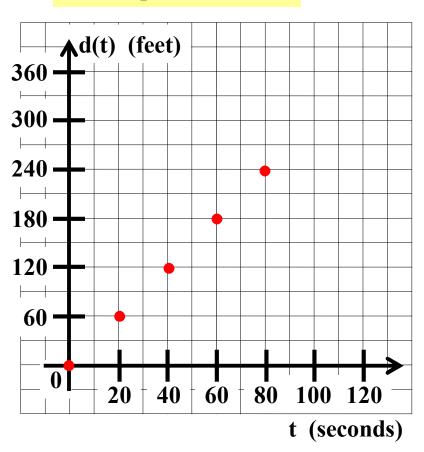
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


_	t	d(t)
	0	0
	20	60
	40	120
	60	180
	80	240
1	100	300
1	120	360

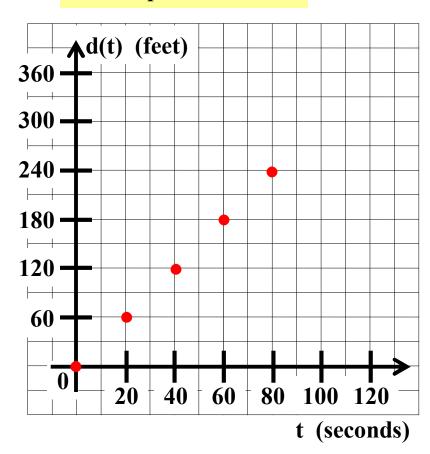
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


_	t	d(t)
	0	0
	20	60
	40	120
	60	180
	80	240
	100	300
	120	360

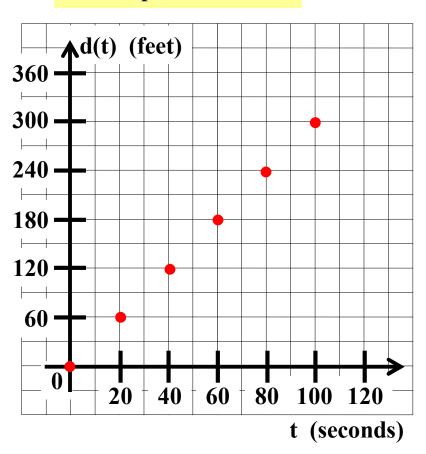
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


	t	d(t)
,	0	0
	20	60
	40	120
	60	180
	80	240
	100	300
	120	360

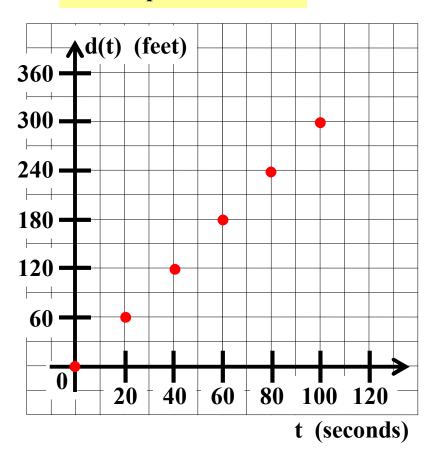
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

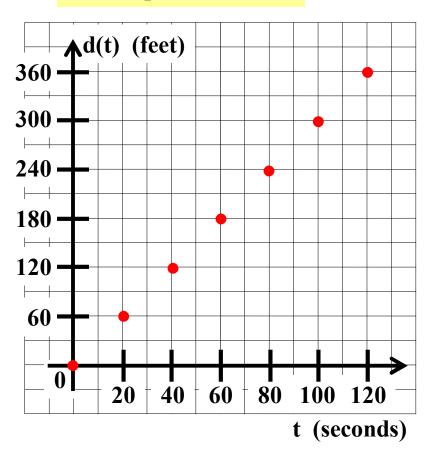
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

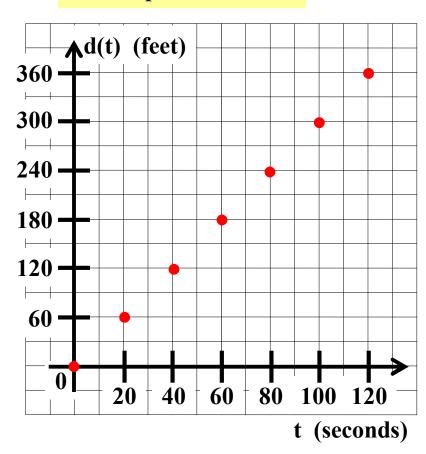
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

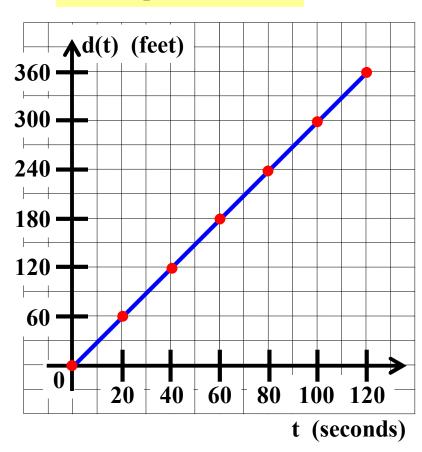
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


<u>t</u>	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

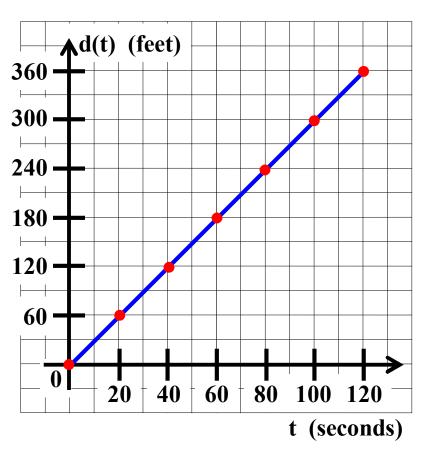
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

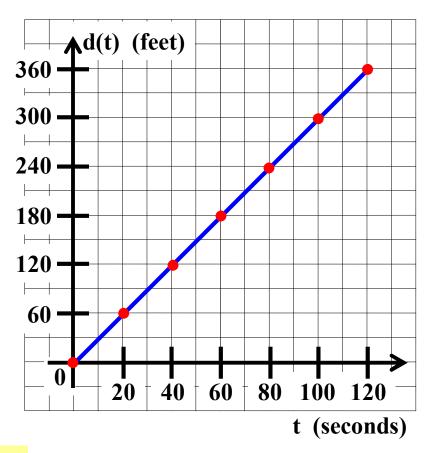
1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

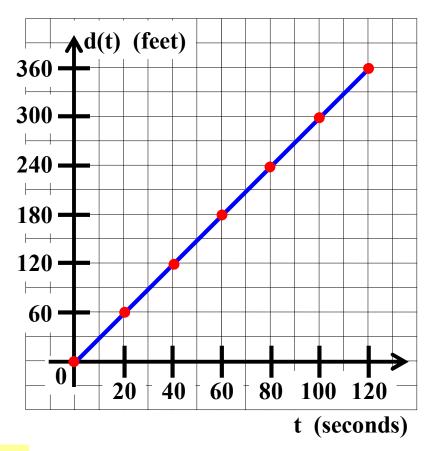


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.



John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

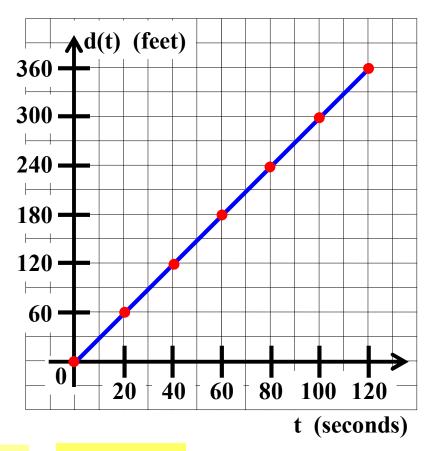

$$d(t) =$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

_ t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

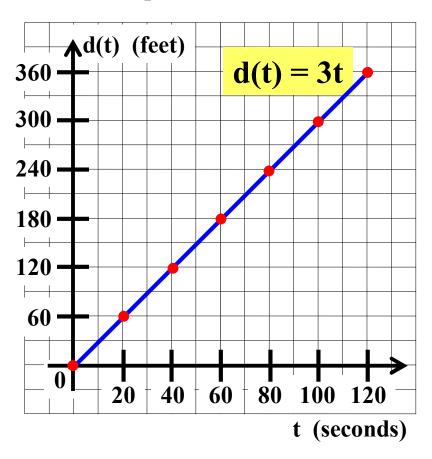

$$d(t) = 3t$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

2. Graph function d.

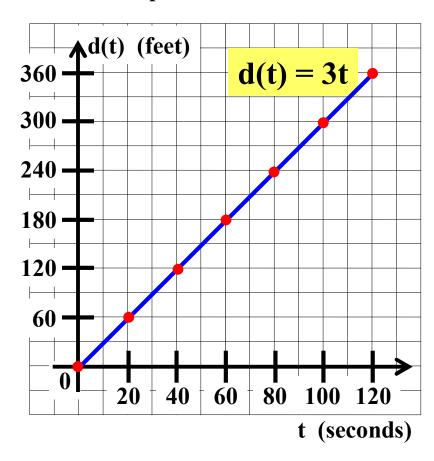


$$d(t) = 3t$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

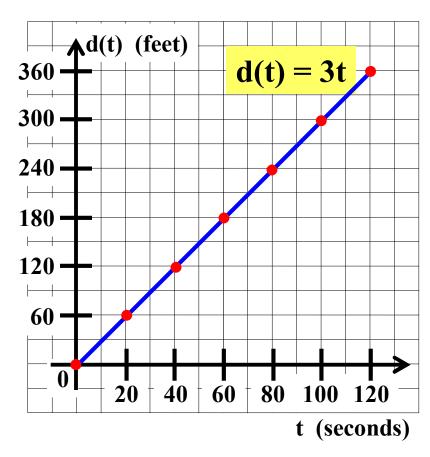


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

4. Write an inequality to describe the domain of function d.

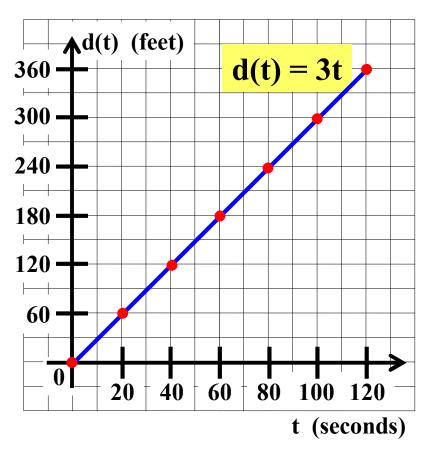


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

4. Write an inequality to describe the domain of function d.

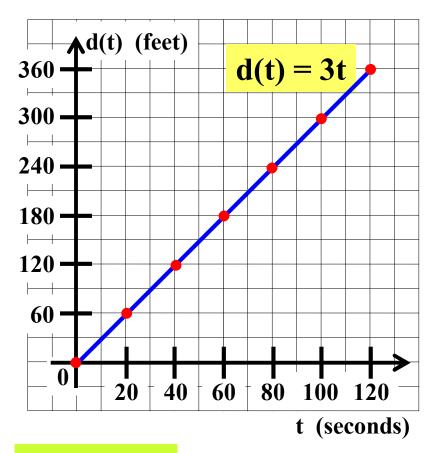

$$0 \le t$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

4. Write an inequality to describe the domain of function d.

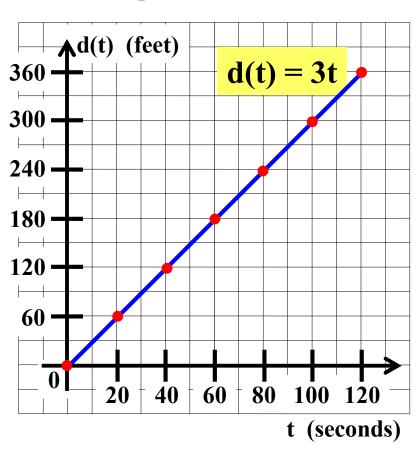

$$0 \le t \le 120$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)
0	0
20	60
40	120
60	180
80	240
100	300
120	360

4. Write an inequality to describe the domain of function d.

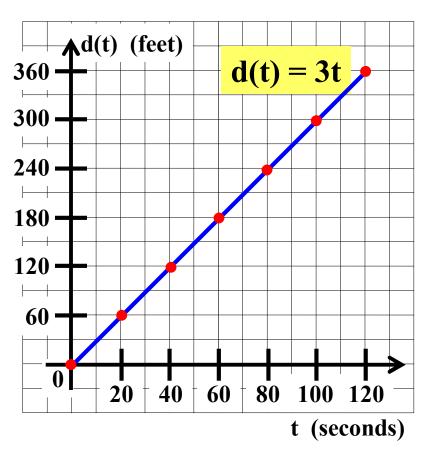


$$0 \le t \le 120$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

<u>t</u>	d(t)	domain
0	0	0 < t < 120
20	60	$0 \le t \le 120$
40	120	
60	180	
80	240	
100	300	
120	360	

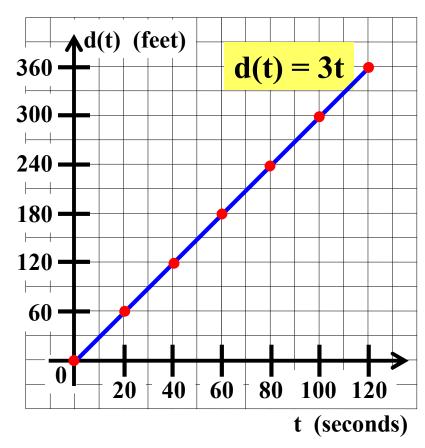


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 120 \end{array}$
20	60	· _ · _ · _ · _ ·
40	120	
60	180	
80	240	
100	300	
120	360	

2. Graph function d.


5. Write an inequality to describe the range of function d.

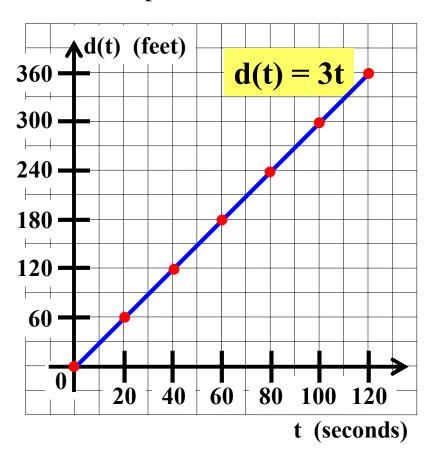
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 120 \end{array}$
20	60	$0 \le t \le 120$
40	120	
60	180	
80	240	
100	300	
120	360	

2. Graph function d.

5. Write an inequality to describe the range of function d.

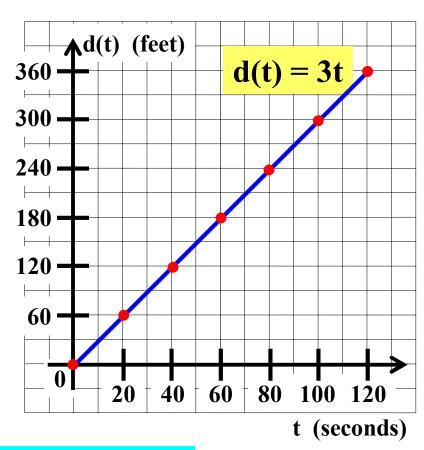

$$0 \le d(t)$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	0 < t < 120
20	60	
40	120	
60	180	
80	240	
100	300	
120	360	

5. Write an inequality to describe the range of function d.

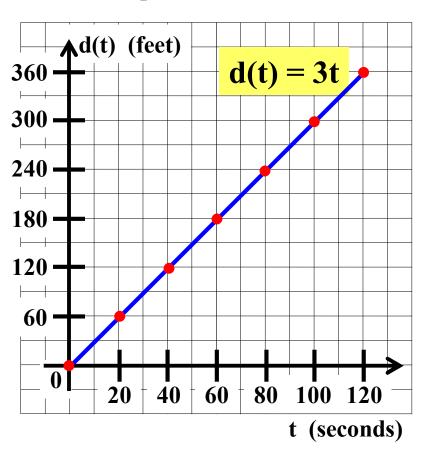

$$0 \le d(t) \le 360$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

<u>t</u>	d(t)	domain
0 20	0 60	$0 \le t \le 120$
40	120	
60 80	180 240	
100	300	
120	360	

2. Graph function d.

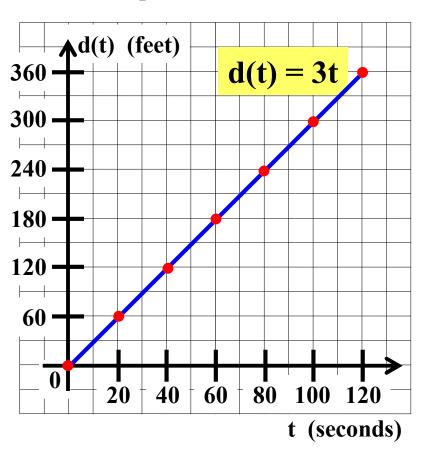

5. Write an inequality to describe the range of function d.

$$0 \le d(t) \le 360$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	domain 0 < t < 120
20	60	$0 \le t \le 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	

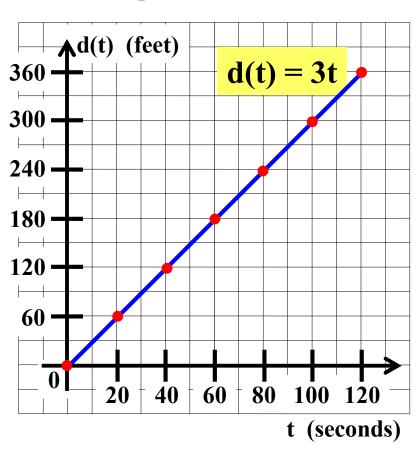


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 120 \end{array}$
20	60	$0 \leq t \leq 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?

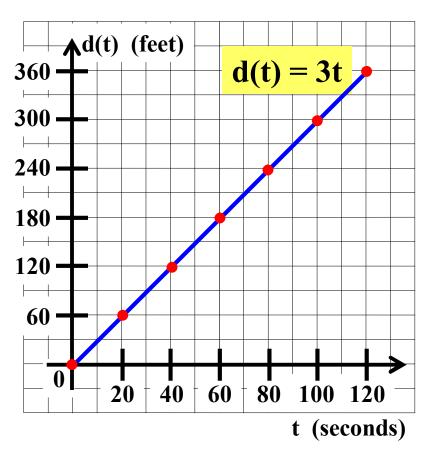


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 120 \end{array}$
20	60	$0 \leq t \leq 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	

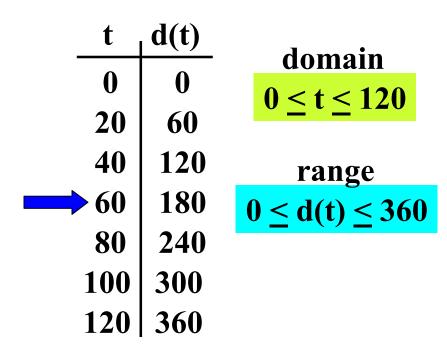
Evaluate d(60). What does d(60) represent in terms of the problem?

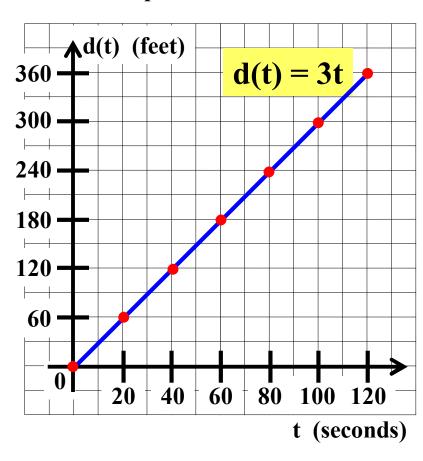


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

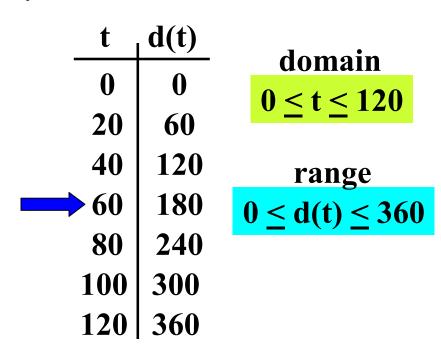
t	d(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 120 \end{array}$
20	60	
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	


Evaluate d(60). What does d(60) represent in terms of the problem?

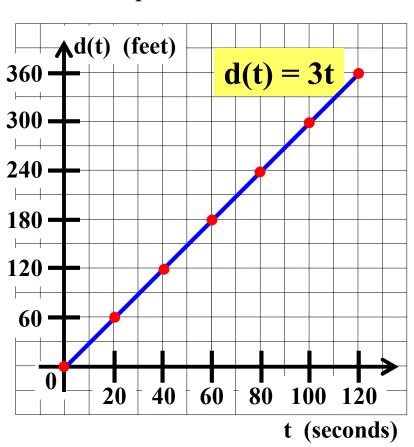

$$d(60) =$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.


Evaluate d(60). What does d(60) represent in terms of the problem?

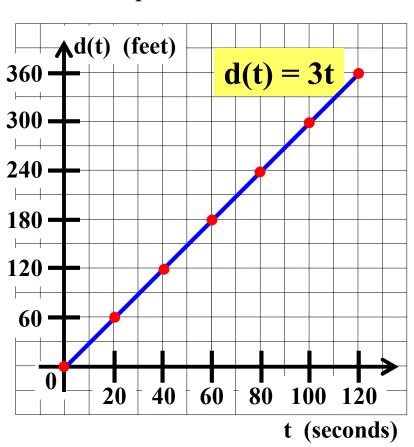
$$d(60) =$$


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

Evaluate d(60). What does d(60) represent in terms of the problem?

$$d(60) = 180$$

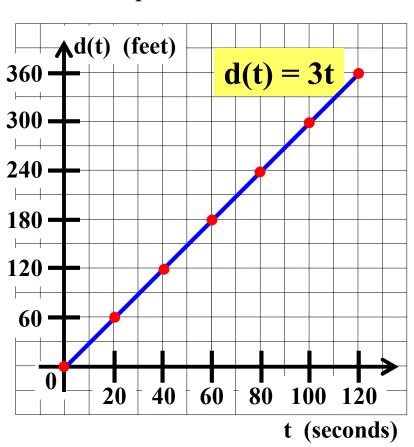

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 120 \end{array}$
20	60	$0 \leq t \leq 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?

$$d(60) = 180$$

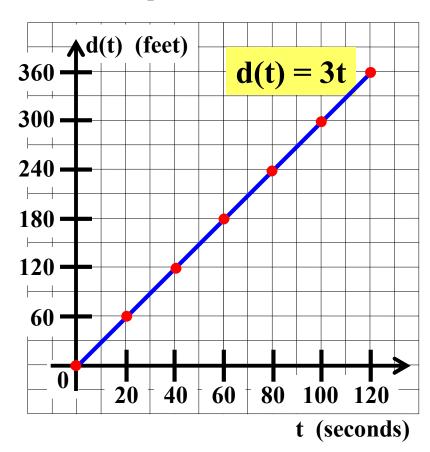

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

_	t	d(t)	domain
	0	0	0 < t < 120
	20	60	
	40 60	120 180	range
	80	240	$0 \le d(t) \le 360$
	100	300	
	120	360	

Evaluate d(60). What does d(60) represent in terms of the problem?

$$d(60) = 180$$

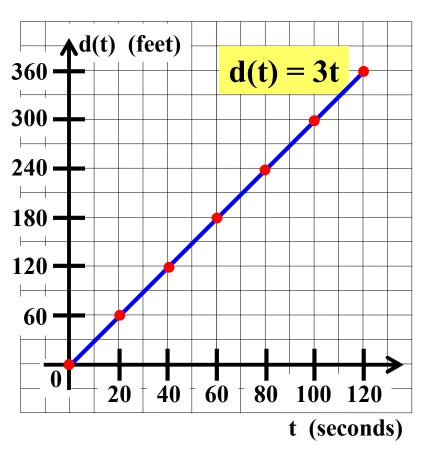


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

<u>t</u>	d(t)	domain
0	0	0 < t < 120
20	60	
40	120	range
60	180	$0 \le d(t) \le 360$
80 100	240 300	
120	360	

2. Graph function d.


Evaluate d(60). What does d(60) represent in terms of the problem?

d(60) = 180 d(60) represents the distance John walked.

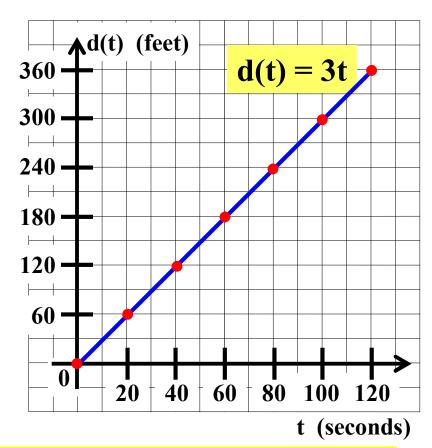
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

- 1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.
 - d(t)t domain 0 0 $0 \le t \le 120$ **60 20 40** 120 range 180 **60** $0 \le d(t) \le 360$ **80 240** 100 300 120 | 360

2. Graph function d.

Evaluate d(60). What does d(60) represent in terms of the problem?

$$d(60) = 180$$


d(60) represents the distance John walked in 60 seconds.

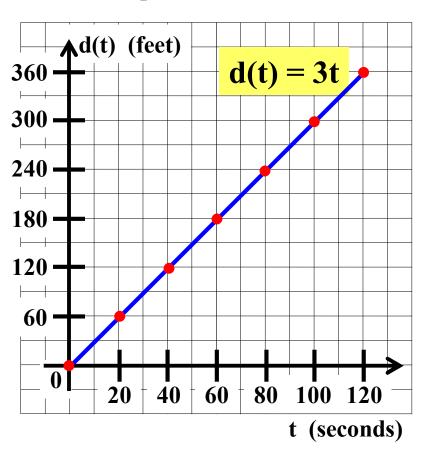
John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	0 < t < 120
20	60	0 2 t 2 120
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	_ (/_
100	300	
120	360	

2. Graph function d.

Evaluate d(60). What does d(60) represent in terms of the problem?

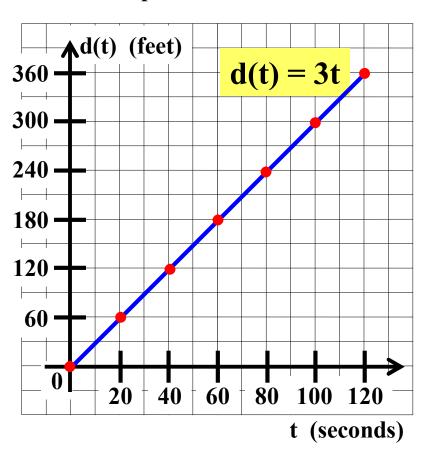

$$d(60) = 180 \text{ feet}$$

d(60) represents the distance John walked in 60 seconds.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	domain 0 < t < 120
20	60	$0 \le t \le 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	

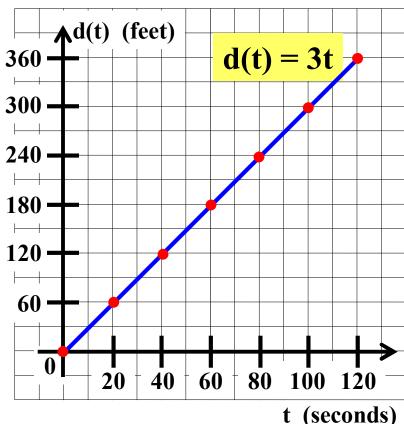


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

<u>t</u>	d(t)	domain
0	0	0 < t < 120
20	60	$0 \leq t \leq 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	

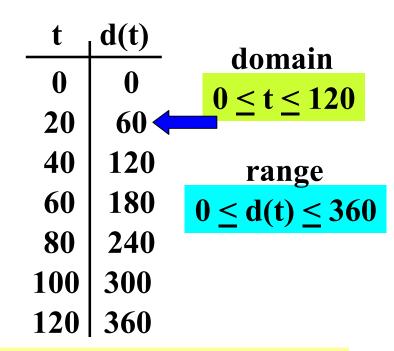
If d(t) = 60, then find the value of t.

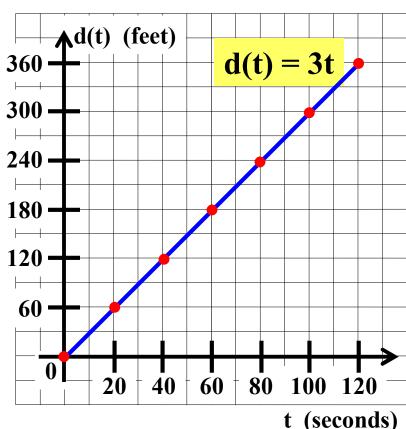


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

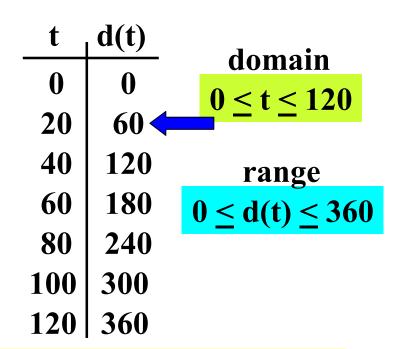
t	d(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 120 \end{array}$
20	60	$0 \leq t \leq 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	

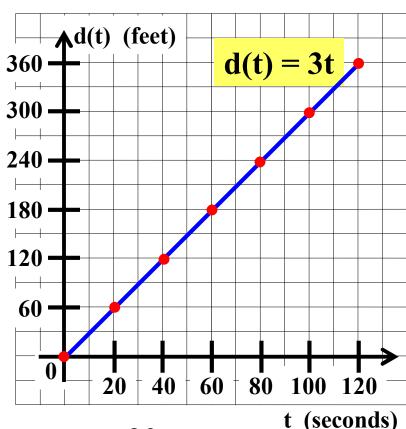

If d(t) = 60, then find the value of t.


$$d(t) = 60 \implies t =$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

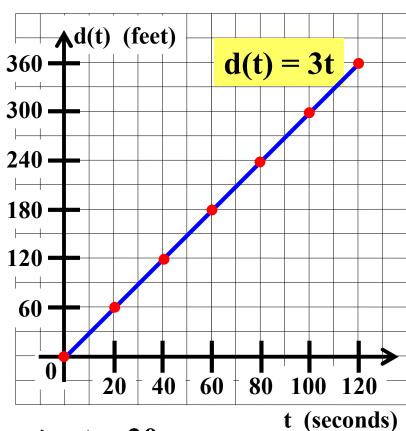

If d(t) = 60, then find the value of t.


$$d(t) = 60 \implies t =$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

If d(t) = 60, then find the value of t.

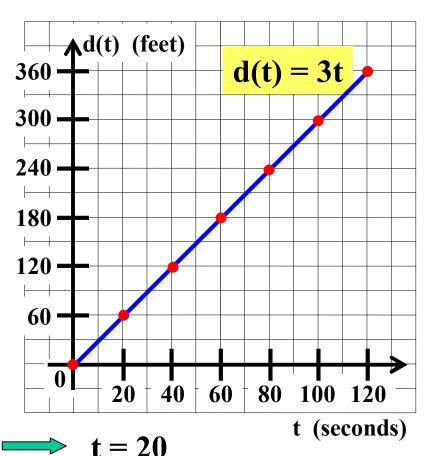

$$d(t) = 60 \implies t = 20$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

<u>t</u>	d(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 120 \end{array}$
20	60	$0 \leq t \leq 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	

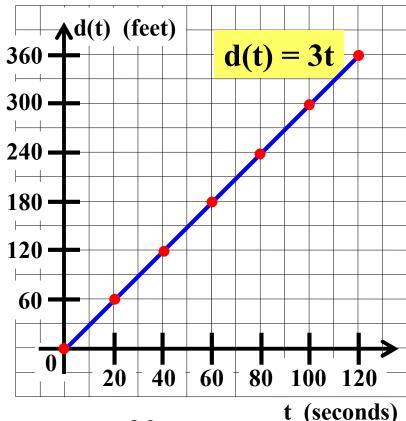
If d(t) = 60, then find the value of t.


$$d(t) = 60 \implies t = 20$$

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.

t	d(t)	domain
0	0	0 < t < 120
20	60	$0 \leq t \leq 120$
40	120	range
60	180	$0 \le d(t) \le 360$
80	240	
100	300	
120	360	


If d(t) = 60, then find the value of t. What does this value of t represent in terms of the problem? d(t) = 60

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

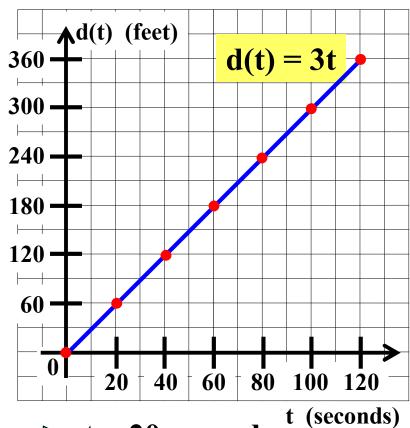
- 1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.
 - d(t)t domain 0 0 0 < t < 120**60 20 40** 120 range 180 **60** $0 \le d(t) \le 360$ **80 240** 100 300 120 | 360

2. Graph function d.

If d(t) = 60, then find the value of t.

What does this value of t represent

in terms of the problem? d(t) = 60


$$d(t) = 60 \implies t = 20$$

This represents the time it took John to walk 60 feet.

John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

- 1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.
 - d(t)t domain 0 0 $0 \le t \le 120$ **60 20 40** 120 range 180 **60** $0 \le d(t) \le 360$ **80 240** 100 300 120 | 360

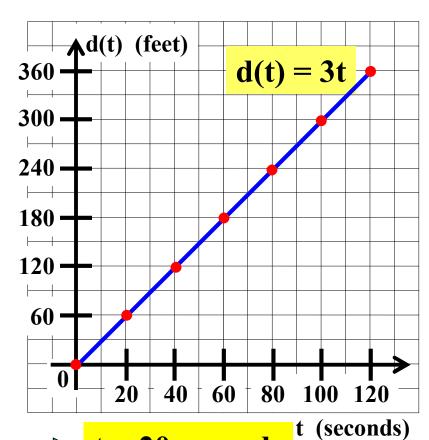
2. Graph function d.

If d(t) = 60, then find the value of t.

What does this value of t represent

in terms of the problem? $d(t) = 60 \implies t = 20$ seconds

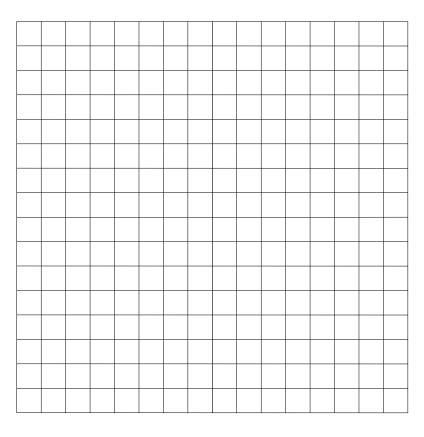
This represents the time it took John to walk 60 feet.


John walks for 2 minutes at a constant speed of 3 feet per second. Let t represent his walking time (in seconds) and d(t) represent the distance he has walked (in feet).

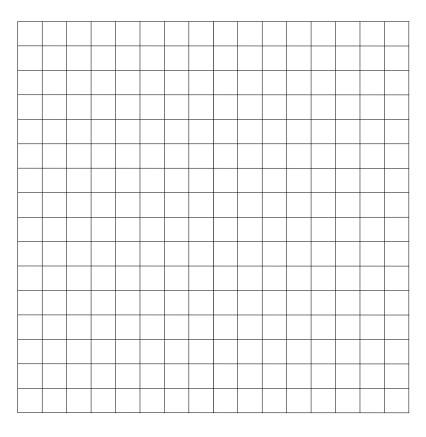
- 1. Make a table giving t and d(t) every 20 seconds from t = 0 to t = 120.
 - d(t)t domain 0 0 0 < t < 120**60 20 40** 120 range 180 **60** $0 \le d(t) \le 360$ **80 240** 100 300 120 | 360

If d(t) = 60, then find the value of t.

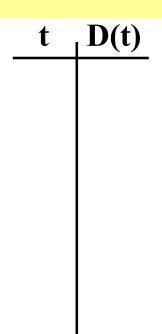
What does this value of t represent in terms of the problem? d(t) = 60 t = 20 seconds

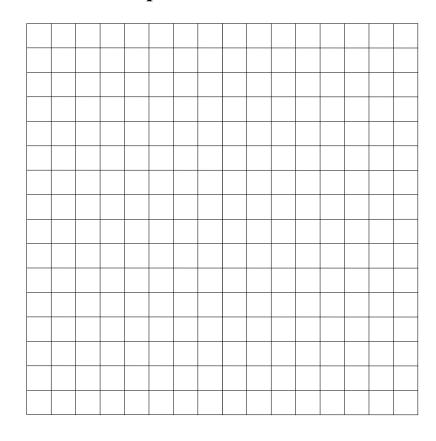

2. Graph function d.

This represents the time it took John to walk 60 feet.


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

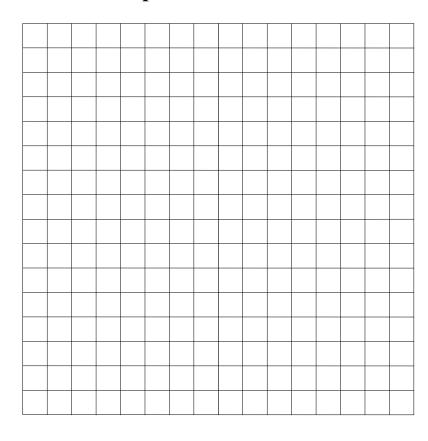
8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).


8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

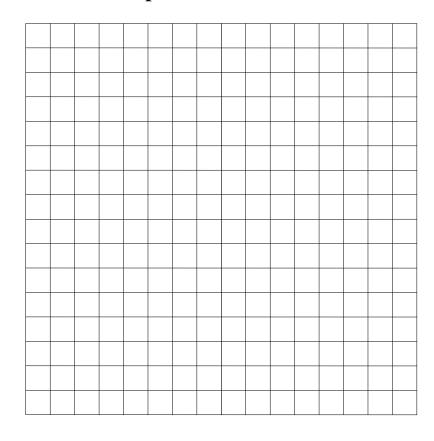
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.



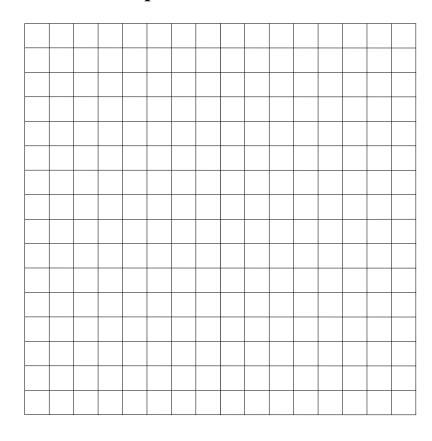
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	
.5	
1	
1.5	
2	
2.5	
3	

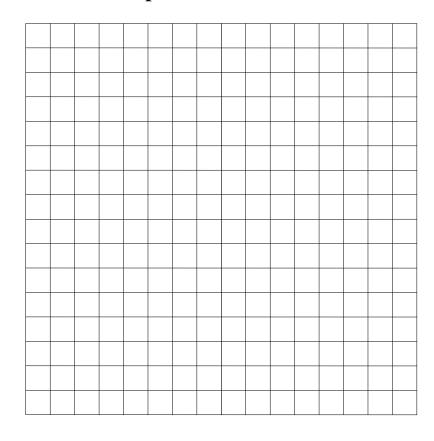
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	
1	
1.5	
2	
2.5	
3	

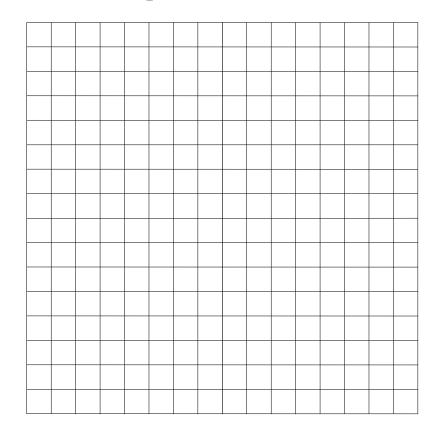
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	
1.5	
2	
2.5	
3	

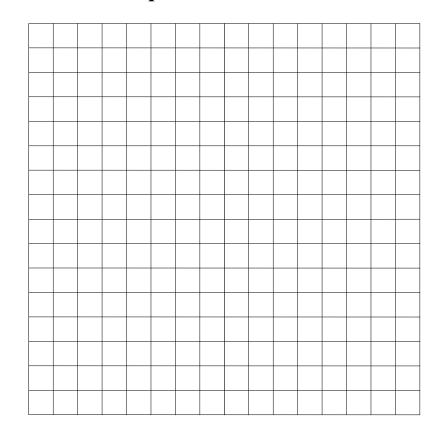
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	
2	
2.5	
3	

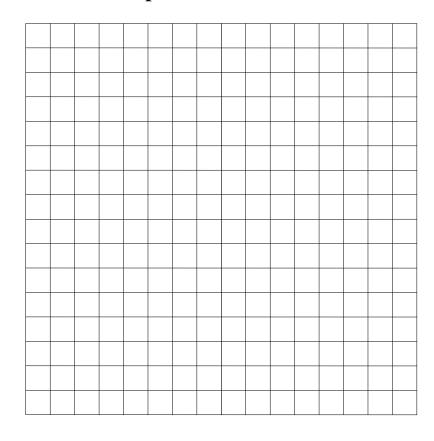
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	
2.5	
3	

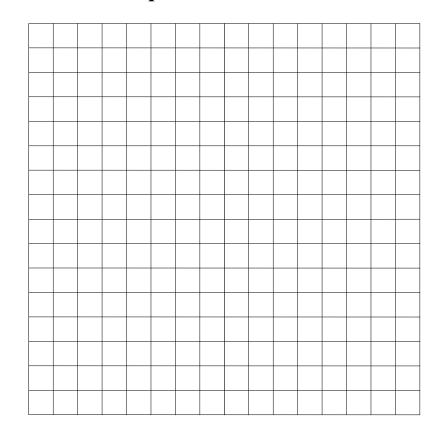
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	
3	

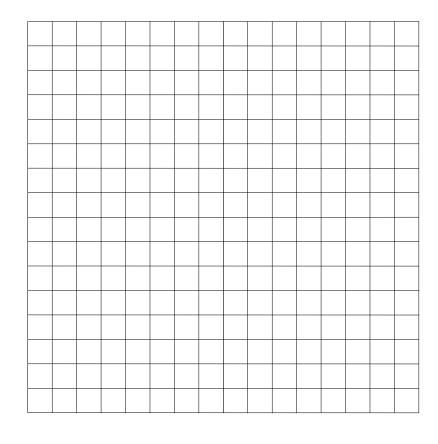
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	

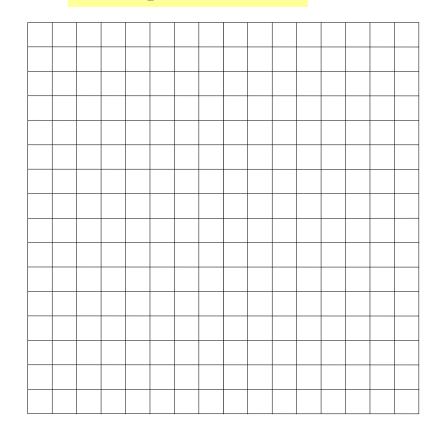
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

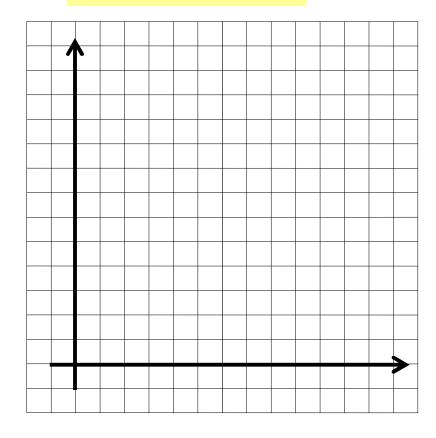
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

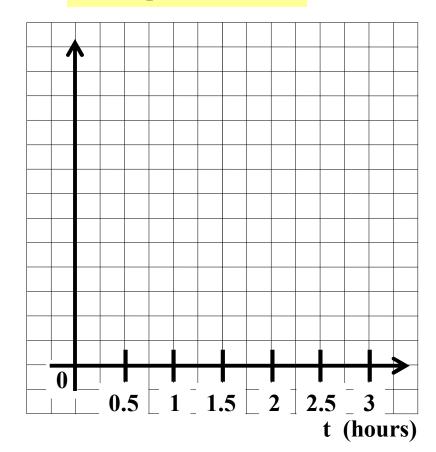
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

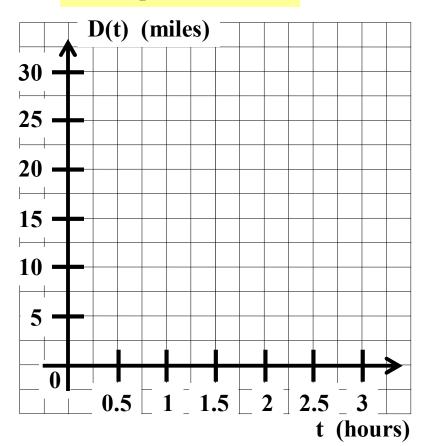
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

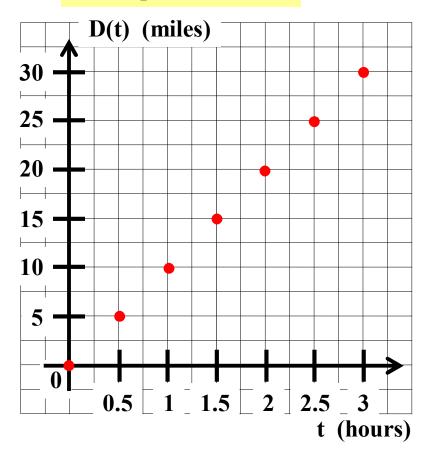
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

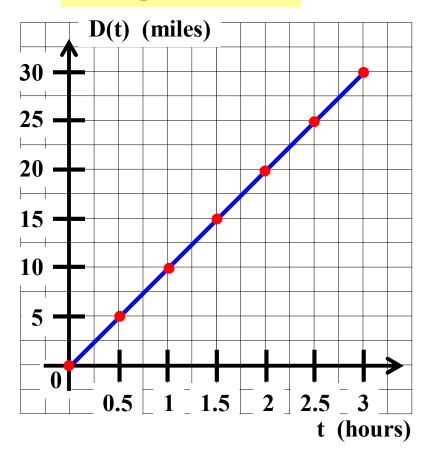
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

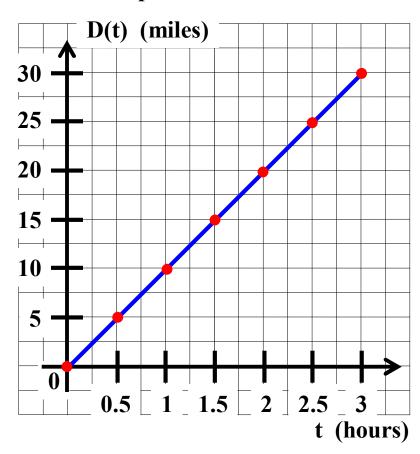
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

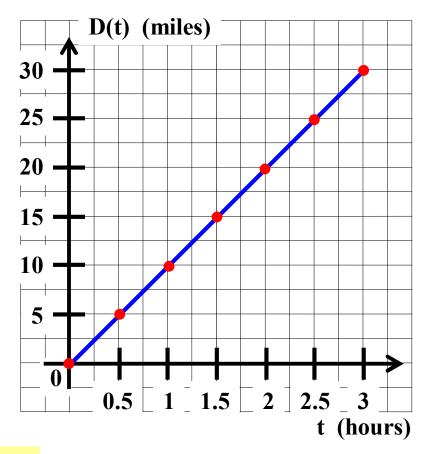
8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.


t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

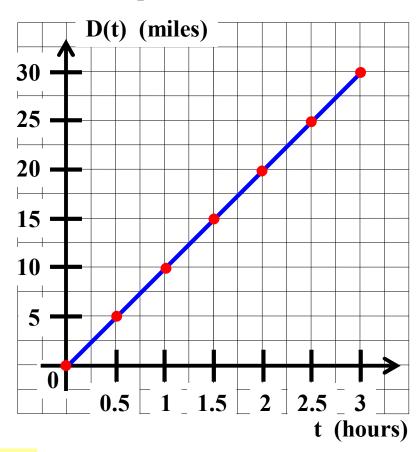


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.



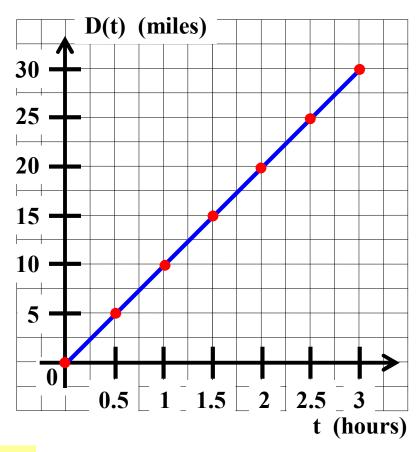
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

10. Write an equation giving D(t) in terms of t.

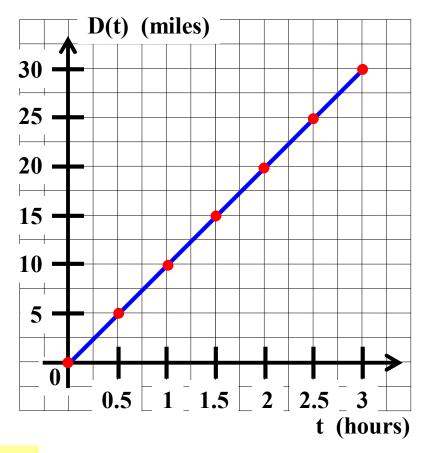

D(t)

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

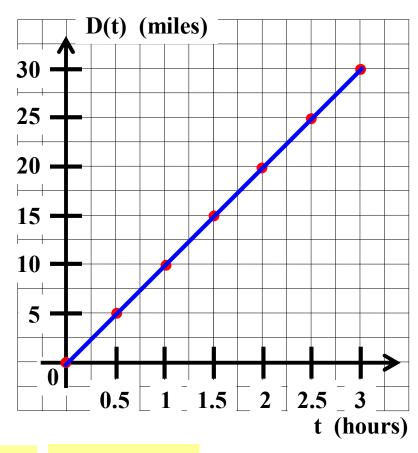

$$D(t) =$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

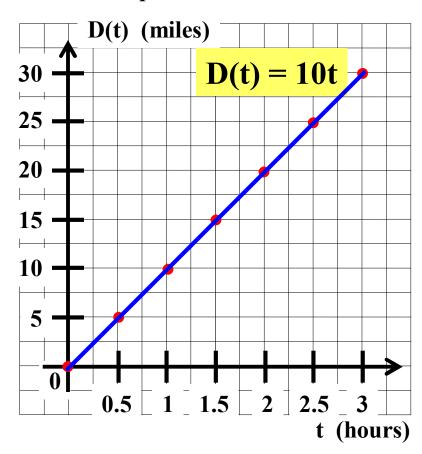

$$\mathbf{D}(\mathbf{t}) = 10\mathbf{t}$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

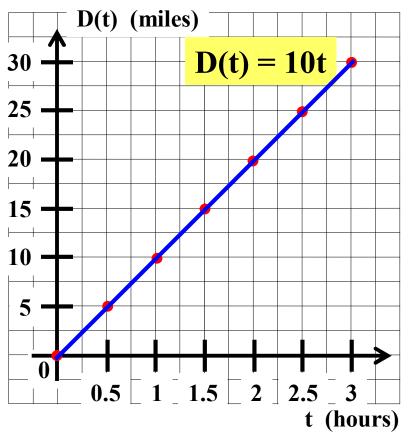


$$D(t) = 10t$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

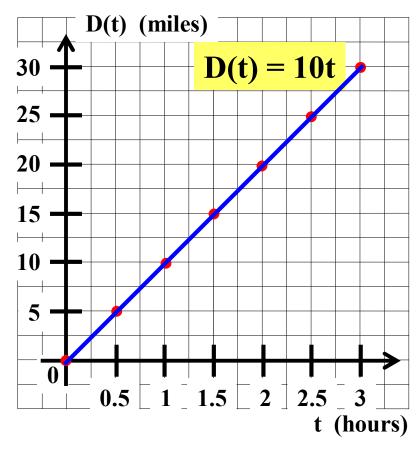


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

9. Graph function D.

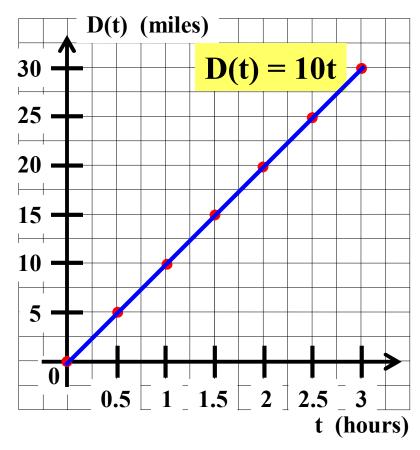

11. Write an inequality to describe the domain of function D.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

11. Write an inequality to describe the domain of function D.

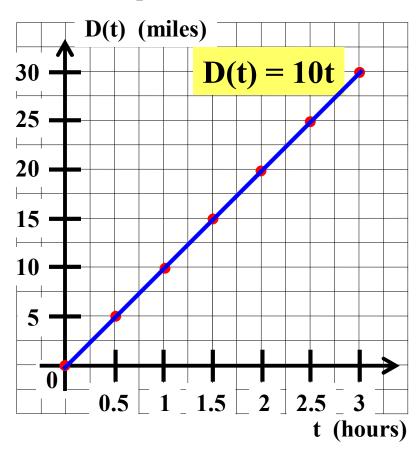


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)
0	0
.5	5
1	10
1.5	15
2	20
2.5	25
3	30

11. Write an inequality to describe the domain of function D.

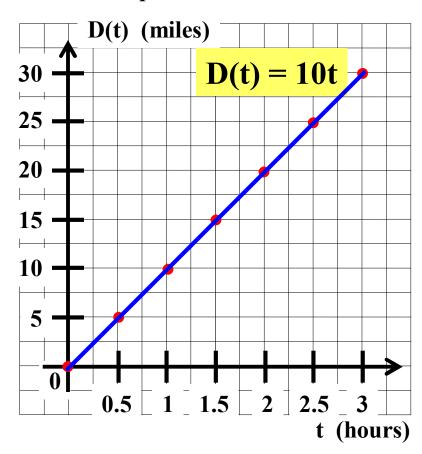

$$0 \le t \le 3$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

<u>t</u>	D(t)	domain
0	0	0 < t < 3
.5	5	
1	10	
1.5	15	
2	20	
2.5	25	
3	30	

11. Write an inequality to describe the domain of function D.

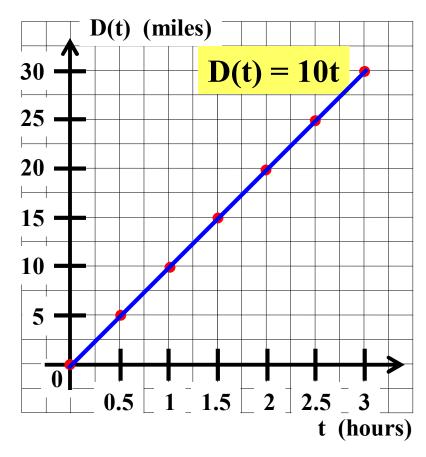


$$0 \le t \le 3$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	
1.5	15	
2	20	
2.5	25	
3	30	

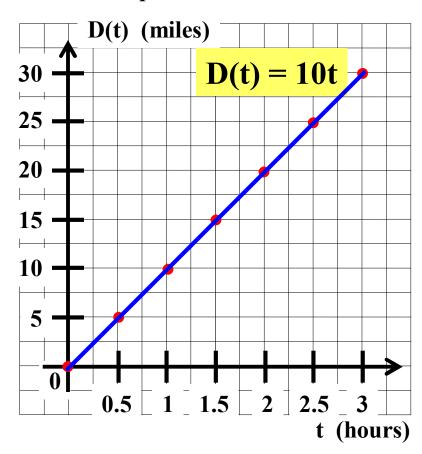


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	
1.5	15	
2	20	
2.5	25	
3	30	

9. Graph function D.

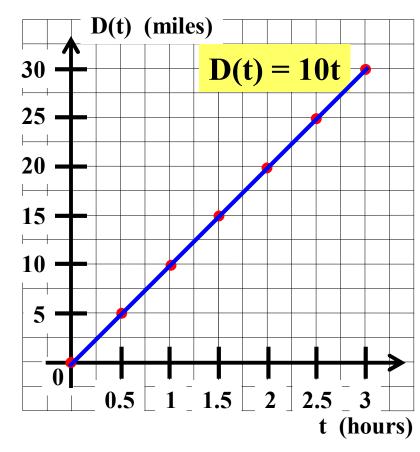

12. Write an inequality to describe the range of function D.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	
1.5	15	
2	20	
2.5	25	
3	30	

12. Write an inequality to describe the range of function D.

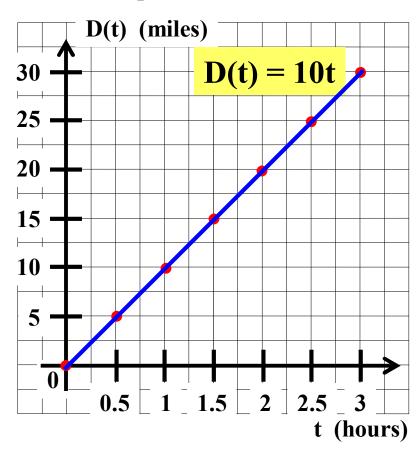

$$0 \leq D(t)$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0 .5	0 5	$\begin{array}{c} domain \\ 0 \leq t \leq 3 \end{array}$
1	10	
1.5	15	
2	20	
2.5	25	
3	30	

12. Write an inequality to describe the range of function D.

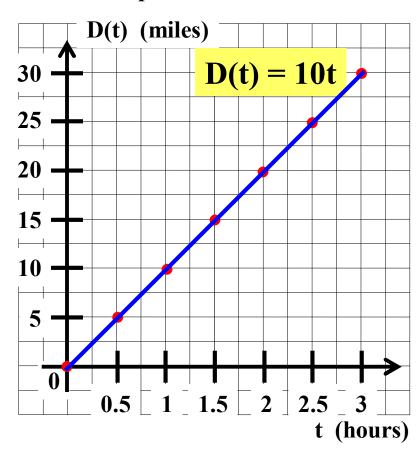

$$\underline{0 \le D(t) \le 30}$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	range
1.5 2	15 20	$0 \le D(t) \le 30$
2.5	25	
3	30	

12. Write an inequality to describe the range of function D.

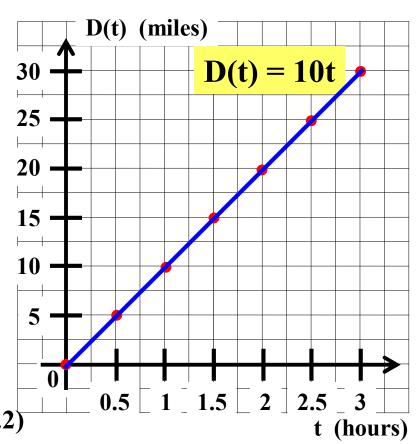


$$0 \le D(t) \le 30$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	
2.5	25	
3	30	

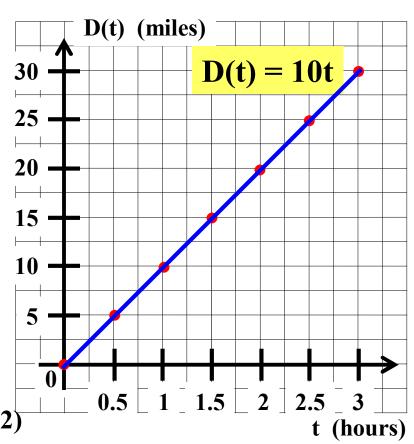


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\frac{\text{domain}}{0 < t < 3}$
.5	5	$0 \le t \le 3$
1	10	range
1.5	15	0 < D(t) < 30
2	20	_
2.5	25	
3	30	

9. Graph function D.

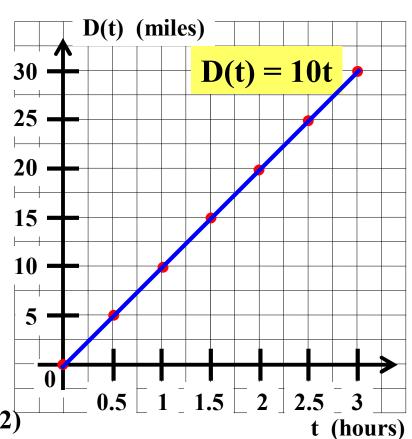


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	range
1.5	15	0 < D(t) < 30
2	20	-
2.5	25	
3	30	

9. Graph function D.

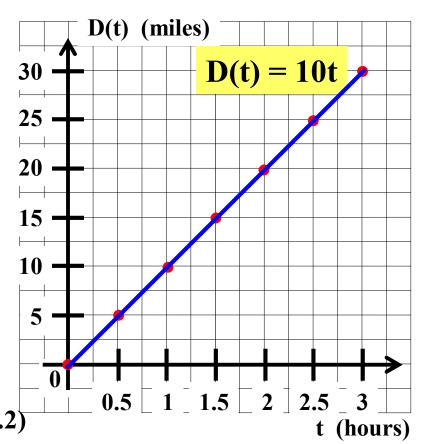


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	$0 \le t \le 3$
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	_
2.5	25	
3	30	

9. Graph function D.

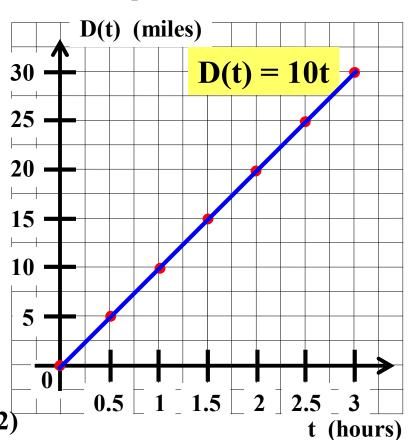

$$D(1.2) =$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

<u>t</u>	D(t)	domain
0	0	0 < t < 3
.5	5	$0 \le t \le 3$
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	_
2.5	25	
3	30	

9. Graph function D.

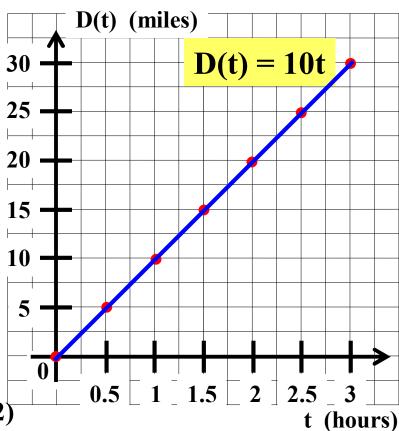


$$D(1.2) = D(1.2) = 10(1.2)$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

- 8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.
 - D(t) t domain 0 $0 \le t \le 3$.5 5 **10** range 1.5 **15** $0 \le D(t) \le 30$ 2 **20** 2.5 **25** 3 **30**

9. Graph function D.



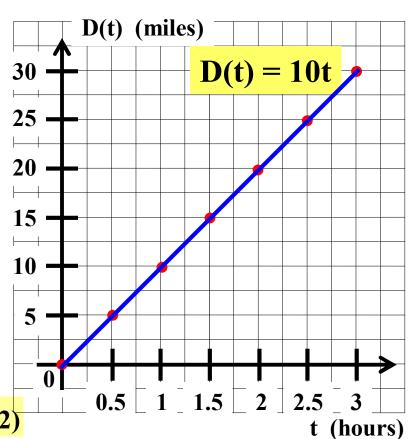
$$D(1.2) = 12$$

 $D(1.2) = 10(1.2)$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

- 8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.
 - D(t) t domain 0 $0 \le t \le 3$.5 5 **10** range 1.5 15 $0 \le D(t) \le 30$ 2 **20** 2.5 **25** 3 **30**

9. Graph function D.

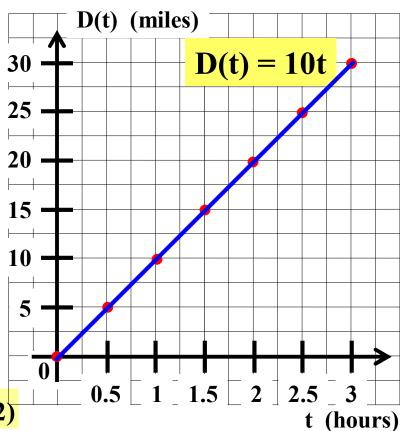


$$D(1.2) = 12$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

- 8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.
 - D(t) t domain 0 $0 \le t \le 3$.5 5 **10** range 1.5 15 $0 \le D(t) \le 30$ 2 **20** 2.5 **25** 3 **30**

9. Graph function D.

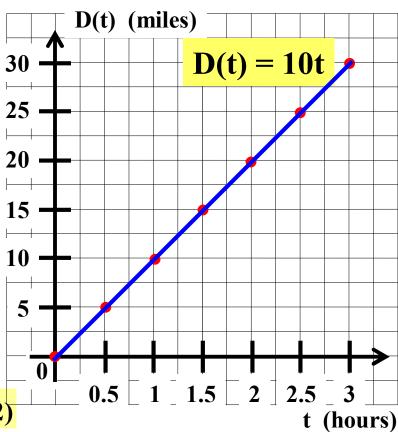

$$D(1.2) = 12$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\frac{\text{domain}}{0 < t < 3}$
.5	5	$0 \le t \le 3$
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	_
2.5	25	
3	30	

9. Graph function D.

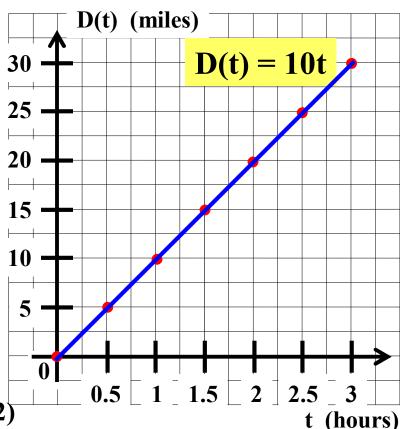

13. Evaluate D(1.2). What does D(1.2) represent in terms of the problem?

$$D(1.2) = 12$$

D(1.2) represents the distance Mary biked.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

- 8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.
 - $\mathbf{D}(\mathbf{t})$ t domain 0 0 $0 \le t \le 3$.5 5 **10** range 1.5 **15** $0 \le D(t) \le 30$ 2 **20** 2.5 **25** 3 **30**



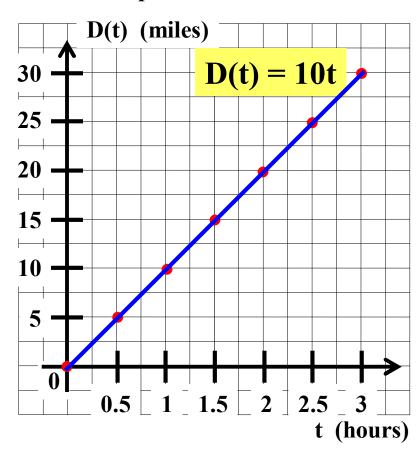
- 13. Evaluate D(1.2). What does D(1.2) represent in terms of the problem?
- D(1.2) = 12 D(1.2) represents the distance Mary biked in 1.2 hours.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

- 8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.
 - $\mathbf{D}(\mathbf{t})$ t domain 0 $0 \le t \le 3$ 5 .5 **10** range 1.5 **15** $0 \le D(t) \le 30$ 2 **20** 2.5 **25** 3 **30**

9. Graph function D.

13. Evaluate D(1.2). What does D(1.2) represent in terms of the problem?

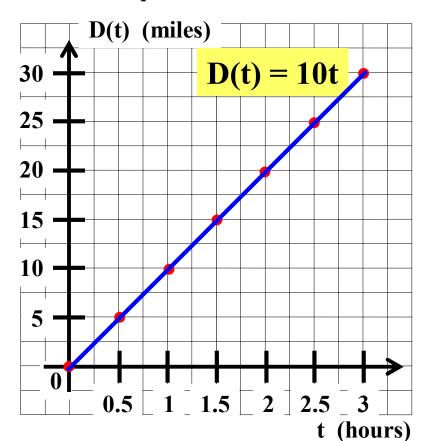

D(1.2) = 12 miles

D(1.2) represents the distance Mary biked in 1.2 hours.

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	
2.5	25	
3	30	

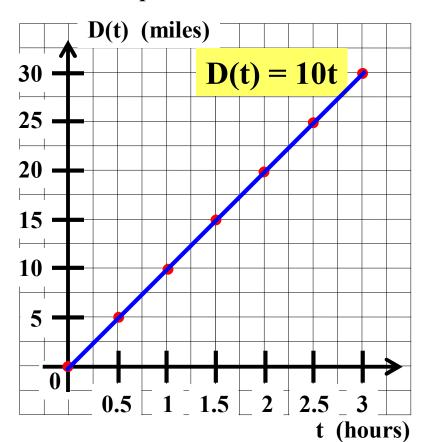


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	0 < t < 3
.5	5	$0 \leq t \leq 3$
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	_
2.5	25	
3	30	

14. If D(t) = 15, then find the value of t. What does this value of t represent in terms of the problem?

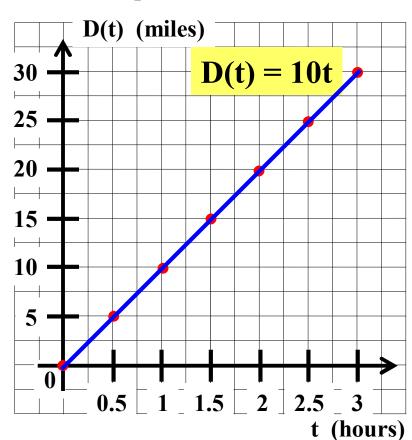


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	
2.5	25	
3	30	

14. If D(t) = 15, then find the value of t. What does this value of t represent in terms of the problem?

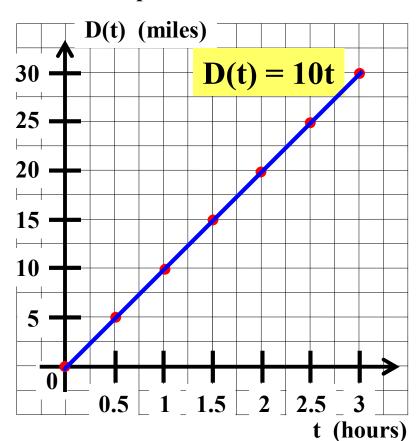


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	
2.5	25	
3	30	

14. If D(t) = 15, then find the value of t. What does this value of t represent in terms of the problem? D(t) = 15

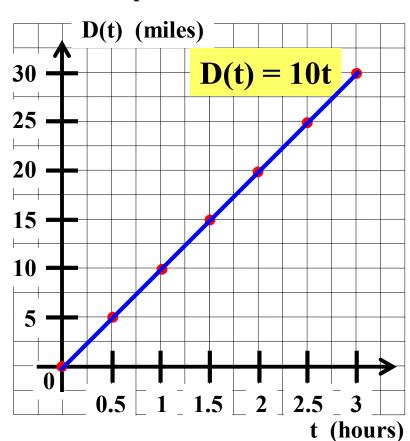


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\frac{\text{domain}}{0 < t < 3}$
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	
2.5	25	
3	30	

14. If D(t) = 15, then find the value of t. What does this value of t represent in terms of the problem? D(t) = 15


Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

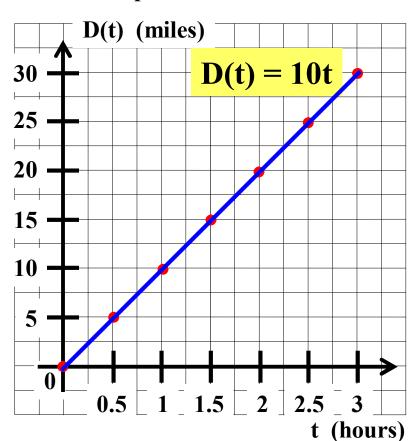
8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

<u>t</u>	D(t)	domain
0	0	0 < t < 3
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	
2.5	25	
3	30	

14. If D(t) = 15, then find the value of t. What does this value of t represent in terms of the problem? D(t) = 15

$$10t = 15$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).


8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

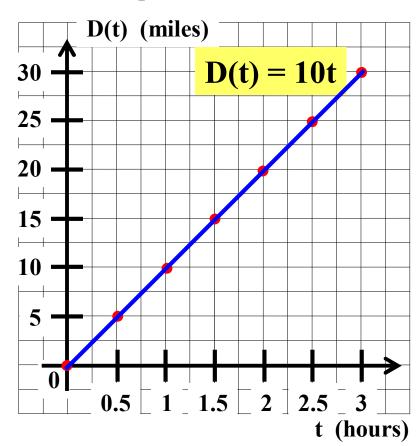
<u>t</u>	D(t)	domain
0	0	$0 \le t \le 3$
.5 1	5 10	
1.5	15	range $0 \le D(t) \le 30$
2	20	$0 \leq D(0) \leq 30$
2.5	25	
3	30	

14. If D(t) = 15, then find the value of t. What does this value of t represent $\mathbf{D(t)} = 15$ in terms of the problem?

$$D(t) = 15$$

10t = 15

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

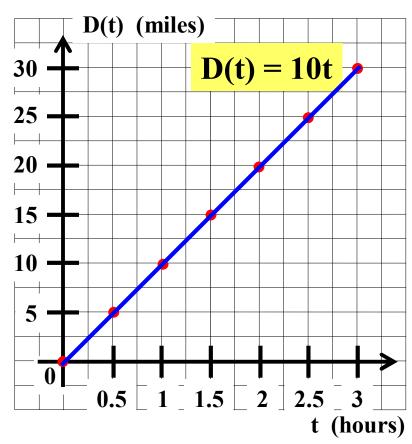

10t = 15

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	$\frac{\text{domain}}{0 < t < 3}$
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	
2.5	25	
3	30	

14. If D(t) = 15, then find the value of t.

What does this value of t represent in terms of the problem? $D(t) = 15 \longrightarrow t = 1.5$



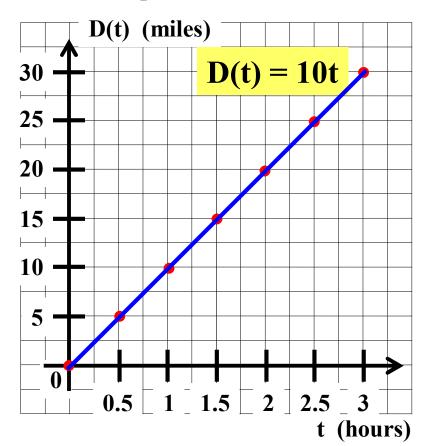
Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	$\mathbf{D}(\mathbf{t})$	domain
0	0	$\begin{array}{c} domain \\ 0 < t < 3 \end{array}$
.5	5	
1	10	range
1.5	15	$0 \le \mathbf{D}(\mathbf{t}) \le 30$
2	20	
2.5	25	
3	30	

9. Graph function D.

14. If D(t) = 15, then find the value of t. What does this value of t represent in terms of the problem? D(t) = 15


$$D(t) = 15 \longrightarrow t = 1.5$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

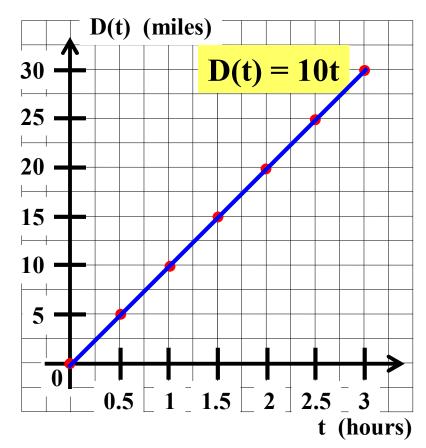
8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

<u>t</u>	D(t)	domain
0	0	0 < t < 3
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	_
2.5	25	
3	30	

9. Graph function D.

14. If D(t) = 15, then find the value of t. What does this value of t represent

in terms of the problem?


$$D(t) = 15 \longrightarrow t = 1.5$$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

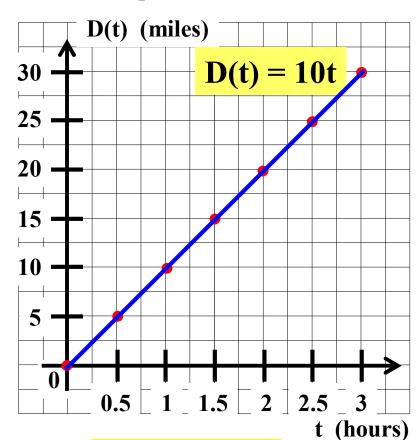
8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

t	D(t)	domain
0	0	0 < t < 3
.5	5	
1 1.5	10 15	range
1.5 2	20	$0 \le D(t) \le 30$
2.5	25	
3	30	

9. Graph function D.

14. If D(t) = 15, then find the value of t. What does this value of t represent

in terms of the problem?

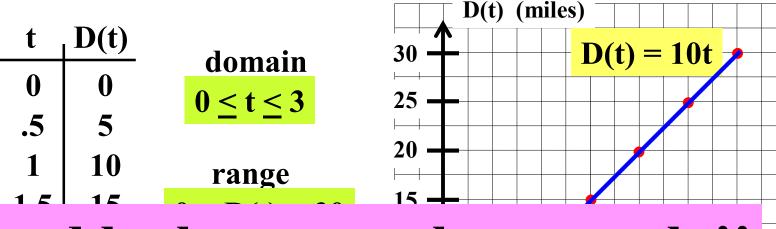

 $D(t) = 15 \implies t = 1.5 \text{ hours}$

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).

8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

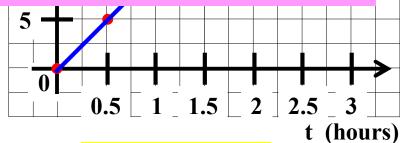
t	D(t)	domain
0	0	0 < t < 3
.5	5	
1	10	range
1.5	15	$0 \le D(t) \le 30$
2	20	–
2.5	25	
3	30	

9. Graph function D.


14. If D(t) = 15, then find the value of t. What does this value of t represent

in terms of the problem? D(t) = 15 \longrightarrow t = 1.5 hours

Mary bikes for 3 hours at a constant speed of 10 miles per hour. Let t represent her biking time (in hours) and D(t) represent the distance she has gone (in miles).


8. Make a table giving t and D(t) every half hour from t = 0 to t = 3.

9. Graph function D.

Good luck on your homework!!

2.5 | 25 3 | 30

14. If D(t) = 15, then find the value of t. What does this value of t represent

in terms of the problem? D(t) = 15 \longrightarrow t = 1.5 hours