Algebra I Lesson #4 Unit 7 Class Worksheet #4 For Worksheets #7 & #8

Graph each of the following.

1. 2x + 3y < 6

Graph each of the following.

1. 2x + 3y < 6

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Graph each of the following.

1. 2x + 3y < 63y < -2x + 6 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Graph each of the following.

1. 2x + 3y < 63y < -2x + 6 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Graph each of the following.

1. 2x + 3y < 63y < -2x + 6 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Graph each of the following.

1. 2x + 3y < 63y < -2x + 6 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Graph each of the following.

1.
$$2x + 3y < 6$$

 $3y < -2x + 6$
 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Graph each of the following.

1.
$$2x + 3y < 6$$

 $3y < -2x + 6$
 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Graph each of the following.

1.
$$2x + 3y < 6$$

 $3y < -2x + 6$
 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Graph each of the following.

1.
$$2x + 3y < 6$$

 $3y < -2x + 6$
 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

1.
$$2x + 3y < 6$$

 $3y < -2x + 6$
 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

The boundary line is a dashed line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

1.
$$2x + 3y < 6$$

 $3y < -2x + 6$
 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

The boundary line is a dashed line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

1.
$$2x + 3y < 6$$

 $3y < -2x + 6$
 $y < \frac{-2}{3}x + 2$

The boundary line is the oblique line $y = \frac{-2}{3}x + 2$.

The boundary line is a dashed line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)Step 2: Graph several points on the boundary line.

Step 2. Graph several points on the bounda

Step 3: Draw the boundary line.

Graph each of the following.

 $2. \quad 4x - 3y \ge 6$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

 $2. \quad 4x - 3y \ge 6$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

The boundary line is a solid line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

The boundary line is a solid line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)Step 2: Graph several points on the boundary line.Step 3: Draw the boundary line.

Graph each of the following.

2.
$$4x - 3y \ge 6$$
$$-3y \ge -4x + 6$$
$$y \le \frac{4}{3}x - 2$$

The boundary line is the oblique line $y = \frac{4}{3}x - 2$.

The boundary line is a solid line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

Graph each of the following.

Х

5

3. $6x + 4y \ge 12$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

 $3. \quad 6x + 4y \ge 12$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

The boundary line is a solid line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

The boundary line is a solid line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

3.
$$6x + 4y \ge 12$$

 $4y \ge -6x + 12$
 $y \ge \frac{-3}{2}x + 3$

The boundary line is the oblique line $y = \frac{-3}{2}x + 3$.

The boundary line is a solid line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

Graph each of the following.

4. 5x - 2y < -2

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4. 5x - 2y < -2

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4. 5x - 2y < -2-2y < -5x - 2 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4. 5x - 2y < -2-2y < -5x - 2 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4. 5x - 2y < -2-2y < -5x - 2 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4. 5x - 2y < -2-2y < -5x - 2 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4.
$$5x - 2y < -2$$

 $-2y < -5x - 2$
 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4.
$$5x - 2y < -2$$

 $-2y < -5x - 2$
 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4.
$$5x - 2y < -2$$

 $-2y < -5x - 2$
 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4.
$$5x - 2y < -2$$

 $-2y < -5x - 2$
 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4.
$$5x - 2y < -2$$

 $-2y < -5x - 2$
 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

The boundary line is a dashed line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4.
$$5x - 2y < -2$$

 $-2y < -5x - 2$
 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

The boundary line is a dashed line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

4.
$$5x - 2y < -2$$

 $-2y < -5x - 2$
 $y > \frac{5}{2}x + 1$

The boundary line is the oblique line $y = \frac{5}{2}x + 1$.

The boundary line is a dashed line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)Step 2: Graph several points on the boundary line.Step 3: Draw the boundary line.

Graph each of the following.

5. 3x + 5y > 0

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5. 3x + 5y > 0

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

The boundary line is a dashed line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

The boundary line is a dashed line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

5.
$$3x + 5y > 0$$

 $5y > -3x$
 $y > \frac{-3}{5}x$

The boundary line is the oblique line $y = \frac{-3}{5}x$.

The boundary line is a dashed line.

Shade above the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

Graph each of the following.

 $6. \quad 4x - 3y \ge 0$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

 $6. \quad 4x - 3y \ge 0$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

The boundary line is a solid line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)Step 2: Graph several points on the boundary line.Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

The boundary line is a solid line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

6.
$$4x - 3y \ge 0$$
$$-3y \ge -4x$$
$$y \le \frac{4}{3}x$$

The boundary line is the oblique line $y = \frac{4}{3}x$.

The boundary line is a solid line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)Step 2: Graph several points on the boundary line.Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 3

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 3

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 32y < 6

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 32y < 6y < 3

The boundary line is the horizontal line y = 3.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 32y < 6y < 3

The boundary line is the horizontal line y = 3.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 32y < 6y < 3

The boundary line is the horizontal line y = 3.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 32y < 6y < 3

The boundary line is the horizontal line y = 3.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 32y < 6y < 3

The boundary line is the horizontal line y = 3.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7.
$$2y - 3 < 3$$

 $2y < 6$
 $y < 3$

The boundary line is the horizontal line y = 3.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7.
$$2y - 3 < 3$$

 $2y < 6$
 $y < 3$

The boundary line is the horizontal line y = 3.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7. 2y - 3 < 32y < 6y < 3

The boundary line is the horizontal line y = 3.

The boundary line is a dashed line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7.
$$2y - 3 < 3$$

 $2y < 6$
 $y < 3$

The boundary line is the horizontal line y = 3.

The boundary line is a dashed line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7.
$$2y - 3 < 3$$

 $2y < 6$
 $y < 3$

The boundary line is the horizontal line y = 3.

The boundary line is a dashed line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

7.
$$2y - 3 < 3$$

 $2y < 6$
 $y < 3$

The boundary line is the horizontal line y = 3.

The boundary line is a dashed line.

Shade below the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

8. $-3x + 1 \le 7$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

8. $-3x + 1 \le 7$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

8. $-3x + 1 \le 7$

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

The boundary line is the vertical line x = -2.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

The boundary line is the vertical line x = -2.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

The boundary line is the vertical line x = -2.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

The boundary line is the vertical line x = -2.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

8.
$$-3x + 1 \le 7$$

 $-3x \le 6$
 $x \ge -2$

The boundary line is the vertical line x = -2.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

8.
$$-3x + 1 \le 7$$

 $-3x \le 6$
 $x \ge -2$

The boundary line is the vertical line x = -2.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

8.
$$-3x + 1 \le 7$$

 $-3x \le 6$
 $x \ge -2$

The boundary line is the vertical line x = -2.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

8.
$$-3x + 1 \le 7$$

 $-3x \le 6$
 $x \ge -2$

The boundary line is the vertical line x = -2.

The boundary line is a solid line.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.

Graph each of the following.

8.
$$-3x + 1 \le 7$$

 $-3x \le 6$
 $x \ge -2$

The boundary line is the vertical line x = -2.

The boundary line is a solid line.

Shade to the right of the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

Graph each of the following.

8.
$$-3x + 1 \le 7$$

 $-3x \le 6$
 $x \ge -2$

The boundary line is the vertical line x = -2.

The boundary line is a solid line.

Shade to the right of the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

Graph each of the following.

8.
$$-3x + 1 \le 7$$

 $-3x \le 6$
 $x \ge -2$

The boundary line is the vertical line x = -2.

The boundary line is a solid line.

Shade to the right of the line.

Step 1: Solve for y. (If that is not possible, then solve for x.)
Step 2: Graph several points on the boundary line.
Step 3: Draw the boundary line.
Step 4: Shade the appropriate side of the line.

Graph each of the following.

Step 1: Solve for y. (If that is not possible, then solve for x.)

Step 2: Graph several points on the boundary line.

Step 3: Draw the boundary line.