Algebra I Lesson \#2 Unit 7

 Class Worksheet \#2 For Worksheets \#2 - \#5
Algebra 1 Unit 7 The Equation of a Line

Algebra 1 Unit 7 The Equation of a Line
 The Point-Slope Equation

Algebra 1 Unit 7 The Equation of a Line The Point-Slope Equation

Consider an oblique line

Algebra 1 Unit 7 The Equation of a Line The Point-Slope Equation

Consider an oblique line with slope m

Algebra 1 Unit 7 The Equation of a Line
 The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points,

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as $\underline{\mathbf{y}-\mathbf{y}_{1}}$

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathrm{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as $\frac{\mathbf{y}-\mathbf{y}_{\mathbf{1}}}{\overline{\mathbf{x}}-\mathbf{x}_{1}}$

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathrm{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

Using these points, the slope of the line can be represented
 as $\frac{\mathbf{y}-\mathbf{y}_{\mathbf{1}}}{\mathbf{x}-\mathbf{x}_{1}}=\mathbf{m}$

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

$$
\frac{\mathbf{y}-\mathbf{y}_{1}}{\mathrm{x}-\mathbf{x}_{1}}=\mathbf{m}
$$

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

$$
\frac{\mathbf{y}-\mathbf{y}_{1}}{\mathbf{x}-\mathbf{x}_{1}}=\mathbf{m}
$$

Multiply both sides of this equation by $\mathbf{x}-\mathbf{x}_{1}$.

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

$$
\frac{\mathbf{y}-\mathbf{y}_{1}}{\mathbf{x}-\mathbf{x}_{1}}=\mathbf{m}
$$

$$
y-y_{1}
$$

Multiply both sides of this equation by $\mathbf{x}-\mathbf{x}_{1}$.

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

$$
\frac{\mathbf{y}-\mathbf{y}_{1}}{\mathbf{x}-\mathbf{x}_{1}}=\mathbf{m}
$$

$$
y-y_{1}=
$$

Multiply both sides of this equation by $\mathbf{x}-\mathbf{x}_{1}$.

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

$$
\begin{gathered}
\frac{\mathbf{y}-\mathbf{y}_{1}}{\mathbf{x}-\mathbf{x}_{1}}=\mathbf{m} \\
\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}
\end{gathered}
$$

Multiply both sides of this equation by $\mathbf{x}-\mathbf{x}_{1}$.

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

$$
\begin{gathered}
\frac{\mathbf{y}-\mathbf{y}_{1}}{\mathbf{x}-\mathbf{x}_{1}}=\mathbf{m} \\
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
\end{gathered}
$$

Multiply both sides of this equation by $\mathbf{x}-\mathbf{x}_{1}$.

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathbf{y}_{1}$).

Let the point (\mathbf{x}, \mathbf{y}) represent any other point on the line.

$$
\begin{gathered}
\frac{\mathbf{y}-\mathbf{y}_{1}}{\bar{x}-\mathbf{x}_{1}}=\mathbf{m} \\
\mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
\end{gathered}
$$

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathrm{y}_{1}$).

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(x-x_{1}\right)
$$

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathrm{y}_{1}$).

$$
\mathbf{y}-\mathrm{y}_{1}=\mathbf{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

This is called the point-slope equation.

Algebra 1 Unit 7 The Equation of a Line

The Point-Slope Equation

Consider an oblique line with slope \mathbf{m} through the point ($\mathbf{x}_{1}, \mathrm{y}_{1}$).

$$
\mathbf{y}-\mathrm{y}_{1}=\mathbf{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

This is called the point-slope equation.

This lesson is designed to show how this important equation is used.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=\mathbf{3}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=\mathbf{3}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=3 \quad b=
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b} \quad$ This point is not on

$$
\mathrm{m}=3 \quad \mathrm{~b}=? \quad \text { the } \mathrm{y} \text {-axis. }
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=3 \quad b=?
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-6=3(x-4) \\
y-6=3 x-12 \\
y=3 x-6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& \frac{y=3 x-6}{f}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6 \\
& \mid
\end{aligned}
$$

This line clearly has a slope of 3 .

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& \frac{y=3 x-6}{f}
\end{aligned}
$$

This line clearly has a slope of 3 .

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4$,

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4$,

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $\mathbf{x}=4, \mathbf{y}=$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4, y=(3)(4)-6$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4, y=(3)(4)-6$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4, y=(3)(4)-6=$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4, y=(3)(4)-6=12-6$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4, y=(3)(4)-6=12-6=6$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4, y=(3)(4)-6=12-6=6$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

This line clearly has a slope of 3 .
Also, if $x=4, y=(3)(4)-6=12-6=6!!$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.
The \mathbf{y}-intercept is clearly -6 !!

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

The solution can also be verified graphically.
The \mathbf{y}-intercept is clearly -6 !!

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

1. The line with slope 3 through the point $(4,6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-6=3(x-4) \\
& y-6=3 x-12 \\
& y=3 x-6
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope -2 through the point $(-1,3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope -2 through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{3}=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope -2 through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope -2 through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=-2(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=-2(x+1)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=-2(x+1) \\
& y-3=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=-2(x+1) \\
& y-3=-2 x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=-2(x+1) \\
& y-3=-2 x-2
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-2(x--1) \\
y-3=-2(x+1) \\
y-3=-2 x-2 \\
y=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=-2(x+1) \\
& y-3=-2 x-2 \\
& y=-2 x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-2(x--1) \\
y-3=-2(x+1) \\
y-3=-2 x-2 \\
y=-2 x+1
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=-2(x+1) \\
& y-3=-2 x-2 \\
& y=-2 x+1
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
2. The line with slope $-\mathbf{2}$ through the point $(-1,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-2(x--1) \\
& y-3=-2(x+1) \\
& y-3=-2 x-2 \\
& y=-2 x+1
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathbf{m}=\mathbf{1} / \mathbf{2}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=\mathbf{1} / \mathbf{2}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{- 3}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=\frac{1}{2}(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=\mathbf{m}\left(x-x_{1}\right) \\
& y--3=\frac{1}{2}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=\frac{1}{2}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=\frac{1}{2}(x-2)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=\frac{1}{2}(x-2)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=1 / 2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=\frac{1}{2}(x-2) \\
& y+3
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=1 / 2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{1}{2}(x-2) \\
y+3=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=1 / 2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{1}{2}(x-2) \\
y+3=\frac{1}{2} x
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=1 / 2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{1}{2}(x-2) \\
y+3=\frac{1}{2} x-1
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=1 / 2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{1}{2}(x-2) \\
y+3=\frac{1}{2} x-1 \\
y=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{1}{2}(x-2) \\
y+3=\frac{1}{2} x-1 \\
y=\frac{1}{2} x
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{1}{2}(x-2) \\
y+3=\frac{1}{2} x-1 \\
y=\frac{1}{2} x-4
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=1 / 2 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{1}{2}(x-2) \\
y+3=\frac{1}{2} x-1 \\
y=\frac{1}{2} x-4
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
3. The line with slope $1 / 2$ through the point $(2,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=1 / 2 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=\frac{1}{2}(x-2) \\
y+3=\frac{1}{2} x-1 \\
y=\frac{1}{2} x-4
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{0}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{0}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{0}=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=\mathbf{m}\left(x-x_{1}\right) \\
\mathbf{y}-0=\frac{-2}{3}(x
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
\mathbf{y}-\mathbf{0}=\frac{-2}{3}(\mathbf{x}-
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=\mathbf{m}\left(x-x_{1}\right) \\
\mathbf{y}-0=\frac{-2}{3}(x-
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3)
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3)
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(x
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(x+
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(x+3)
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(x+3) \\
y=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(x+3) \\
y=\frac{-2}{3} x
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(x+3) \\
y=\frac{-2}{3} x-
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(x+3) \\
y=\frac{-2}{3} x-2
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x--3) \\
y=\frac{-2}{3}(x+3) \\
y=\frac{-2}{3} x-2
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
4. The line with slope $-2 / 3$ through the point $(-3,0)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
m=-2 / 3 \quad b=?
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-0=\frac{-2}{3}(x-3) \\
y=\frac{-2}{3}(x+3) \\
y=\frac{-2}{3} x-2
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point ($-6,2$).

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point (-6, 2).

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point (-6, 2).

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point (-6, 2).

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point (-6, 2).

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point ($-6,2$).

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point ($-6,2$).

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{2}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{2}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
\mathbf{y}-\mathbf{y}_{1} & =\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
\mathbf{y}-\mathbf{2} & =
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =\frac{3}{4}(x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =\frac{3}{4}(x+6)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point ($-6,2$).

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x-6) \\
y-2 & =\frac{3}{4}(x+6) \\
y-2 & =
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point ($-6,2$).

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =\frac{3}{4}(x+6) \\
y-2 & =\frac{3}{4} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point ($-6,2$).

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x-6) \\
y-2 & =\frac{3}{4}(x+6) \\
y-2 & =\frac{3}{4} x+\frac{9}{2}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =\frac{3}{4}(x+6) \\
y-2 & =\frac{3}{4} x+\frac{9}{2} \\
y & =
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =\frac{3}{4}(x+6) \\
y-2 & =\frac{3}{4} x+\frac{9}{2} \\
y & =\frac{3}{4} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =\frac{3}{4}(x+6) \\
y-2 & =\frac{3}{4} x+\frac{9}{2} \\
y & =\frac{3}{4} x+\frac{13}{2}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =\frac{3}{4}(x+6) \\
y-2 & =\frac{3}{4} x+\frac{9}{2} \\
y & =\frac{3}{4} x+\frac{13}{2}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
5. The line with slope $3 / 4$ through the point $(-6,2)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=3 / 4 \quad \mathrm{~b}=?
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{3}{4}(x--6) \\
y-2 & =\frac{3}{4}(x+6) \\
y-2 & =\frac{3}{4} x+\frac{9}{2} \\
y & =\frac{3}{4} x+\frac{13}{2}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is not vertical. This line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is not vertical. This line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is not vertical. This line is not horizontal.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=\text { ? }
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{array}{r}
\mathrm{m}=? \\
\mathrm{~m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{array}{r}
\mathrm{m}=? \\
\mathrm{~m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{array}{r}
\mathbf{m}=? \\
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-\frac{-3}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-3-
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
\mathrm{m}=? \\
\mathrm{~m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\underline{-3-3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
\mathrm{m}=? \\
\mathrm{~m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathbf{x}_{2}-\mathrm{x}_{1}}=\frac{-3-3}{3-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
\mathrm{m}=? \\
\mathrm{~m}=\frac{\mathbf{y}_{2}-\mathrm{y}_{1}}{\mathbf{x}_{2}-\mathrm{x}_{1}}=\frac{-3-3}{3-1}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\underline{-6}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$. Neither point is on the y-axis.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(x-x_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{3}=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

What if we had used the 'second' point?
Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

What if we had used the 'second' point?
Use the point-slope equation.
Point: (3, -3)

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

What if we had used the 'second' point?
Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3
\end{aligned}
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=
\end{aligned}
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=-3(
\end{aligned}
$$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=-3(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=-3(x-3)
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=-3(x-3) \\
& y
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=-3(x-3) \\
& y+3
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=-3(x-3) \\
& y+3=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=-3(x-3) \\
& y+3=-3 x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=-3(x-3) \\
& y+3=-3 x+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=-3(x-3) \\
y+3=-3 x+9
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=-3(x-3) \\
y+3=-3 x+9 \\
y=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=-3(x-3) \\
y+3=-3 x+9 \\
y=-3 x
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=-3(x-3) \\
y+3=-3 x+9 \\
y=-3 x+
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=-3(x-3) \\
y+3=-3 x+9 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.
What if we had used the 'second' point?

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3 \\
& y=-3 x+6
\end{aligned}
$$

Point: (3, -3) slope: -3

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y--3=-3(x-3)
$$

$$
y=-3 x+6
$$

$$
y+3=-3 x+9
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

Note that since we had 2 different points,

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y--3=-3(x-3)
$$

$$
y+3=-3 x+9
$$

$$
y=-3 x+6
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

Note that since we had 2 different points, we could get 2 different point-slope equations.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3 \\
& y=-3 x+6
\end{aligned}
$$

What if we had used the 'second' point?

$$
\text { Point: }(3,-3) \quad \text { slope: }-3
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y--3=-3(x-3)
$$

$$
y+3=-3 x+9
$$

$$
y=-3 x+6
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

Note that since we had 2 different points, we could get 2 different point-slope equations. However, when we solved for y,

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3 \\
& y=-3 x+6
\end{aligned}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y--3=-3(x-3)
$$

$$
y+3=-3 x+9
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

Note that since we had 2 different points, we could get 2 different point-slope equations. However, when we solved for y, we got a unique slope-intercept equation.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3 \\
& y=-3 x+6
\end{aligned}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y--3=-3(x-3)
$$

$$
y+3=-3 x+9
$$

$$
y=-3 x+6
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

Note that since we had 2 different points, we could get 2 different point-slope equations. However, when we solved for y, we got a unique slope-intercept equation. This is because every oblique line has a unique slope

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3 \\
& y=-3 x+6
\end{aligned}
$$

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y--3=-3(x-3)
$$

$$
y+3=-3 x+9
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Note that since we had 2 different points, we could get 2 different point-slope equations. However, when we solved for y, we got a unique slope-intercept equation. This is because every oblique line has a unique slope and a unique y-intercept.

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3 \\
& y=-3 x+6
\end{aligned}
$$

$$
y+3=-3 x+9
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Note that since we had 2 different points, we could get 2 different point-slope equations. However, when we solved for y, we got a unique slope-intercept equation. This is because every oblique line has a unique slope and a unique y-intercept. This is why the slope-intercept equation

What if we had used the 'second' point?
Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3
\end{aligned}
$$

Point: (3, -3) slope: -3

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=-3(x-3)
\end{aligned}
$$

$$
y+3=-3 x+9
$$

$$
y=-3 x+6 \longleftrightarrow y=-3 x+6
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-3(x-1) \\
& y-3=-3 x+3 \\
& y=-3 x+6
\end{aligned}
$$

Note that since we had 2 different points, we could get 2 different point-slope equations. However, when we solved for y, we got a unique slope-intercept equation. This is because every oblique line has a unique slope and a unique y-intercept. This is why the slope-intercept equation is preferred for an oblique line.

What if we had used the 'second' point?
Point: (3, -3) slope: -3

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--3=-3(x-3) \\
y+3=-3 x+9 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
6. The line through $(1,3)$ and $(3,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=-3 \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-3}{3-1}=\frac{-6}{2}=-3
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-3(x-1) \\
y-3=-3 x+3 \\
y=-3 x+6
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

> The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

The line is not vertical. The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

The line is not vertical. The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

The line is not vertical. The line is not horizontal.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=\text { ? }
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
\mathbf{m}=? \\
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{\mathbf{2}}-\mathbf{x}_{1}}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{3}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{3}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
\mathbf{m}=? \\
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{\mathbf{1}}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{\mathbf{3}-}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{3-}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\underline{3--1}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{3--1}{4-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{3--1}{4-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\underline{4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$. Neither point is on the y-axis.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

Actually, either point can be used.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathrm{x}_{1}\right) \\
& \mathbf{y}-\mathbf{- 1}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathrm{x}_{1}\right) \\
& \mathrm{y}-\mathbf{- 1}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{- 1}=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=\mathbf{m}\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=\mathbf{m}\left(x-x_{1}\right) \\
& \mathbf{y}-\mathbf{- 1}=\frac{1}{2}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--1=\frac{1}{2}(x--4)
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--1=\frac{1}{2}(x--4)
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x--4) \\
& y
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x--4) \\
& y+1
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x--4) \\
& y+1=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x--4) \\
& y+1=\frac{1}{2}(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x--4) \\
& y+1=\frac{1}{2}(x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x--4) \\
& y+1=\frac{1}{2}(x+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x--4) \\
& y+1=\frac{1}{2}(x+4)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=\mathbf{m}\left(x-x_{1}\right) \\
& y--1=\frac{1}{2}(x--4) \\
& y+1=\frac{1}{2}(x+4) \\
& y+1=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =\mathbf{m}\left(x-x_{1}\right) \\
y--1 & =\frac{1}{2}(x--4) \\
y+1 & =\frac{1}{2}(x+4) \\
y+1 & =\frac{1}{2} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =\mathbf{m}\left(x-x_{1}\right) \\
y--1 & =\frac{1}{2}(x--4) \\
y+1 & =\frac{1}{2}(x+4) \\
y+1 & =\frac{1}{2} x+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--1 & =\frac{1}{2}(x--4) \\
y+1 & =\frac{1}{2}(x+4) \\
y+1 & =\frac{1}{2} x+2
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--1 & =\frac{1}{2}(x--4) \\
y+1 & =\frac{1}{2}(x+4) \\
y+1 & =\frac{1}{2} x+2 \\
y & =
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--1=\frac{1}{2}(x--4) \\
y+1=\frac{1}{2}(x+4) \\
y+1=\frac{1}{2} x+2 \\
y=\frac{1}{2} x
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=\mathbf{m}\left(x-x_{1}\right) \\
y--1=\frac{1}{2}(x--4) \\
y+1=\frac{1}{2}(x+4) \\
y+1=\frac{1}{2} x+2 \\
y=\frac{1}{2} x+
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--1=\frac{1}{2}(x--4) \\
y+1=\frac{1}{2}(x+4) \\
y+1=\frac{1}{2} x+2 \\
y=\frac{1}{2} x+1
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{3--1}{4-4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--1=\frac{1}{2}(x--4) \\
y+1=\frac{1}{2}(x+4) \\
y+1=\frac{1}{2} x+2 \\
y=\frac{1}{2} x+1
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
7. The line through $(-4,-1)$ and $(4,3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{1}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{4--4}=\frac{4}{8}=\frac{1}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--1=\frac{1}{2}(x--4) \\
y+1=\frac{1}{2}(x+4) \\
y+1=\frac{1}{2} x+2 \\
y=\frac{1}{2} x+1
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

The line is not vertical. The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

The line is not vertical. The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

The line is not vertical. The line is not horizontal. This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=\text { ? }
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
\mathbf{m}=? \\
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\underline{4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\underline{4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
\mathbf{m}=? \\
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{4-}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\underline{4-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{4--2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{4--2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{4--2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.

8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\underline{6}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$. Neither point is on the y-axis.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{- 2}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{- 2}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-\mathbf{- 2}=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(x-6)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(x-6)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(x-6)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(x-6) \\
& y+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(x-6) \\
& y+2
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--2=\frac{-2}{3}(x-6) \\
& y+2=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--2 & =\frac{-2}{3}(x-6) \\
y+2 & =\frac{-2}{3} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--2 & =\frac{-2}{3}(x-6) \\
y+2 & =\frac{-2}{3} x+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--2 & =\frac{-2}{3}(x-6) \\
y+2 & =\frac{-2}{3} x+4
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--2 & =\frac{-2}{3}(x-6) \\
y+2 & =\frac{-2}{3} x+4 \\
y & =
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--2 & =\frac{-2}{3}(x-6) \\
y+2 & =\frac{-2}{3} x+4 \\
y & =\frac{-2}{3} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--2 & =\frac{-2}{3}(x-6) \\
y+2 & =\frac{-2}{3} x+4 \\
y & =\frac{-2}{3} x+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--2=\frac{-2}{3}(x-6) \\
y+2=\frac{-2}{3} x+4 \\
y=\frac{-2}{3} x+2
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--2=\frac{-2}{3}(x-6) \\
y+2=\frac{-2}{3} x+4 \\
y=\frac{-2}{3} x+2
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
8. The line through $(6,-2)$ and $(-3,4)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-2}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4--2}{-3-6}=\frac{6}{-9}=\frac{-2}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y--2=\frac{-2}{3}(x-6) \\
y+2=\frac{-2}{3} x+4 \\
y=\frac{-2}{3} x+2
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

The line is not vertical.
The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

The line is not vertical.
The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$. This line is oblique.

The line is not vertical.
The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=\text { ? }
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
\mathbf{m}=? \\
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
\mathbf{m}=? \\
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=-\frac{-6}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=-\frac{-6}{}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-6- \\
\hline
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-6- \\
\hline
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\underline{-6-4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{-6-4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{-6-4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\frac{-6-4}{-2-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\underline{-10}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$. Neither point is on the y-axis.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-4=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{\mathbf{5}}{\mathbf{2}}(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{5}{2}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{5}{2}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{5}{2}(x-2)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{5}{2}(x-2)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{\mathbf{5}}{\mathbf{2}}(x-2) \\
& y-4=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{5}{2}(x-2) \\
& y-4=\frac{5}{2} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{5}{2}(x-2) \\
& y-4=\frac{5}{2} x-5
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-4 & =\frac{5}{2}(x-2) \\
y-4 & =\frac{5}{2} x-5 \\
y & =
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-4 & =\frac{5}{2}(x-2) \\
y-4 & =\frac{5}{2} x-5 \\
y & =\frac{5}{2} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-4=\frac{5}{2}(x-2) \\
y-4=\frac{5}{2} x-5 \\
y=\frac{5}{2} x-1
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-4=\frac{5}{2}(x-2) \\
y-4=\frac{5}{2} x-5 \\
y=\frac{5}{2} x-1
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
9. The line through $(2,4)$ and $(-2,-6)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{5}{2} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-4}{-2-2}=\frac{-10}{-4}=\frac{5}{2}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-4=\frac{5}{2}(x-2) \\
y-4=\frac{5}{2} x-5 \\
y=\frac{5}{2} x-1
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$. The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$. The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$. The line is not vertical.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$. The line is not vertical. The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$. The line is not vertical. The line is not horizontal.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$. The line is not vertical. The line is not horizontal. This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\mathrm{m}=\text { ? }
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
m=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{array}{r}
m=? \\
\mathbf{m}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
\end{array}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=-\underline{-3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\underline{-3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\underline{-3-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\underline{-3-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{-3-5}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{-3-5}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{-3-5}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{-3-5}{4-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{-3-5}{4-}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{-3-5}{4--2}=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\underline{-8}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$. Neither point is on the y-axis.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{\mathbf{1}}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& \mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \mathbf{y}-5=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=-\frac{4}{3}(x--2)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x--2)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x--2) \\
& y-5=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x--2) \\
& y-5=\frac{-4}{3}(x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x--2) \\
& y-5=\frac{-4}{3}(x+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x-2) \\
& y-5=\frac{-4}{3}(x+2)
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x--2) \\
& y-5=\frac{-4}{3}(x+2) \\
& y-5=
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x-2) \\
& y-5=\frac{-4}{3}(x+2) \\
& y-5=\frac{-4}{3} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x--2) \\
& y-5=\frac{-4}{3}(x+2) \\
& y-5=\frac{-4}{3} x-
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{-4}{3}(x--2) \\
& y-5=\frac{-4}{3}(x+2) \\
& y-5=\frac{-4}{3} x-\frac{8}{3}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-5=\frac{-4}{3}(x-2) \\
y-5=\frac{-4}{3}(x+2) \\
y-5=\frac{-4}{3} x-\frac{8}{3} \\
y=
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =\frac{-4}{3}(x--2) \\
y-5 & =\frac{-4}{3}(x+2) \\
y-5 & =\frac{-4}{3} x-\frac{8}{3} \\
y & =\frac{-4}{3} x
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =\frac{-4}{3}(x--2) \\
y-5 & =\frac{-4}{3}(x+2) \\
y-5 & =\frac{-4}{3} x-\frac{8}{3} \\
y & =\frac{-4}{3} x+
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =\frac{-4}{3}(x--2) \\
y-5 & =\frac{-4}{3}(x+2) \\
y-5 & =\frac{-4}{3} x-\frac{8}{3} \\
y & =\frac{-4}{3} x+\frac{7}{3}
\end{aligned}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\longmapsto \mathrm{y}=\mathrm{mx}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-5=\frac{-4}{3}(x--2) \\
y-5=\frac{-4}{3}(x+2) \\
y-5=\frac{-4}{3} x-\frac{8}{3} \\
y=\frac{-4}{3} x+\frac{7}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\begin{gathered}
m=\frac{-4}{3} \quad b=? \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{4--2}=\frac{-8}{6}=\frac{-4}{3}
\end{gathered}
$$

Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-5=\frac{-4}{3}(x--2) \\
y-5=\frac{-4}{3}(x+2) \\
y-5=\frac{-4}{3} x-\frac{8}{3} \\
y=\frac{-4}{3} x+\frac{7}{3}
\end{gathered}
$$

Algebra I Class Worksheet \#2 Unit 7

Write the equation of each line described. If the line is oblique, then write the slope-intercept equation.
10. The line through $(-2,5)$ and $(4,-3)$.

This line is oblique. $\square \mathrm{y}=\mathbf{m x}+\mathrm{b}$

$$
\mathrm{m}=\frac{-4}{3} \quad \mathrm{~b}=\text { ? }
$$

Good luck on your homework !!
Use the point-slope equation.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-5=\frac{-4}{3}(x--2) \\
y-5=\frac{-4}{3}(x+2) \\
y-5=\frac{-4}{3} x-\frac{8}{3} \\
y=\frac{-4}{3} x+\frac{7}{3}
\end{gathered}
$$

