Algebra I Lesson #1 Unit 7 Class Worksheet #1 For Worksheets #1 - #5

There are three types of lines to consider.

There are three types of lines to consider.

Horizontal

There are three types of lines to consider.

There are three types of lines to consider.

Horizontal — The x-axis or any line parallel to the x-axis is a horizontal line.

Vertical

There are three types of lines to consider.

Horizontal — The x-axis or any line parallel to the x-axis is a horizontal line.

Vertical — The y-axis or any line parallel to the y-axis is a vertical line.

There are three types of lines to consider.

Horizontal — The x-axis or any line parallel to the x-axis is a horizontal line.

Vertical — The y-axis or any line parallel to the y-axis is a vertical line.

Oblique

There are three types of lines to consider.

Horizontal The x-axis or any line parallel to the x-axis is a horizontal line.

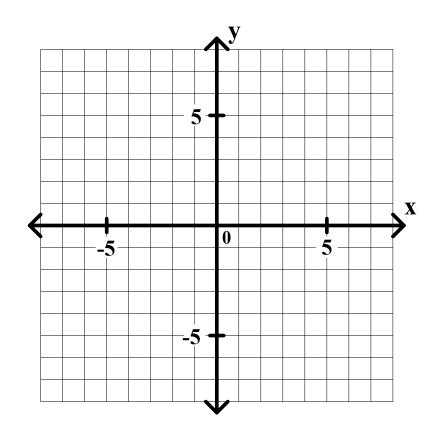
Vertical — The y-axis or any line parallel to the y-axis is a vertical line.

Oblique Any line that is neither horizontal nor vertical is an oblique line.

There are three types of lines to consider.

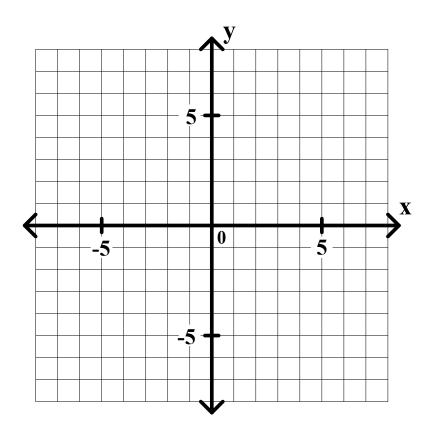
Horizontal The x-axis or any line parallel to the x-axis is a horizontal line.

Vertical The y-axis or any line parallel to the y-axis is a vertical line.

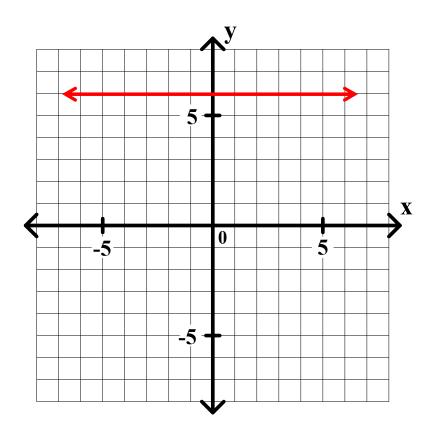

Oblique Any line that is neither horizontal nor vertical is an oblique line.

You will be responsible for <u>understanding</u> how to find the equation for each type of line.

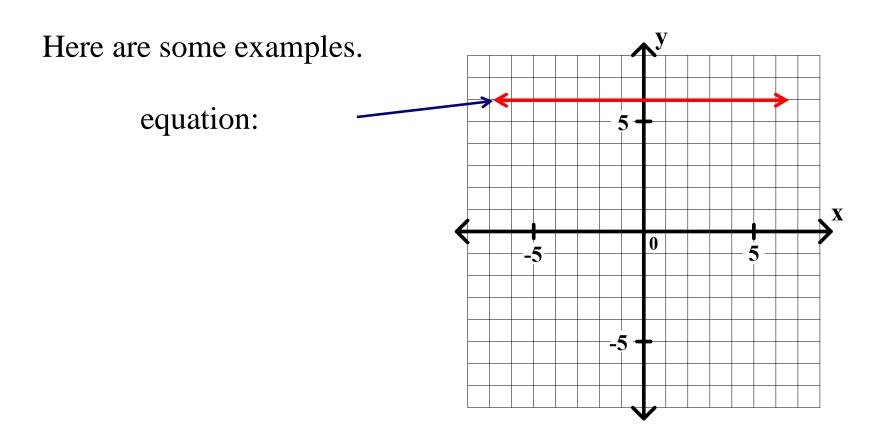
Algebra I Unit 7 The Equation of a Line Horizontal Lines


Horizontal Lines

Horizontal Lines


Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.



Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

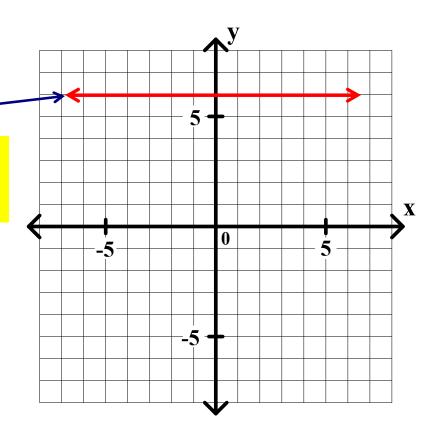
Horizontal Lines

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.

equation: y = 6 y = 6 y = 6

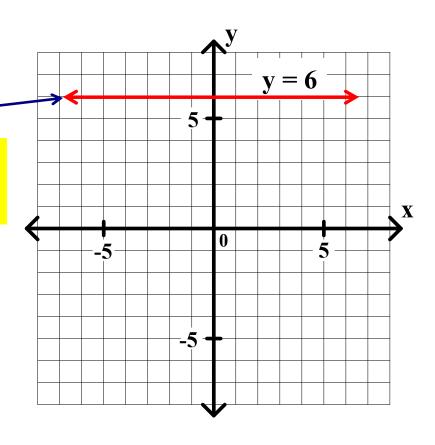

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.

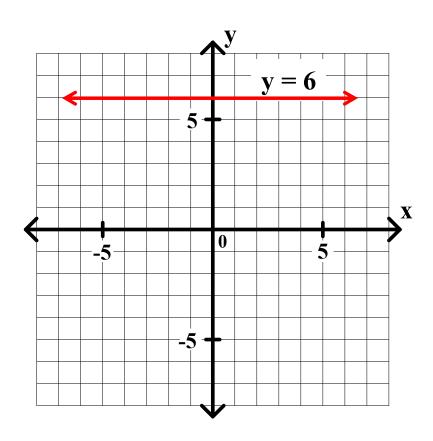
equation: y = 6

Every point on this line has a y-coordinate equal to 6!!!

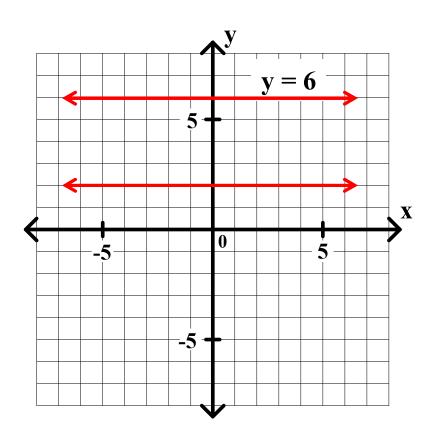

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.


equation: y = 6

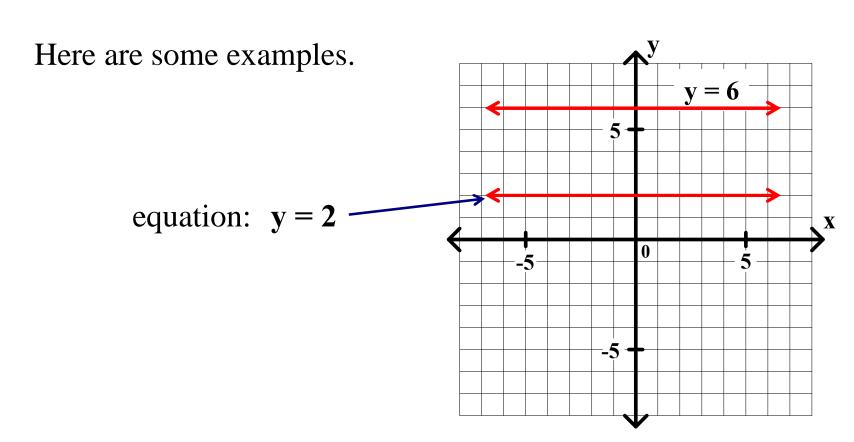
Every point on this line has a y-coordinate equal to 6!!!


Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

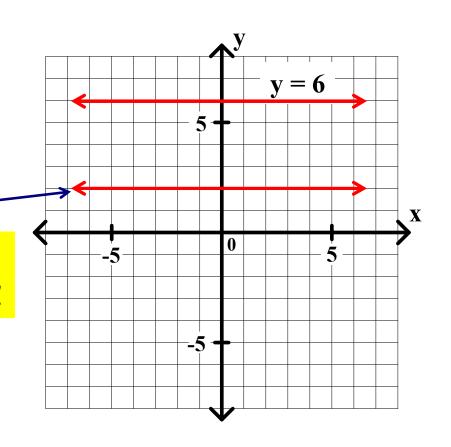

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.

equation: y y = 6 -5 0 -5

Horizontal Lines

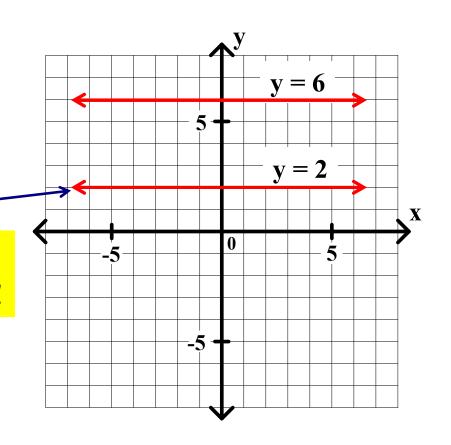

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.

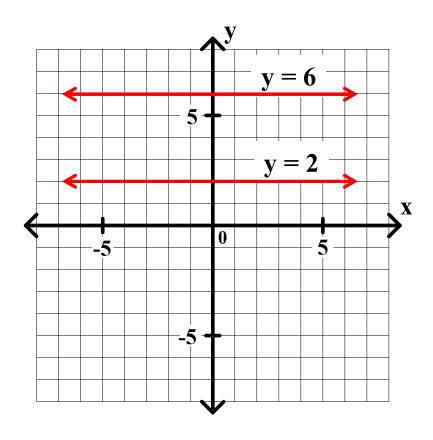
equation: y = 2

Every point on this line has a y-coordinate equal to 2!!!

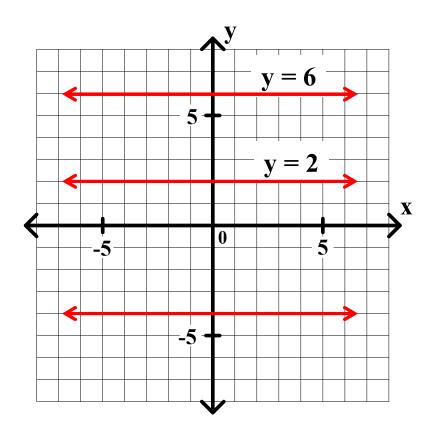

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

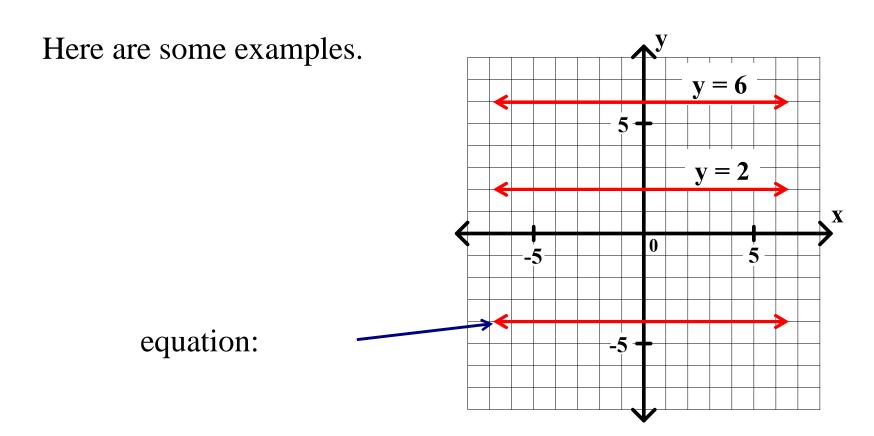
Here are some examples.


equation: y = 2

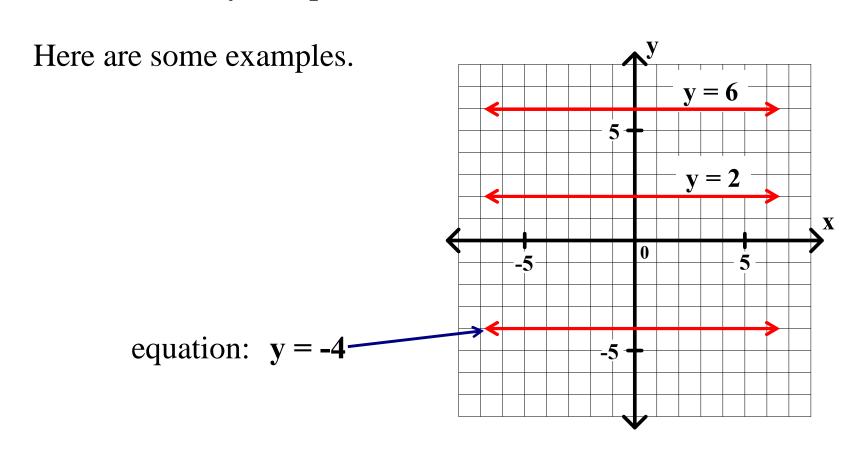
Every point on this line has a y-coordinate equal to 2!!!


Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.



Horizontal Lines


The x-axis or any line parallel to the x-axis is a horizontal line.

Horizontal Lines

Horizontal Lines

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.

y = 6 y = 2 -5 -5

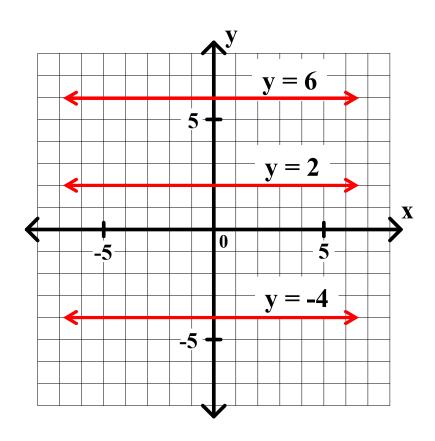
equation: y = -4

Every point on this line has a y-coordinate equal to -4!!!

Horizontal Lines

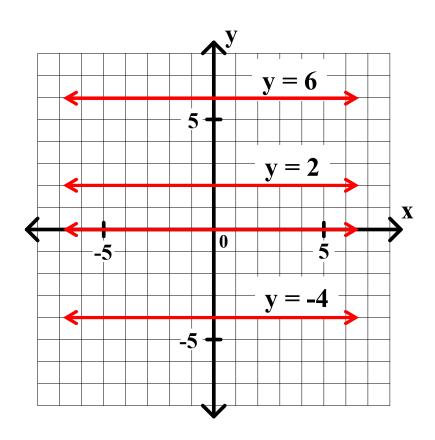
The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.

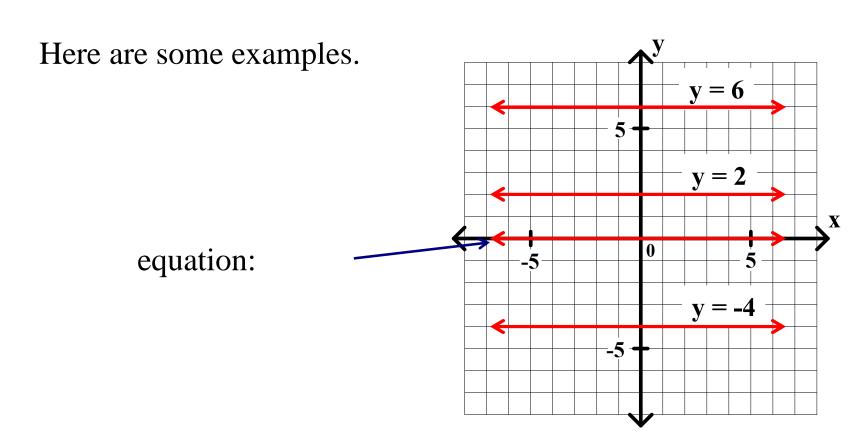

y = 6 y = 2 y = -4

equation: y = -4

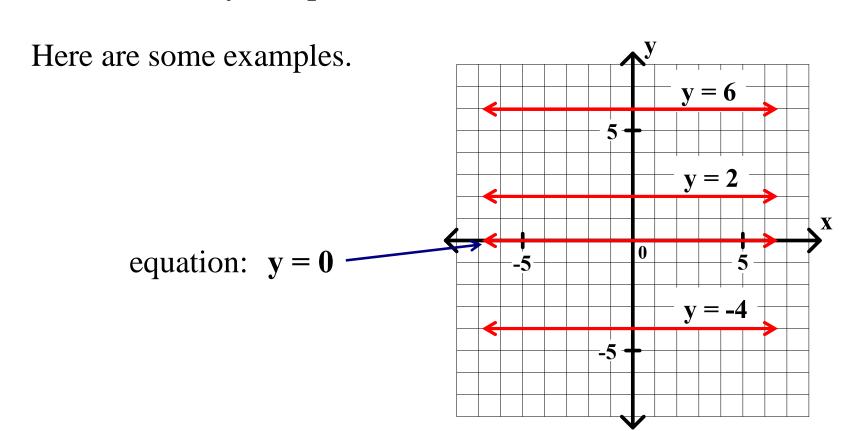
Every point on this line has a y-coordinate equal to -4!!!


Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

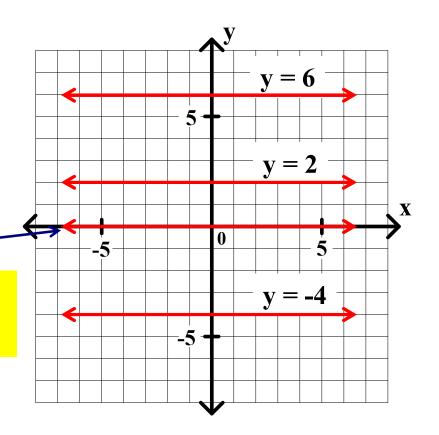


Horizontal Lines


The x-axis or any line parallel to the x-axis is a horizontal line.

Horizontal Lines

Horizontal Lines

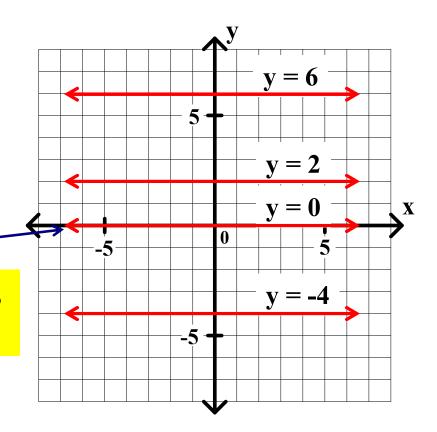

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.

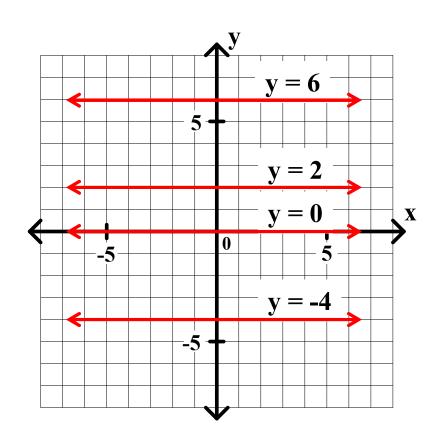
equation: y = 0

Every point on the x-axis has a y-coordinate equal to 0 !!!


Horizontal Lines

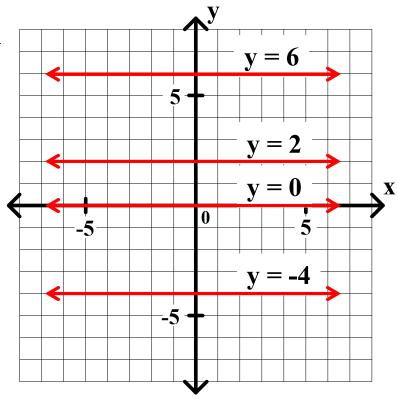
The x-axis or any line parallel to the x-axis is a horizontal line.

Here are some examples.


equation: y = 0

Every point on the x-axis has a y-coordinate equal to 0!!!

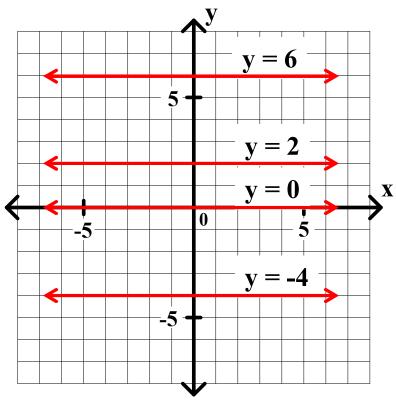
Horizontal Lines


The x-axis or any line parallel to the x-axis is a horizontal line.

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Every horizontal line has an equation with the form

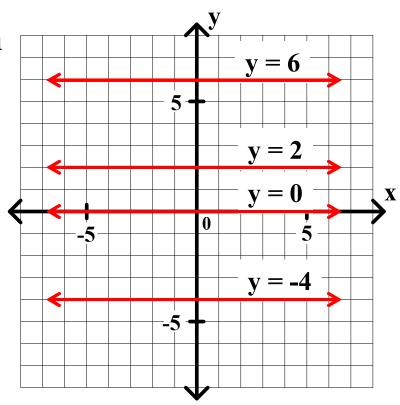


Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.

Every horizontal line has an equation with the form

y = k.


Horizontal Lines

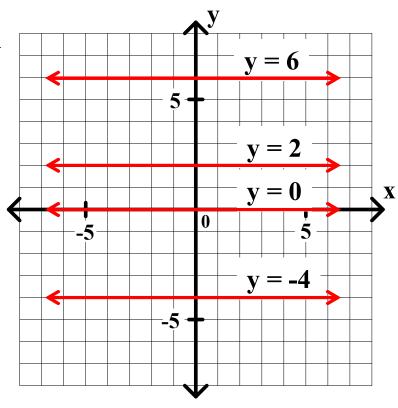
The x-axis or any line parallel to the x-axis is a horizontal line.

Every horizontal line has an equation with the form

$$y = k$$
.

The Slope of a Horizontal Line

Horizontal Lines


The x-axis or any line parallel to the x-axis is a horizontal line.

Every horizontal line has an equation with the form

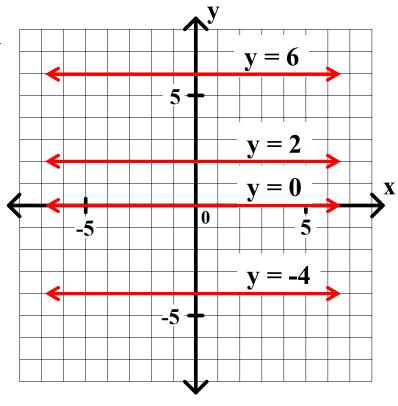
$$y = k$$
.

The Slope of a Horizontal Line

$$Slope = \frac{Rise}{Run}$$

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.


Every horizontal line has an equation with the form

$$y = k$$
.

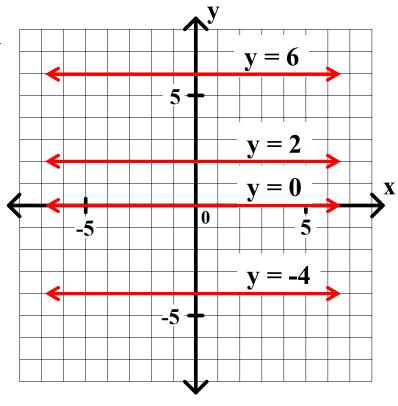
The Slope of a Horizontal Line

$$Slope = \frac{Rise}{Run}$$

The **rise** is 0!!

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.


Every horizontal line has an equation with the form

$$y = k$$
.

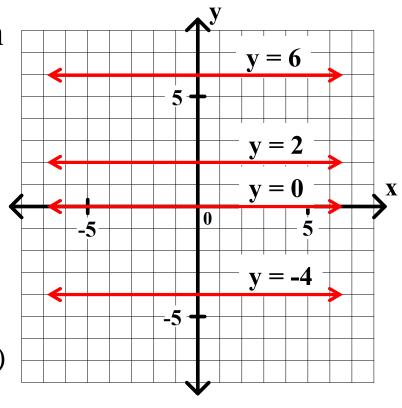
The Slope of a Horizontal Line

Slope =
$$\frac{Rise}{Run} = \frac{0}{Run}$$

The **rise** is 0!!

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.


Every horizontal line has an equation with the form

$$y = k$$
.

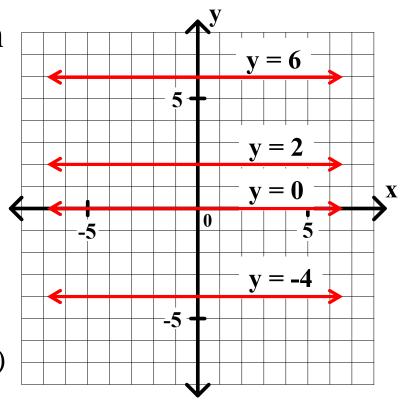
The Slope of a Horizontal Line

Slope =
$$\frac{Rise}{Run} = \frac{0}{Run}$$

The <u>rise</u> is 0!! (The run is not 0.)

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.


Every horizontal line has an equation with the form

$$y = k$$
.

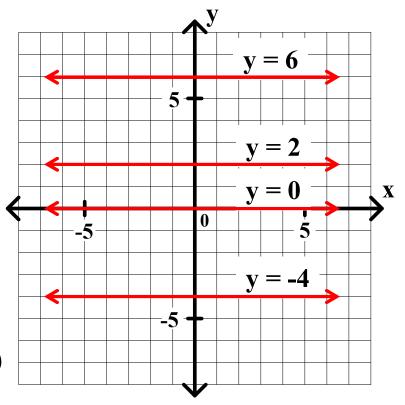
The Slope of a Horizontal Line

Slope =
$$\frac{Rise}{Run} = \frac{0}{Run} = \mathbf{0}$$

The <u>rise</u> is 0!! (The run is not 0.)

Horizontal Lines

The x-axis or any line parallel to the x-axis is a horizontal line.


Every horizontal line has an equation with the form

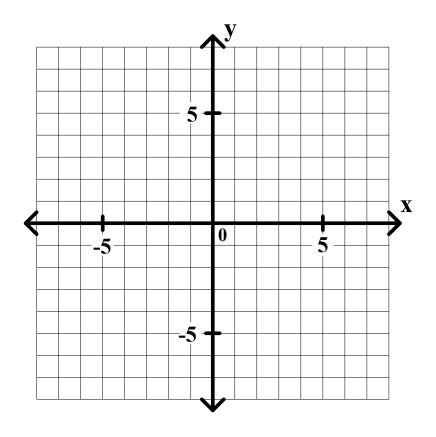
$$y = k$$
.

The Slope of a Horizontal Line

Slope =
$$\frac{Rise}{Run} = \frac{0}{Run} = \mathbf{0}$$

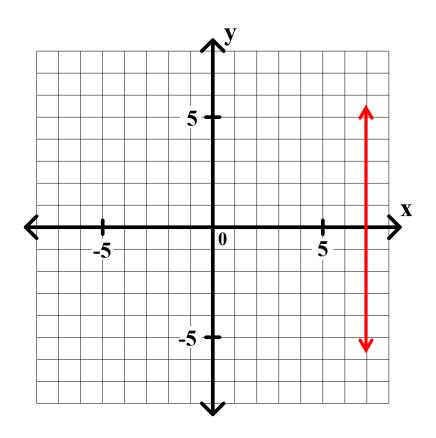
The <u>rise</u> is 0!! (The run is not 0.)

The slope of every horizontal line is 0.

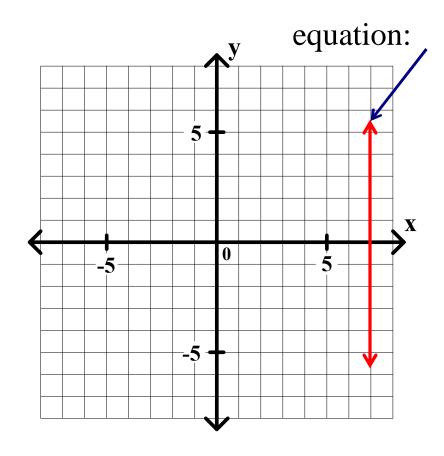

Algebra I Unit 7 The Equation of a Line Vertical Lines

Vertical Lines

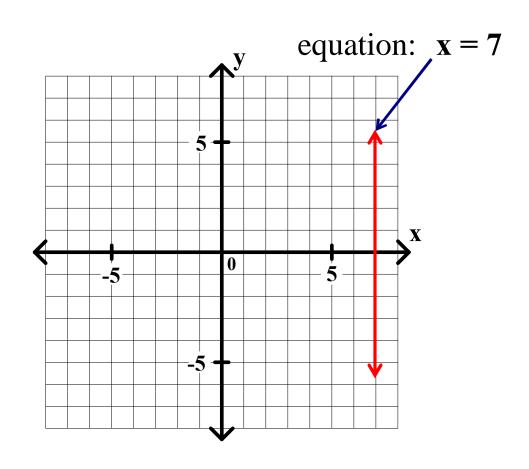
The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

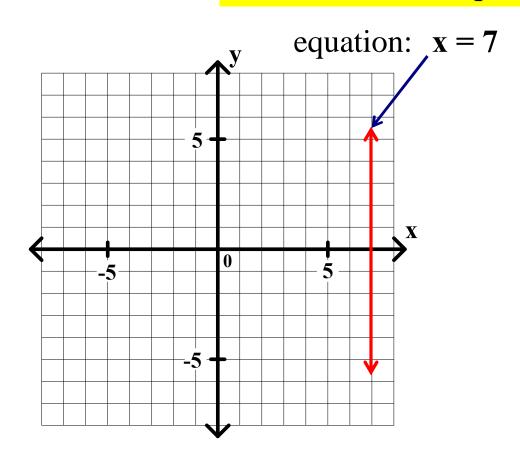
The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

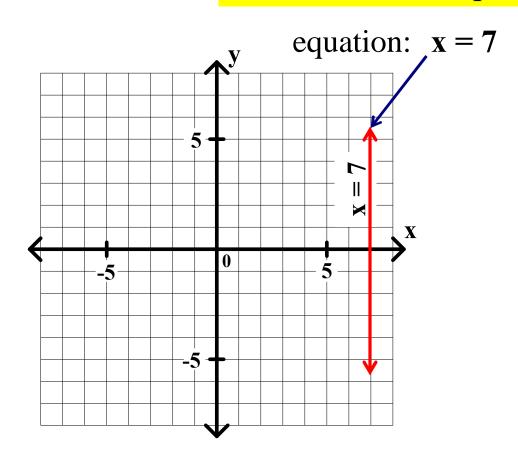


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

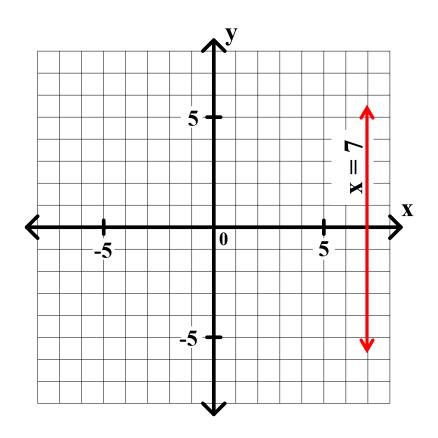
Here are some examples.

Every point on this line has an x-coordinate equal to 7!!!

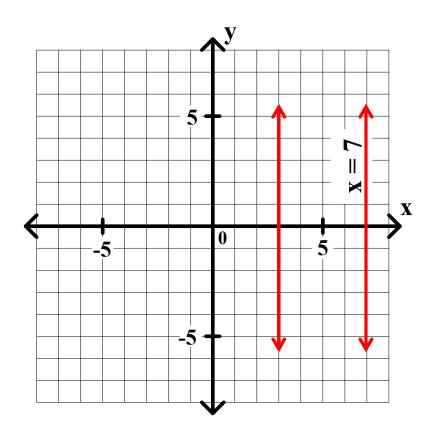


Vertical Lines

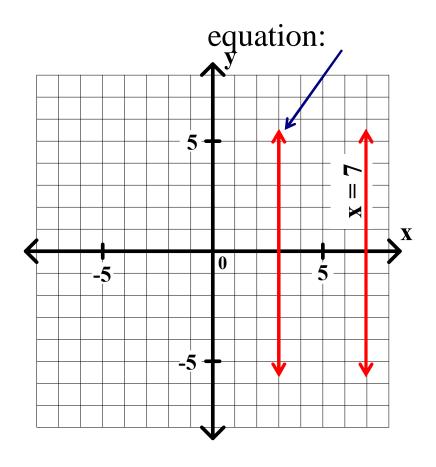
The y-axis or any line parallel to the y-axis is a vertical line.


Here are some examples.

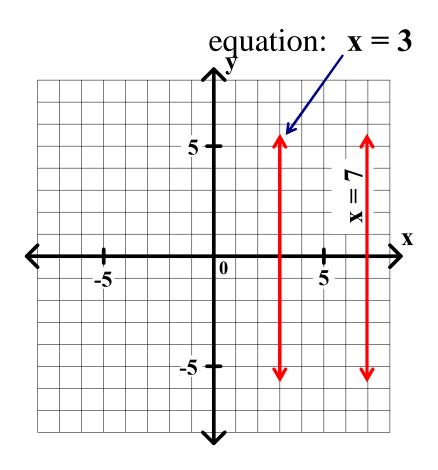
Every point on this line has an x-coordinate equal to 7!!!


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

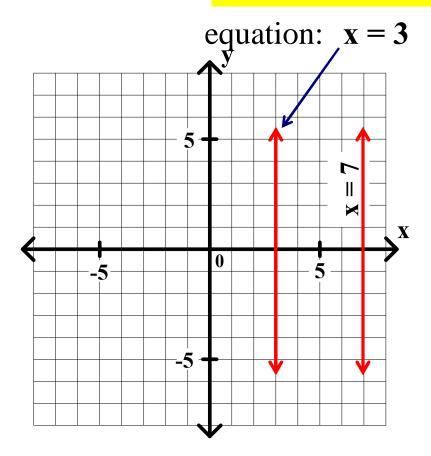
The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

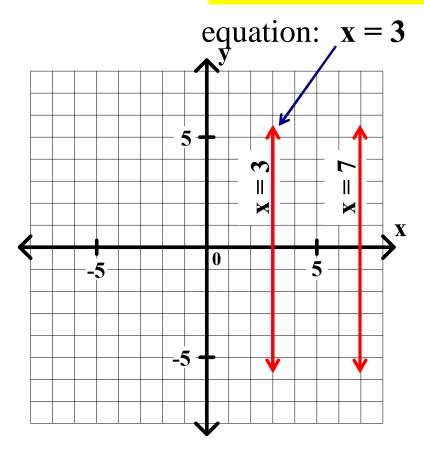


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

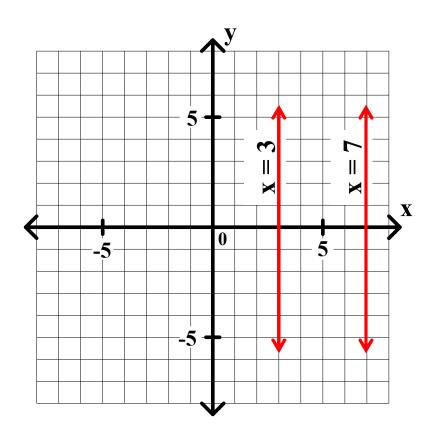
Here are some examples.

Every point on this line has an x-coordinate equal to 3!!!

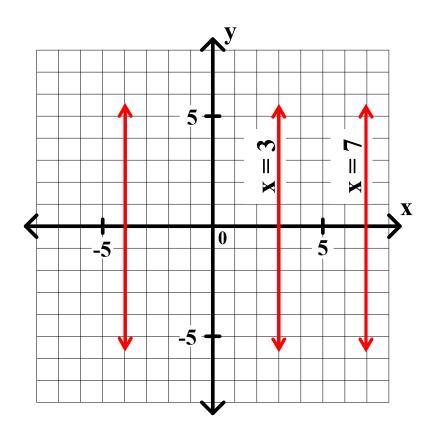


Vertical Lines

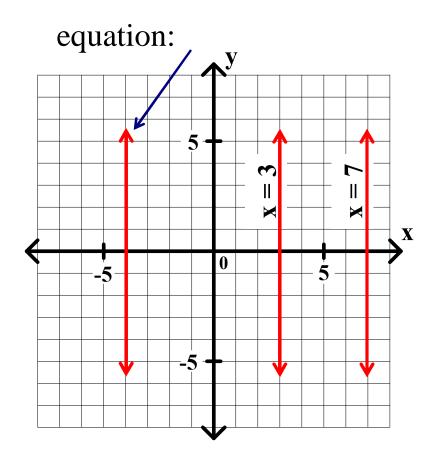
The y-axis or any line parallel to the y-axis is a vertical line.


Here are some examples.

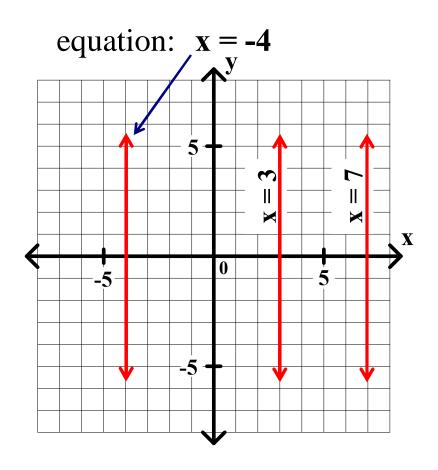
Every point on this line has an x-coordinate equal to 3!!!


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

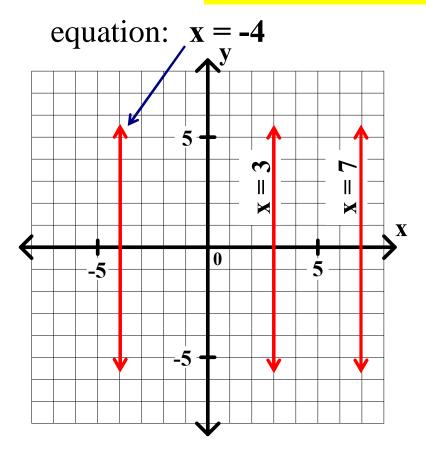
The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

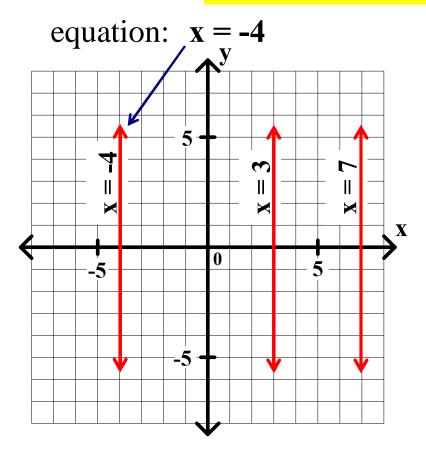


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

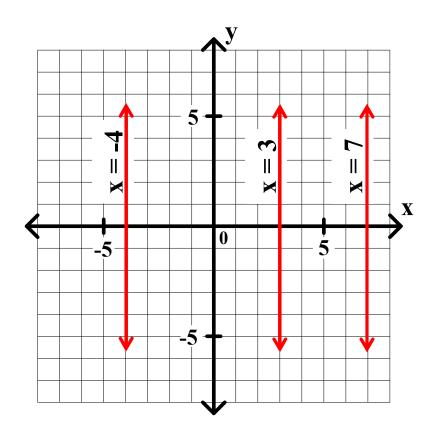
Here are some examples.

Every point on this line has an x-coordinate equal to -4!!!

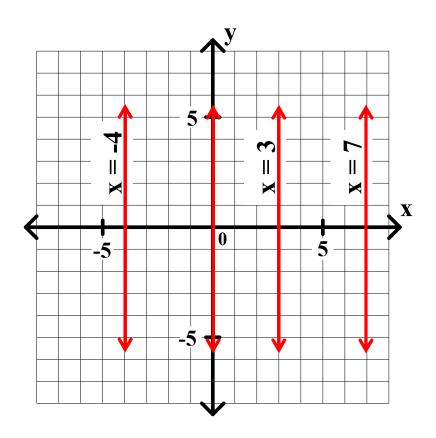


Vertical Lines

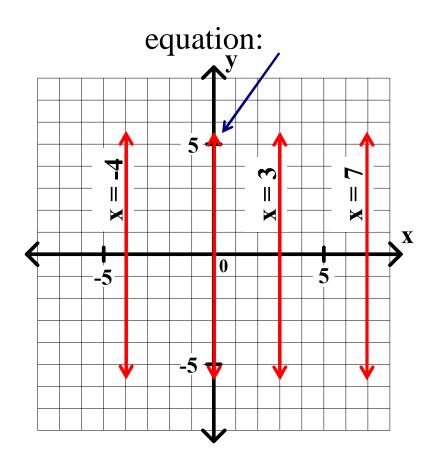
The y-axis or any line parallel to the y-axis is a vertical line.


Here are some examples.

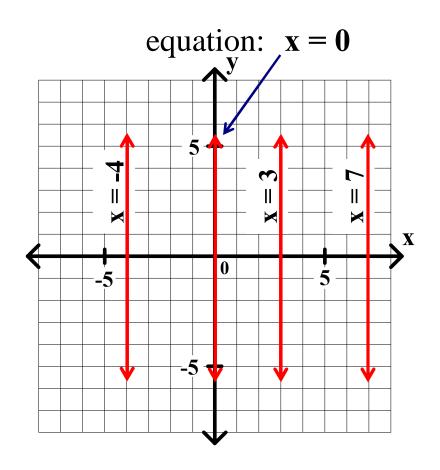
Every point on this line has an x-coordinate equal to -4!!!


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

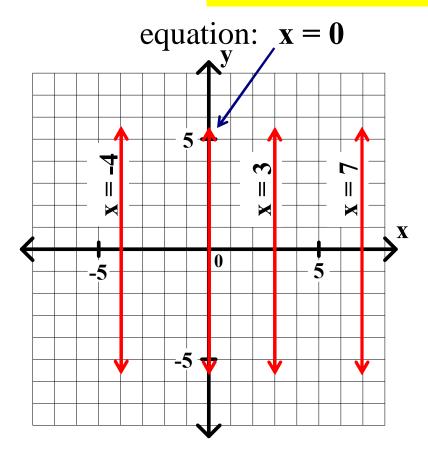
The y-axis or any line parallel to the y-axis is a vertical line.


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

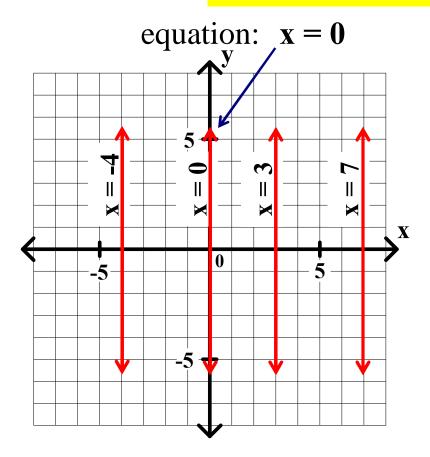


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Here are some examples.

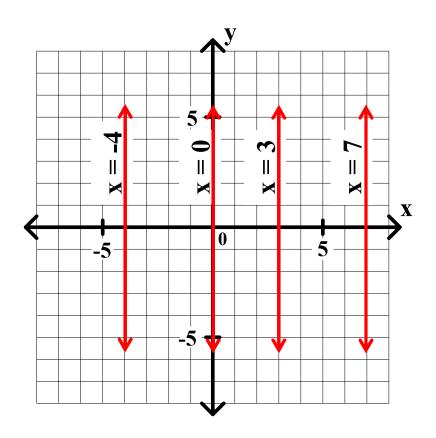
Every point on the y-axis has an x-coordinate equal to 0 !!!



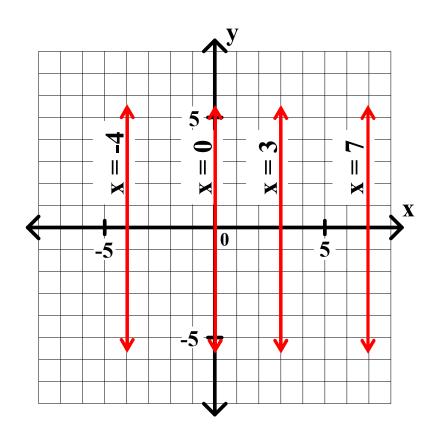
Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Here are some examples.

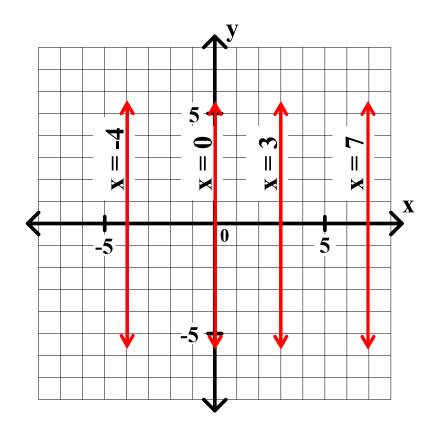

Every point on the y-axis has an x-coordinate equal to 0 !!!

Vertical Lines


The y-axis or any line parallel to the y-axis is a vertical line.

Here are some examples.

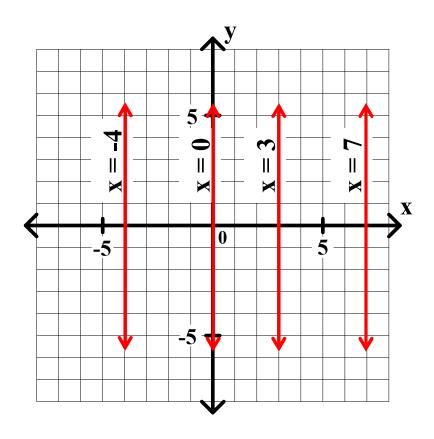
Vertical Lines


The y-axis or any line parallel to the y-axis is a vertical line.

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Every vertical line has an equation with the form

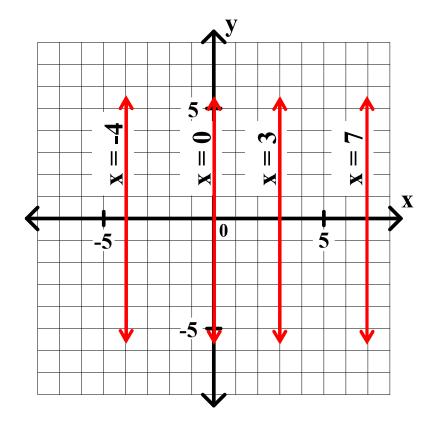


Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Every vertical line has an equation with the form

x = k.


Vertical Lines

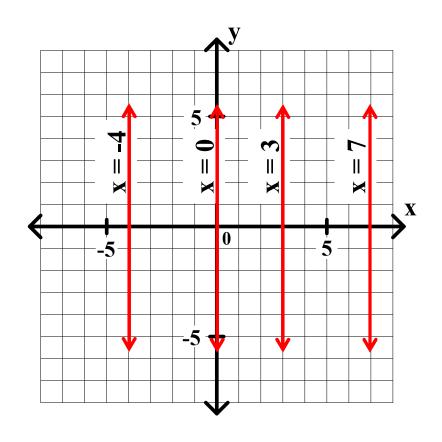
The y-axis or any line parallel to the y-axis is a vertical line.

Every vertical line has an equation with the form

$$x = k$$
.

The Slope of a Vertical Line

Vertical Lines


The y-axis or any line parallel to the y-axis is a vertical line.

Every vertical line has an equation with the form

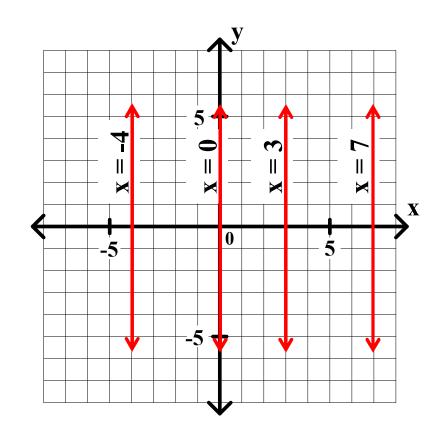
$$x = k$$
.

The Slope of a Vertical Line

$$Slope = \frac{Rise}{Run}$$

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.


Every vertical line has an equation with the form

$$x = k$$
.

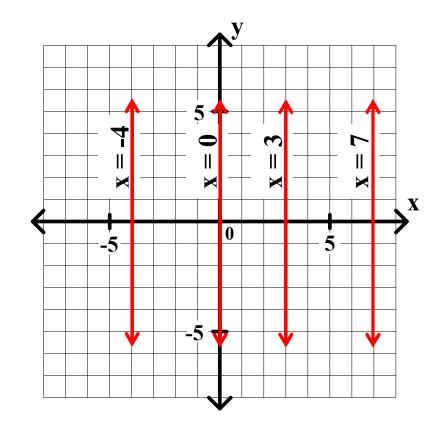
The Slope of a Vertical Line

Slope =
$$\frac{Rise}{Run}$$

The **run** is 0!!

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.


Every vertical line has an equation with the form

$$x = k$$
.

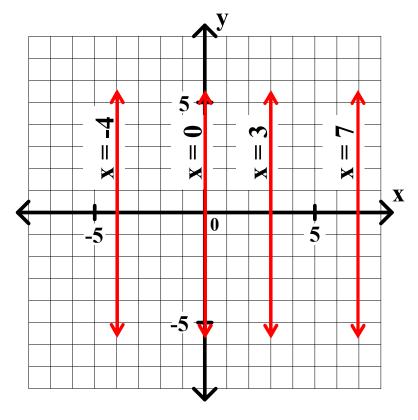
The Slope of a Vertical Line

$$Slope = \frac{Rise}{Run} = \frac{Rise}{0}$$

The <u>run</u> is 0!!

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.


Every vertical line has an equation with the form

$$x = k$$
.

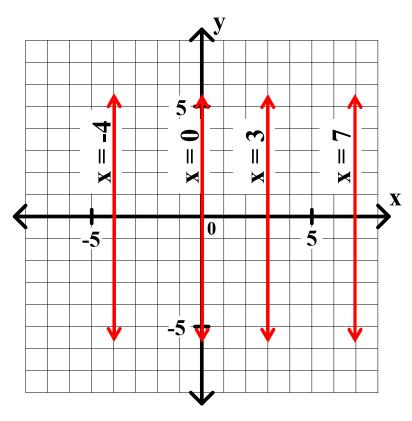
The Slope of a Vertical Line

Slope =
$$\frac{Rise}{Run} = \frac{Rise}{0}$$

The <u>run</u> is 0!! (The rise is not 0.)

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.


Every vertical line has an equation with the form

$$x = k$$
.

The Slope of a Vertical Line

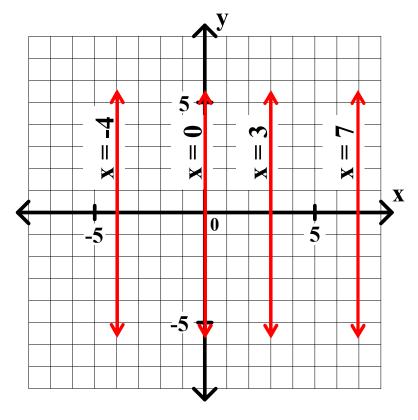
Slope =
$$\frac{Rise}{Run} = \frac{Rise}{0} = ?$$

The <u>run</u> is 0!! (The rise is not 0.)

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Every vertical line has an equation with the form


$$x = k$$
.

The Slope of a Vertical Line

Slope =
$$\frac{Rise}{Run} = \frac{Rise}{0} = ?$$

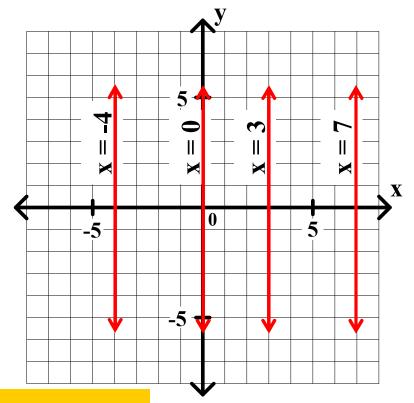
The <u>run</u> is 0!! (The rise is not 0.)

Division by 0 is undefined!!

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Every vertical line has an equation with the form


$$x = k$$
.

The Slope of a Vertical Line

Slope =
$$\frac{Rise}{Run} = \frac{Rise}{0} = ?$$

The <u>run</u> is 0!! (The rise is not 0.)

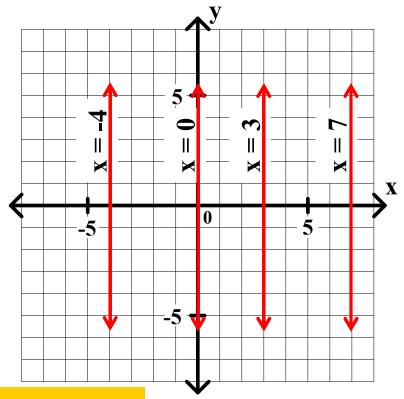
Division by 0 is undefined!!

The slope of every vertical line is undefined.

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Every vertical line has an equation with the form


$$x = k$$
.

The Slope of a Vertical Line

Slope =
$$\frac{Rise}{Run} = \frac{Rise}{0} = ?$$

The <u>run</u> is 0!! (The rise is not 0.)

Division by 0 is undefined !!

The slope of every vertical line is undefined.

It is common to say that a vertical line has **:no slope**ø

Algebra I Class Worksheet #1 Unit 7 Find the equation of each of the following lines.

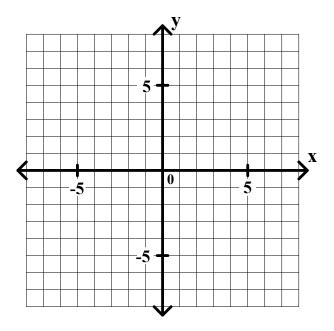
Find the equation of each of the following lines.

1. The horizontal line through (2, 3).

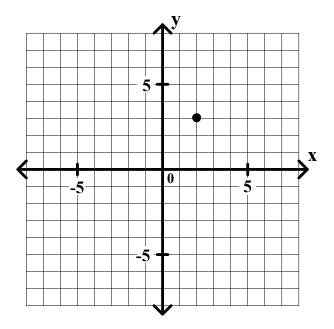
Find the equation of each of the following lines.

1. The horizontal line through (2, 3).

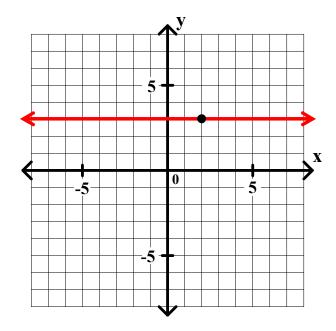
Find the equation of each of the following lines.

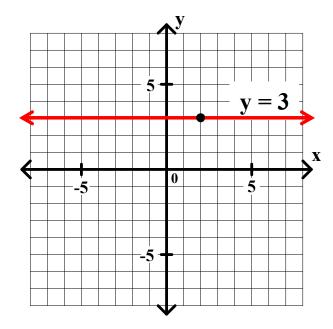

1. The horizontal line through (2, 3).

$$y = k$$


Find the equation of each of the following lines.

Find the equation of each of the following lines.


Find the equation of each of the following lines.


Find the equation of each of the following lines.

Find the equation of each of the following lines.

Find the equation of each of the following lines.

Find the equation of each of the following lines.

$$y = k$$

Find the equation of each of the following lines.

1. The horizontal line through (2, 3). y = 3y = k

2. The vertical line through (2, 3).

Find the equation of each of the following lines.

1. The horizontal line through (2, 3). y = 3y = k

2. The vertical line through (2, 3).

Find the equation of each of the following lines.

1. The horizontal line through (2, 3). y = 3y = k

2. The vertical line through (2, 3).

 $\mathbf{x} = \mathbf{k}$

Find the equation of each of the following lines.

1. The horizontal line through (2, 3). y = 3y = k

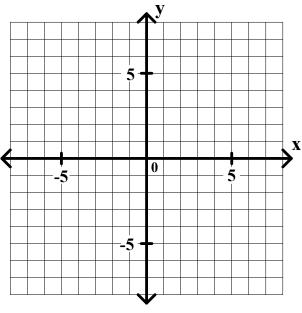
2. The vertical line through (2, 3). x = k

Find the equation of each of the following lines.

1. The horizontal line through (2, 3). y = 3y = k

2. The vertical line through (2, 3). x = 2 x = k

Find the equation of each of the following lines.


1. The horizontal line through (2, 3). y = 3

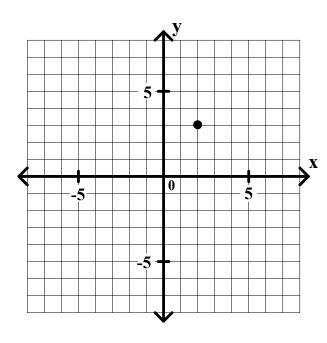
$$y = k$$

 $\mathbf{x} = \mathbf{k}$

2. The vertical line through (2, 3).

$$\frac{\text{line through (2, 3).}}{}$$

Find the equation of each of the following lines.


1. The horizontal line through (2, 3). y = 3

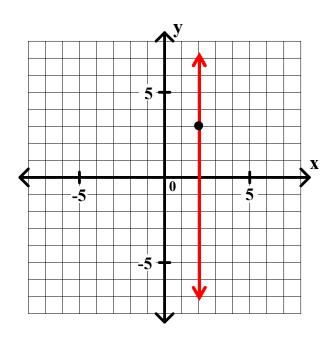
$$y = k$$

2. The vertical line through (2, 3).

$$x = k$$

x = 2

Find the equation of each of the following lines.


1. The horizontal line through (2, 3). y = 3

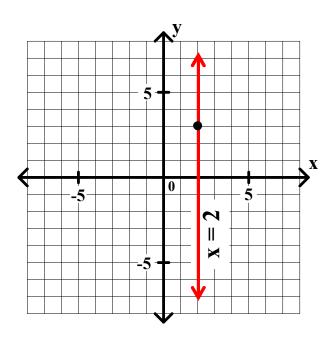
$$y = k$$

2. The vertical line through (2, 3).

$$x = k$$

x = 2

Find the equation of each of the following lines.


1. The horizontal line through (2, 3). y = 3

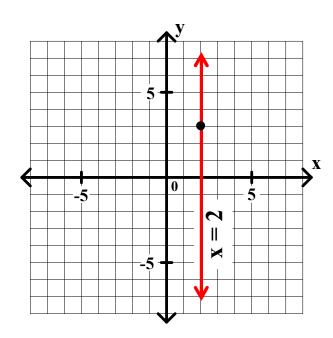
$$y = k$$

2. The vertical line through (2, 3).

$$\mathbf{x} = \mathbf{k}$$

x = 2

Find the equation of each of the following lines.


1. The horizontal line through (2, 3). y = 3

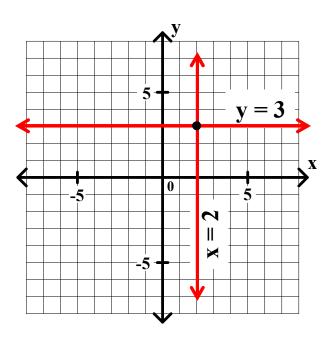
$$y = k$$

2. The vertical line through (2, 3).

$$x = 2$$

 $\mathbf{x} = \mathbf{k}$

Find the equation of each of the following lines.


1. The horizontal line through (2, 3). y = 3

$$y = k$$

2. The vertical line through (2, 3).

$$x = 2$$

 $\mathbf{x} = \mathbf{k}$

Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0.

Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0.

Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0.

horizontal line

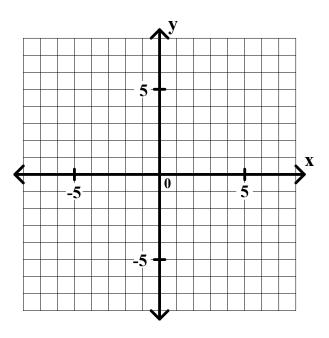
Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0.

Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0.

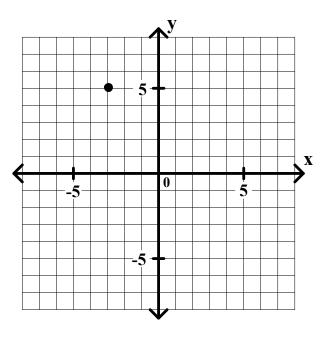
Find the equation of each of the following lines.


3. The line through (-3, 5) with slope 0. y = 5

$$y = 5$$

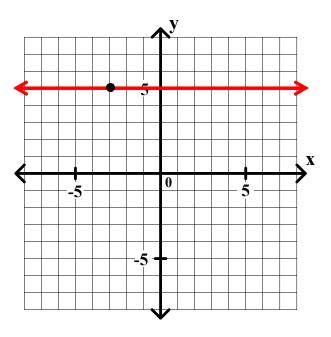
Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0. y = 5


$$y = 5$$

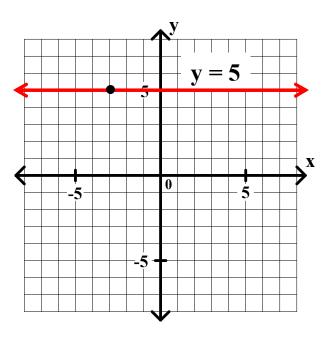
Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0. y = 5


$$y = 5$$

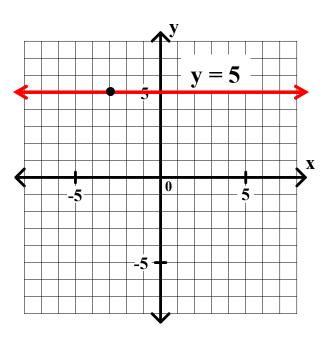
Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0. y = 5


$$y = 5$$

Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0. y = 5


$$y = 5$$

Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0.

$$y = 5$$

Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0. y = 5

$$y = 5$$

Find the equation of each of the following lines.

3. The line through (-3, 5) with slope 0. y = 5

horizontal line \implies y = k

4. The line through (-3, 5) with 'no slope'.

Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5
 - horizontal line \implies y = k
- 4. The line through (-3, 5) with 'no slope'.

Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5horizontal line $\Rightarrow y = k$
- 4. The line through (-3, 5) with 'no slope'.

'no slope' →

Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5horizontal line $\Rightarrow y = k$
- 4. The line through (-3, 5) with 'no slope'.

'no slope' → vertical line

Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5horizontal line $\Rightarrow y = k$
- 4. The line through (-3, 5) with 'no slope'.

'no slope' → vertical line

The slope is undefined !!

Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5horizontal line $\Rightarrow y = k$
- 4. The line through (-3, 5) with 'no slope'.

'no slope' → vertical line

Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5horizontal line $\Rightarrow y = k$
- 4. The line through (-3, 5) with 'no slope'.

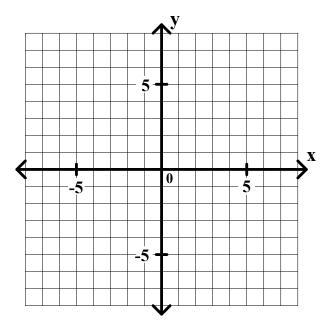
Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5horizontal line $\Rightarrow y = k$
- 4. The line through (-3, 5) with 'no slope'.

Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5horizontal line $\Rightarrow y = k$
- 4. The line through (-3, 5) with 'no slope'. x = -3

Find the equation of each of the following lines.

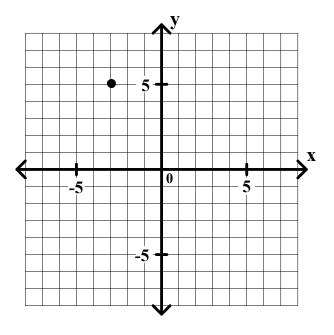

3. The line through (-3, 5) with slope 0.

$$y = 5$$

horizontal line \implies y = k

4. The line through (-3, 5) with 'no slope'.

x = -3


Find the equation of each of the following lines.

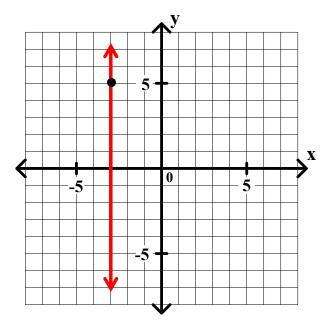
3. The line through (-3, 5) with slope 0.

$$y = 5$$

horizontal line \implies y = k

4. The line through (-3, 5) with 'no slope'. x = -3

Find the equation of each of the following lines.


3. The line through (-3, 5) with slope 0.

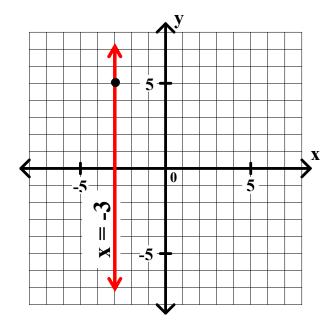
$$y = 5$$

horizontal line \implies y = k

4. The line through (-3, 5) with 'no slope'.

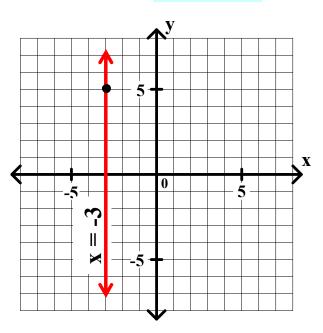
x = -3

Find the equation of each of the following lines.

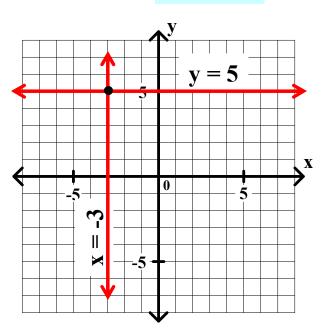

3. The line through (-3, 5) with slope 0.

$$y = 5$$

horizontal line \implies y = k


4. The line through (-3, 5) with 'no slope'.

x = -3


Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5
 - horizontal line \implies y = k
- 4. The line through (-3, 5) with 'no slope'. x = -3

Find the equation of each of the following lines.

- 3. The line through (-3, 5) with slope 0. y = 5horizontal line $\Rightarrow y = k$
- 4. The line through (-3, 5) with 'no slope'. x = -3

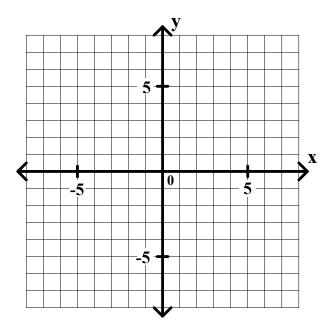
Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4).

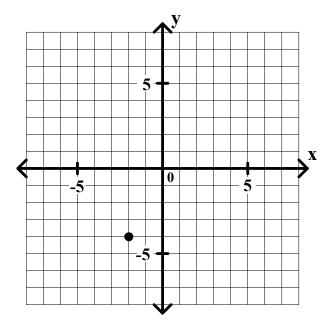
Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4).

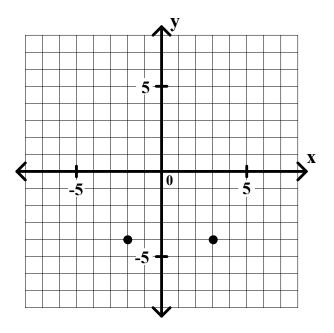
Find the equation of each of the following lines.

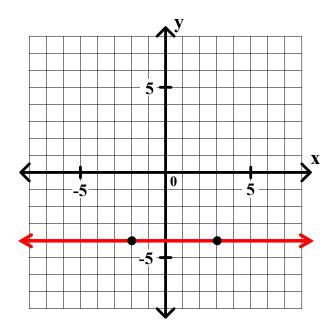

5. The line through (-2, -4) and (3, -4).

horizontal line

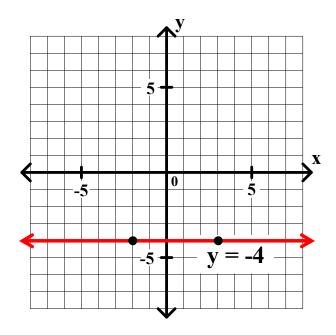

Find the equation of each of the following lines.

Find the equation of each of the following lines.


Find the equation of each of the following lines.


Find the equation of each of the following lines.

Find the equation of each of the following lines.



Find the equation of each of the following lines.

Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4). y = -4 horizontal line $\Rightarrow y = k$

Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4).

$$y = -4$$

horizontal line \implies y = k

Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4).

$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4).

$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4).

$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

vertical line

Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4).

$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

-2, 5). _____

Find the equation of each of the following lines.

5. The line through (-2, -4) and (3, -4).

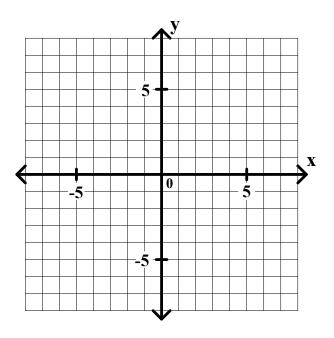
$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5). x = -2

$$x = -2$$

Find the equation of each of the following lines.


5. The line through (-2, -4) and (3, -4).

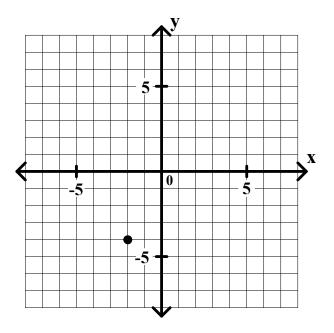
$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

x = -2

Find the equation of each of the following lines.


5. The line through (-2, -4) and (3, -4).

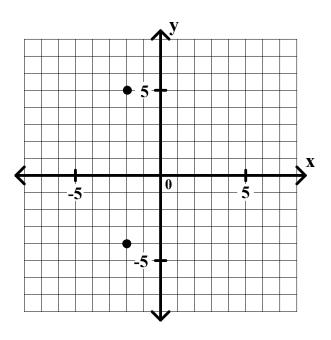
$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

x = -2

Find the equation of each of the following lines.


5. The line through (-2, -4) and (3, -4).

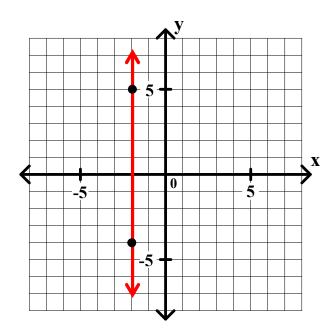
$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

x = -2

Find the equation of each of the following lines.


5. The line through (-2, -4) and (3, -4).

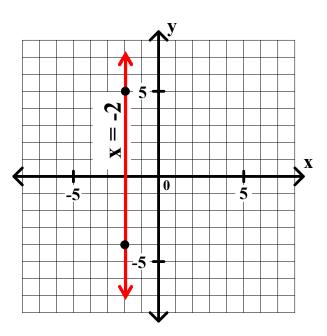
$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

$$x = -2$$

Find the equation of each of the following lines.


5. The line through (-2, -4) and (3, -4).

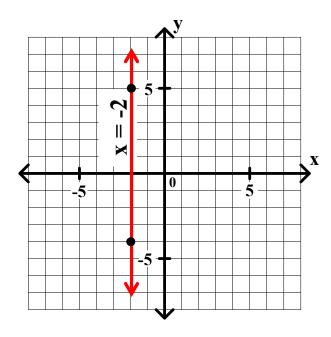
$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

$$x = -2$$

Find the equation of each of the following lines.


5. The line through (-2, -4) and (3, -4).

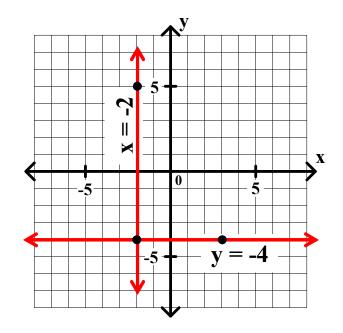
$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

$$x = -2$$

Find the equation of each of the following lines.


5. The line through (-2, -4) and (3, -4).

$$y = -4$$

horizontal line \implies y = k

6. The line through (-2, -4) and (-2, 5).

$$x = -2$$

Algebra I Unit 7 The Equation of a Line Oblique Lines

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

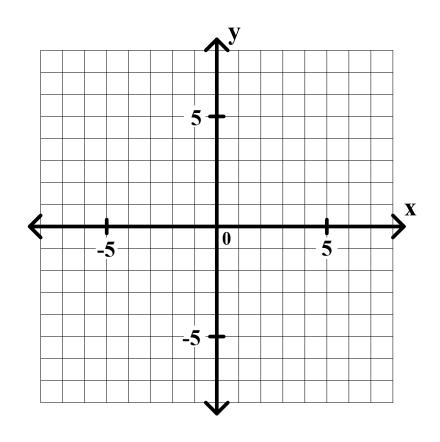
$$y = 3x + 1$$
 \Rightarrow slope: \Rightarrow y-intercept:

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept:

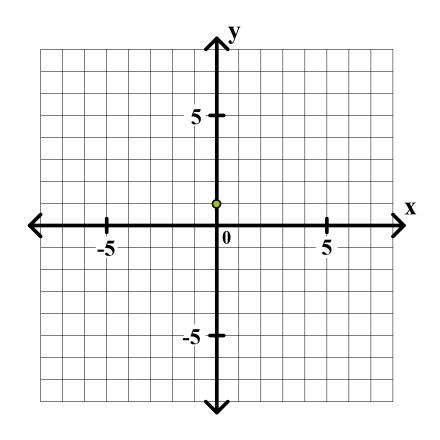
Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

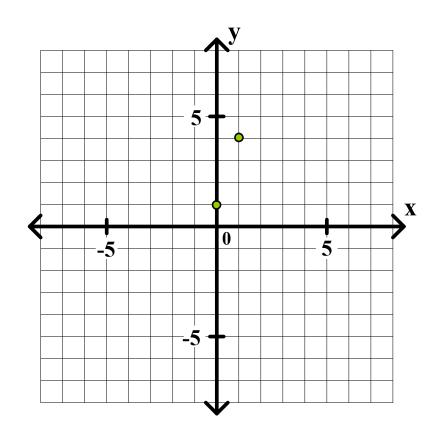
Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

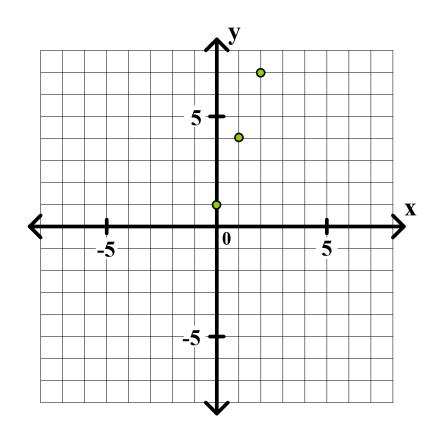
Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

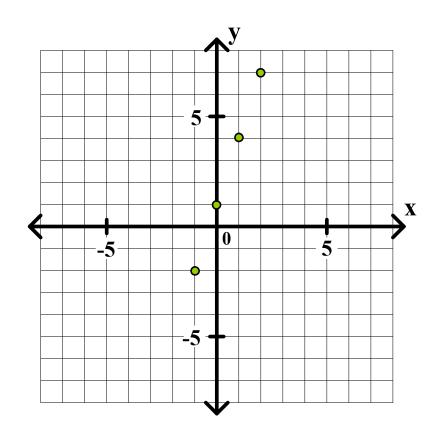
Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

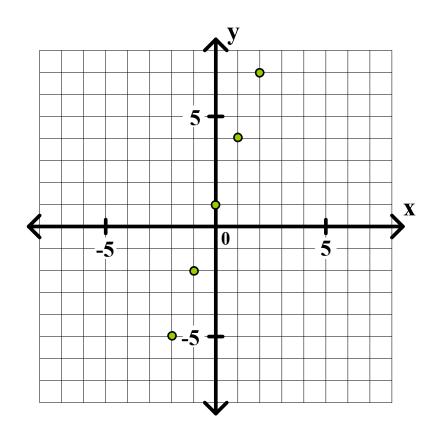
Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

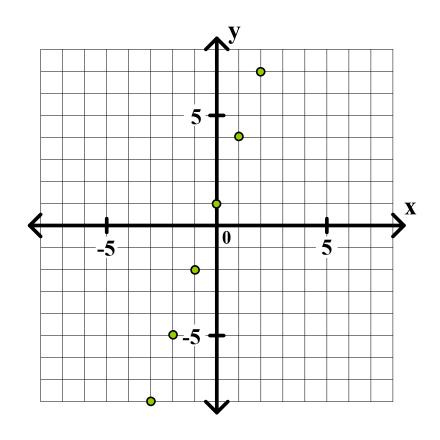
Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

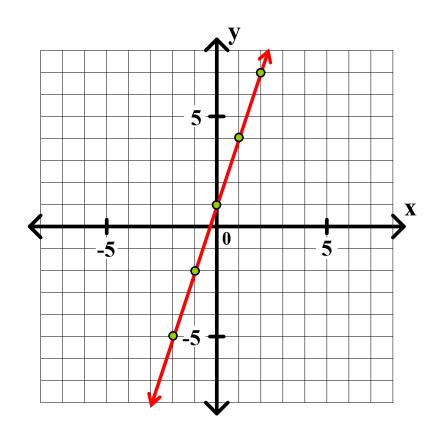
Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

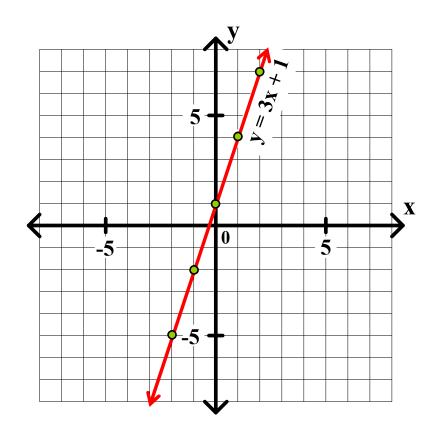
Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

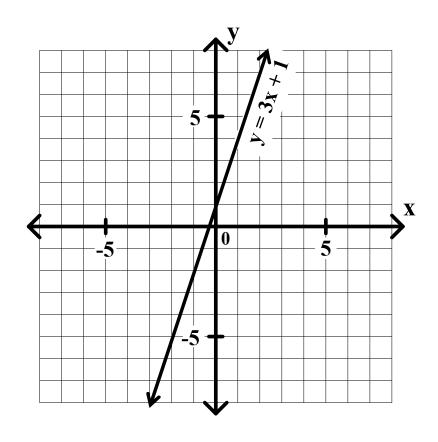
Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

Oblique Lines

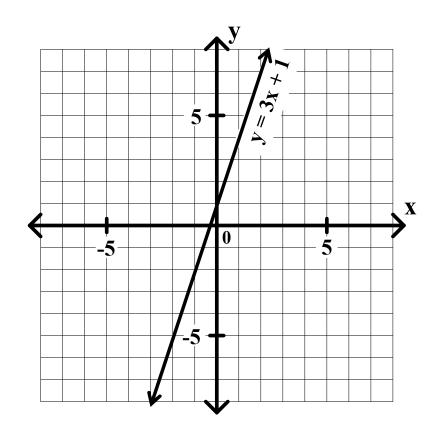
Any line that is neither horizontal nor vertical is an oblique line.


$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

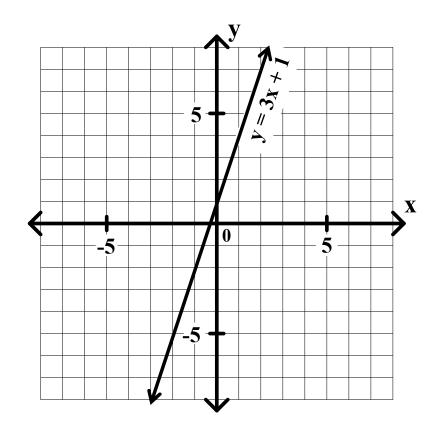


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$

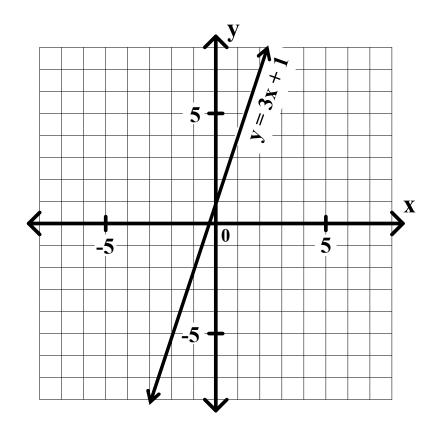


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope:
 \Rightarrow y-intercept:

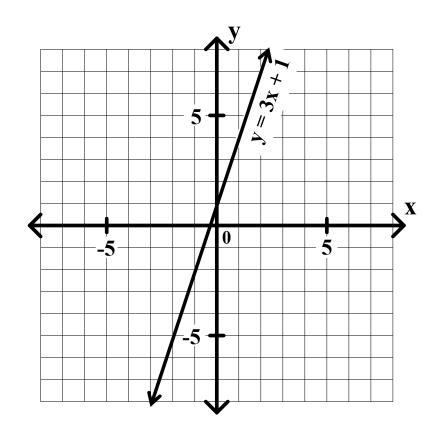


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept:

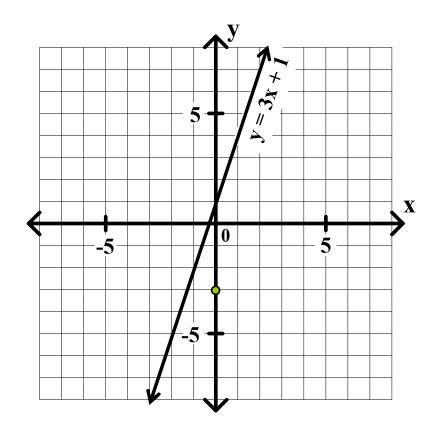


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

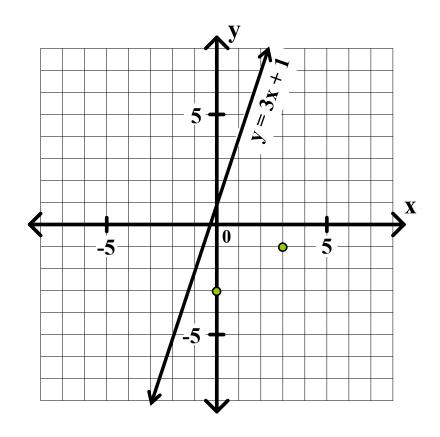


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

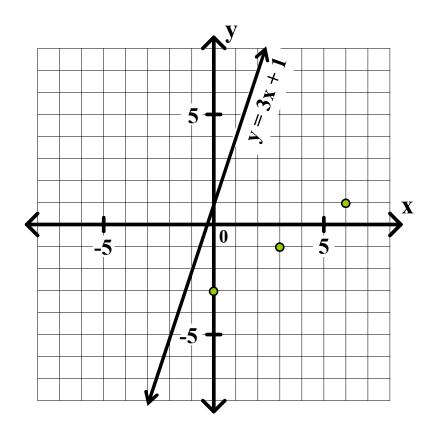


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

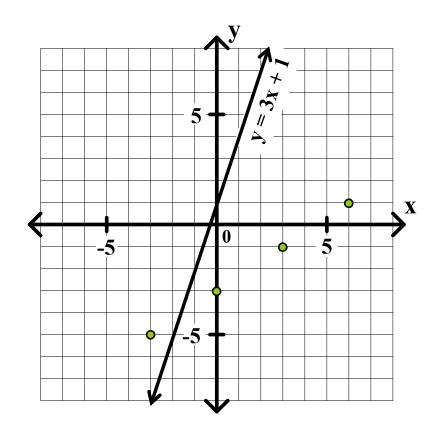


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

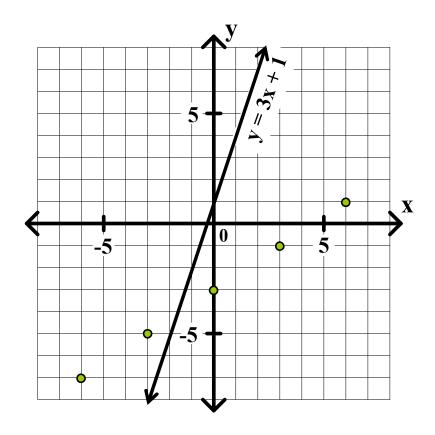


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

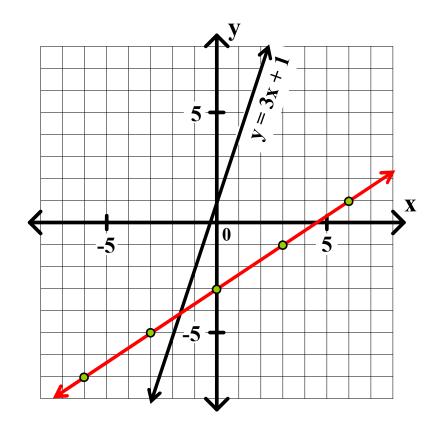


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

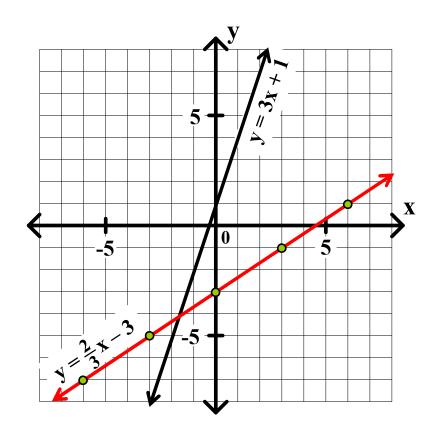


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

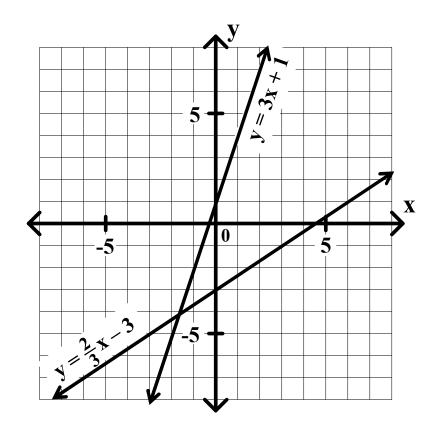


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

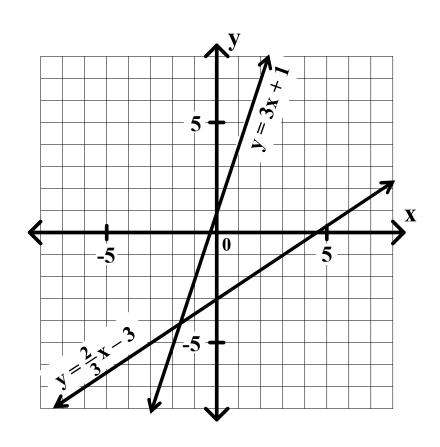


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

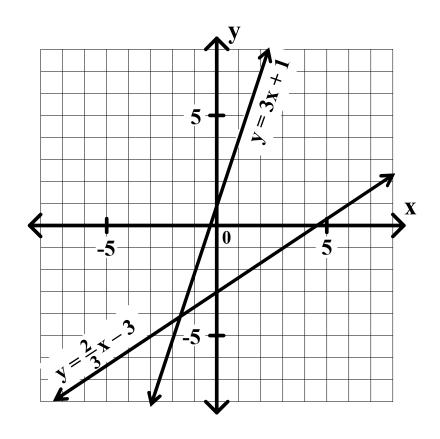

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$

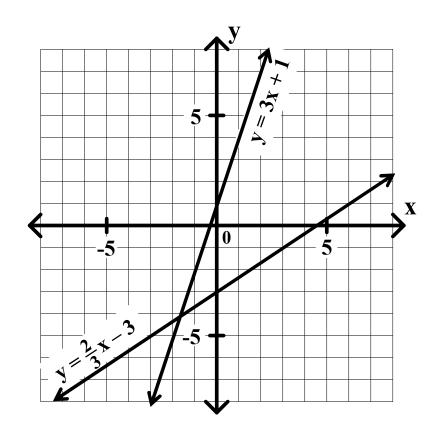

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope:
y-intercept:

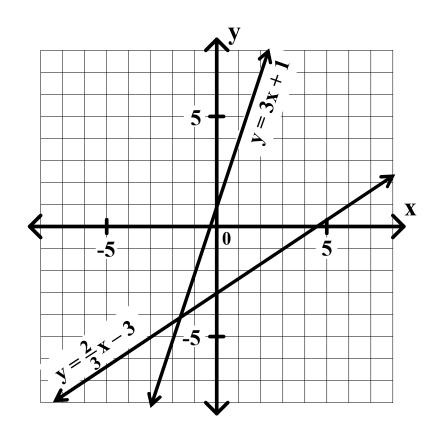

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept:

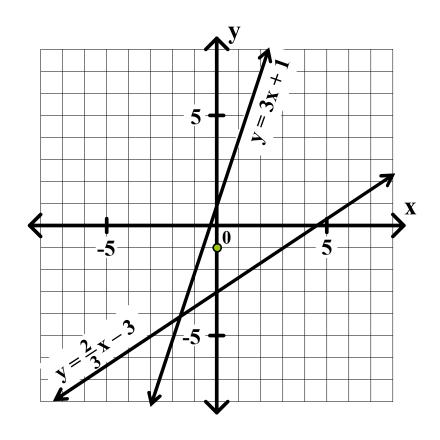

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

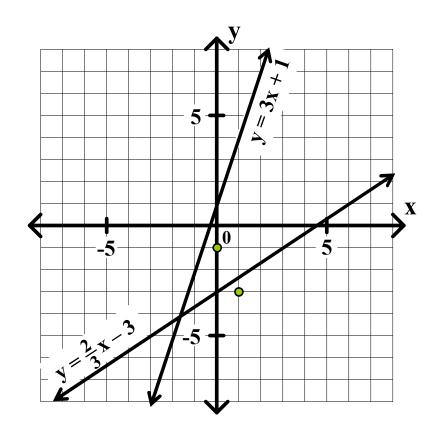

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

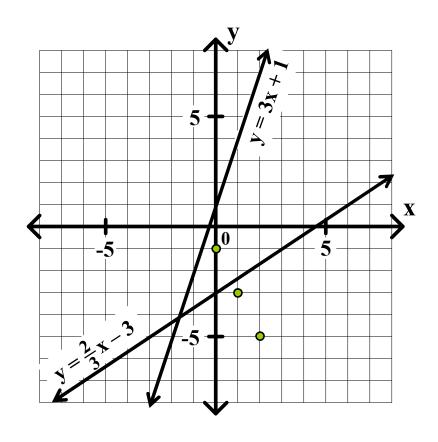

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

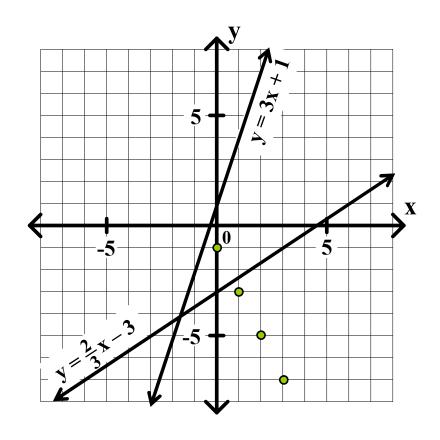

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

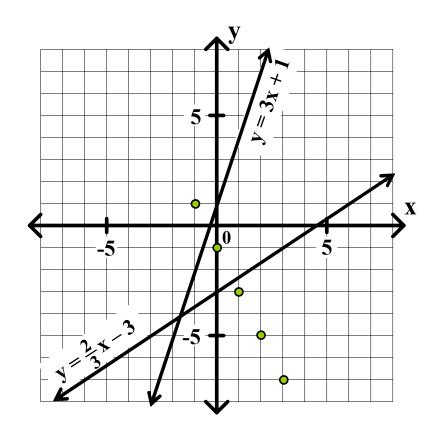

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

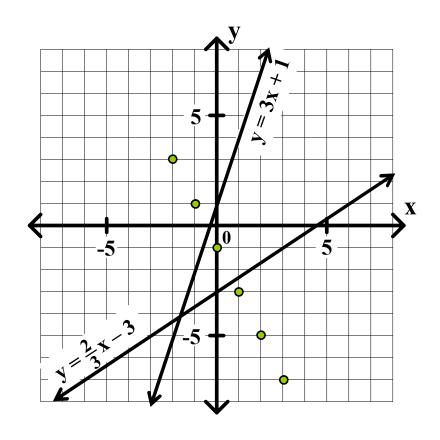

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

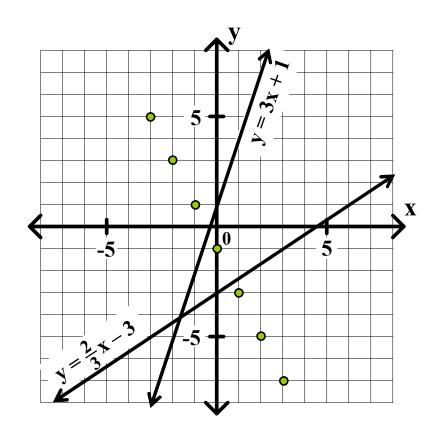

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

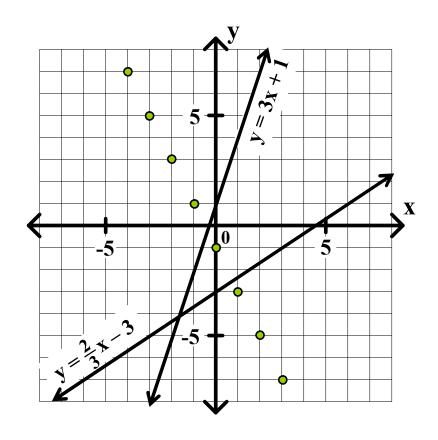

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

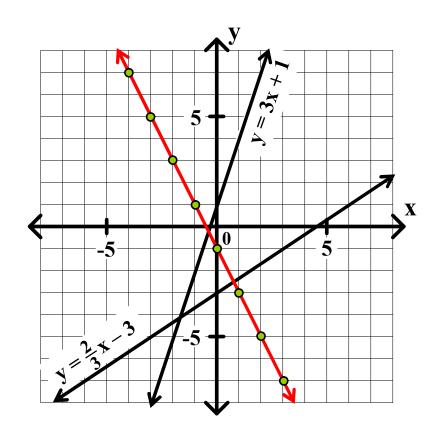

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

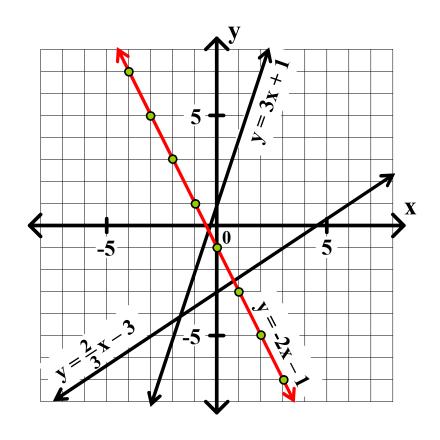

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

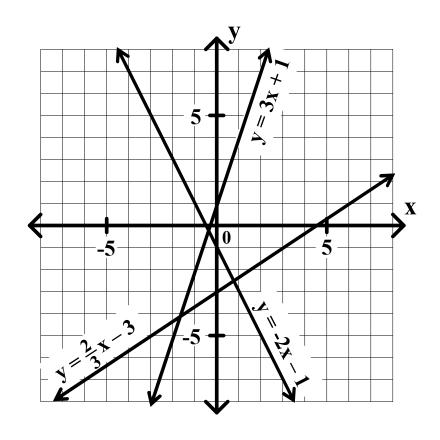

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1


Oblique Lines

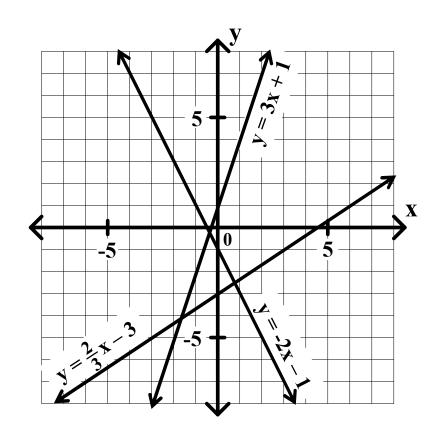
Any line that is neither horizontal nor vertical is an oblique line.

$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 slope: -2
y-intercept: -1

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

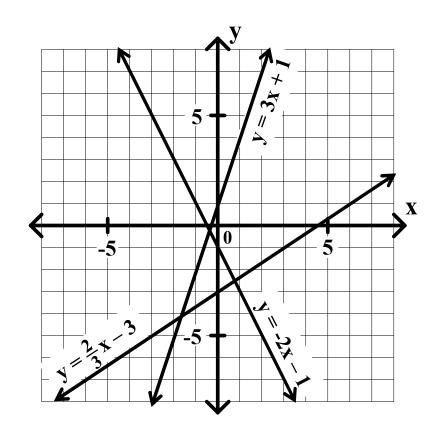
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

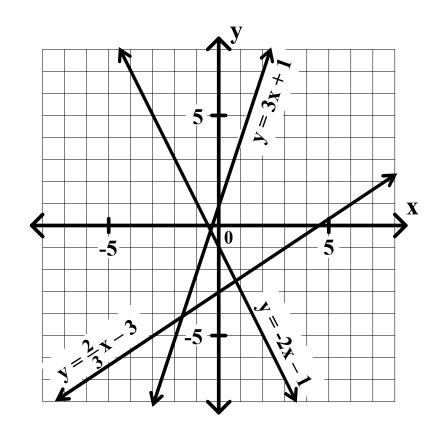
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: \Rightarrow y-intercept:

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

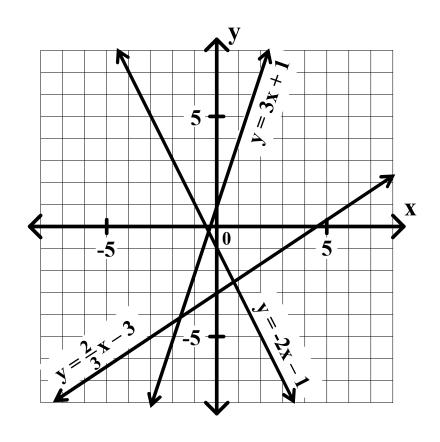
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: $\frac{-1}{4}$ \Rightarrow y-intercept:

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

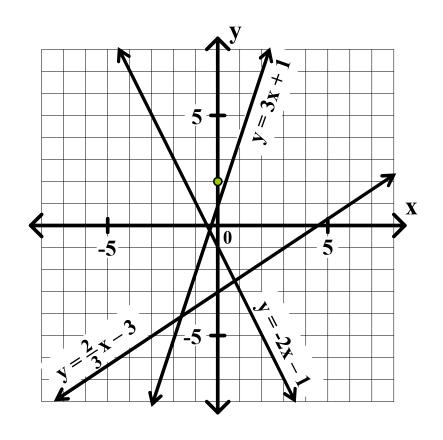
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: $\frac{-1}{4}$ \Rightarrow y-intercept: 2

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

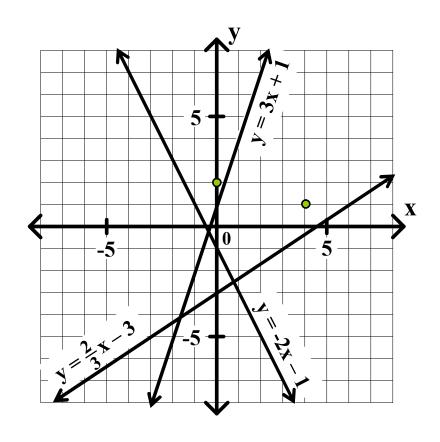
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: $\frac{-1}{4}$ \Rightarrow y-intercept: 2

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

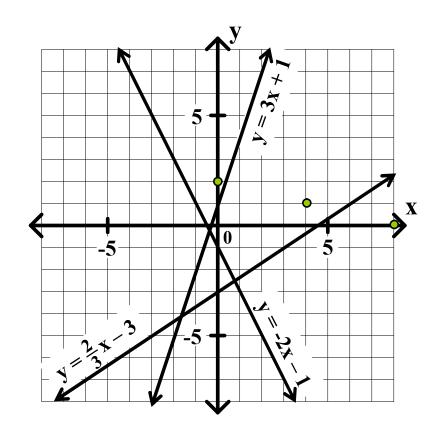
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: $\frac{-1}{4}$ \Rightarrow y-intercept: 2

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

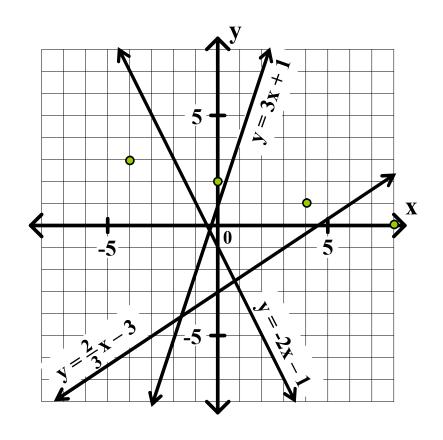
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: $\frac{-1}{4}$ \Rightarrow y-intercept: 2

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

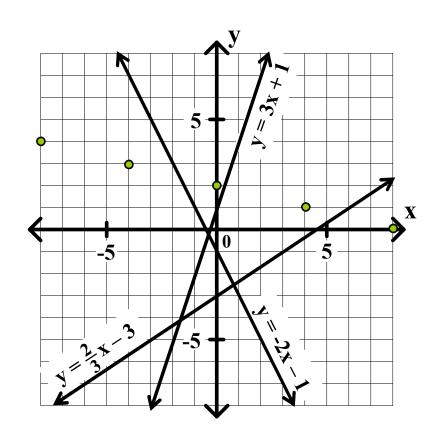
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: $\frac{-1}{4}$ \Rightarrow y-intercept: 2

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

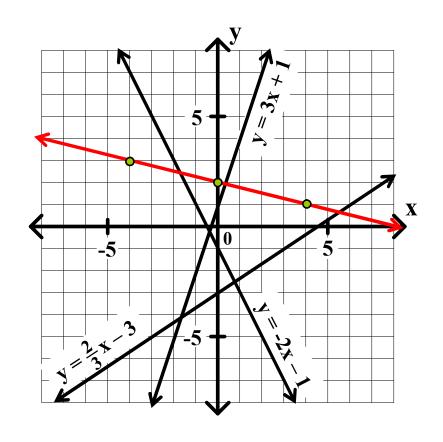
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: $\frac{-1}{4}$ \Rightarrow y-intercept: 2

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

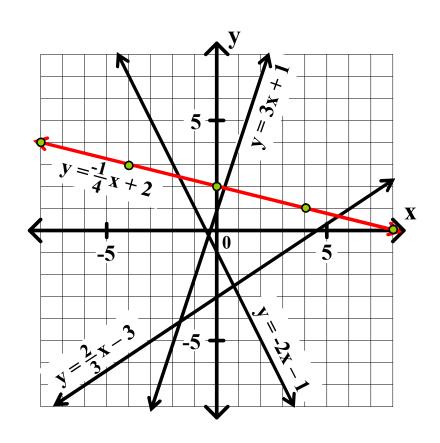
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

$$y = \frac{-1}{4}x + 2$$
 \Rightarrow slope: $\frac{-1}{4}$ \Rightarrow y-intercept: 2

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

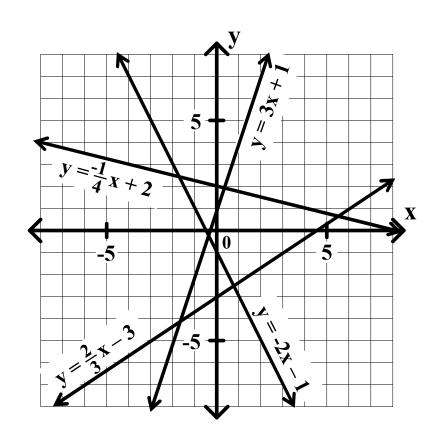
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3

$$y = -2x - 1$$
 \Rightarrow slope: -2 \Rightarrow y-intercept: -1

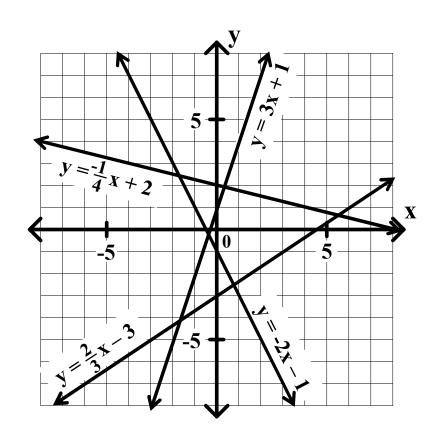
$$y = -\frac{1}{4}x + 2$$
 \Rightarrow slope: $-\frac{1}{4}$ \Rightarrow y-intercept: 2

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

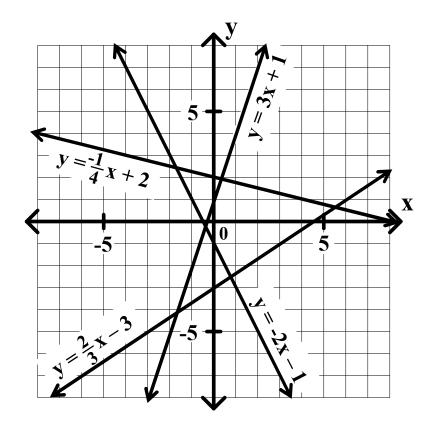
$$y = 3x + 1$$
 \Rightarrow slope: 3 \Rightarrow y-intercept: 1

$$y = \frac{2}{3}x - 3$$
 \Rightarrow slope: $\frac{2}{3}$ \Rightarrow y-intercept: -3


$$y = -2x - 1$$
 slope: -2
y-intercept: -1

$$y = -\frac{1}{4}x + 2$$
 \Rightarrow slope: $-\frac{1}{4}$ \Rightarrow y-intercept: 2

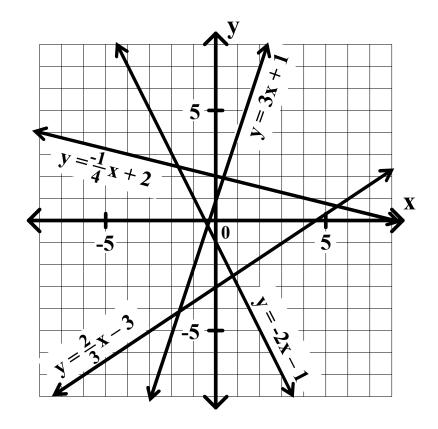
Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

Every oblique line has an equation with the form

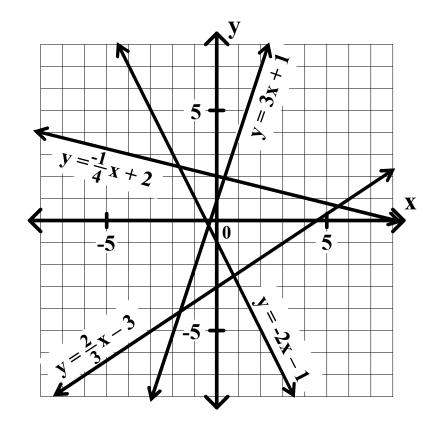


Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

Every oblique line has an equation with the form

$$y = mx + b.$$

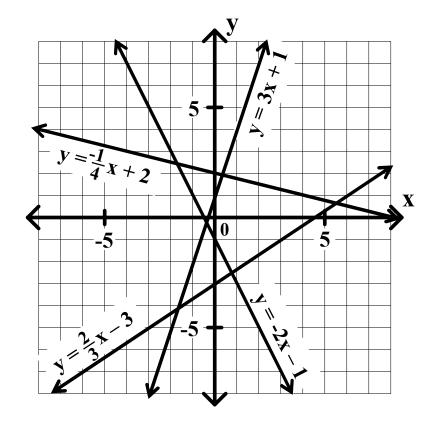

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

Every oblique line has an equation with the form

$$y = mx + b.$$

m is the slope of the line.


Oblique Lines

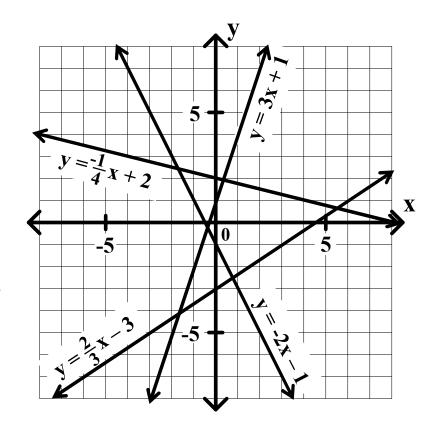
Any line that is neither horizontal nor vertical is an oblique line.

Every oblique line has an equation with the form

$$y = mx + b.$$

m is the slope of the line. b is y-intercept of the line.

Oblique Lines


Any line that is neither horizontal nor vertical is an oblique line.

Every oblique line has an equation with the form

$$y = mx + b.$$

m is the slope of the line. b is y-intercept of the line.

This is called the slope-intercept equation of the line.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

oblique line

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

oblique line \implies y = mx + b

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b \implies m = 2

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b \implies m = 2

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\Rightarrow$$
 y = mx + b \Rightarrow m = 2
 \Rightarrow b = 4

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

$$y = 2x + 4$$

oblique line
$$\Rightarrow$$
 y = mx + b \Rightarrow m = 2
b = 4

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

$$y = 2x + 4$$

oblique line
$$\Rightarrow$$
 y = mx + b \Rightarrow m = 2
b = 4

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y = 2x + 4$$

oblique line
$$\implies$$
 $y = mx + b$ \implies $b = 4$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y = 2x + 4$$

oblique line
$$\implies$$
 $y = mx + b$ \implies $b = 4$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y = 2x + 4$$

oblique line
$$\Rightarrow$$
 y = mx + b \Rightarrow m = 2
b = 4

8. The line with slope $\frac{2}{3}$ and y-intercept -1.

oblique line

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y = 2x + 4$$

oblique line
$$\implies$$
 $y = mx + b$ \implies $b = 4$

8. The line with slope $\frac{2}{3}$ and y-intercept -1.

oblique line \implies y = mx + b

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y = 2x + 4$$

oblique line
$$\Rightarrow$$
 y = mx + b \Rightarrow m = 2 \Rightarrow b = 4

oblique line
$$\implies$$
 y = mx + b \implies m = $\frac{2}{3}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y = 2x + 4$$

oblique line
$$\implies$$
 $y = mx + b$ \implies $b = 4$

oblique line
$$\implies$$
 y = mx + b \implies m = $\frac{2}{3}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y = 2x + 4$$

oblique line
$$\implies$$
 y = mx + b \implies m = 2 \implies b = 4

oblique line
$$\implies$$
 y = mx + b \implies m = $\frac{2}{3}$
b = -1

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y=2x+4$$

oblique line
$$\implies$$
 $y = mx + b$ \implies $b = 4$

8. The line with slope $\frac{2}{3}$ and y-intercept -1. $y = \frac{2}{3}x - 1$

$$y = \frac{2}{3}x - 1$$

oblique line
$$\implies$$
 $y = mx + b$ \implies $m = \frac{2}{3}$ $b = -1$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

7. The line with slope 2 and y-intercept 4.

$$y = 2x + 4$$

oblique line
$$\implies$$
 $y = mx + b$ \implies $b = 4$

8. The line with slope $\frac{2}{3}$ and y-intercept -1. $y = \frac{2}{3}x - 1$

$$y = \frac{2}{3}x - 1$$

oblique line
$$\implies$$
 y = mx + b \implies m = $\frac{2}{3}$ \implies b = -1

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

oblique line

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

oblique line \implies y = mx + b

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

oblique line \implies y = mx + b \implies m = -3

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

oblique line \implies y = mx + b \implies m = -3

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis!!

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3. y = -3x + 2

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

$$y = -3x + 2$$

oblique line
$$\implies$$
 y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $-\frac{1}{3}$.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $-\frac{1}{3}$.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $-\frac{1}{3}$.

oblique line

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3.

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $-\frac{1}{3}$.

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3. y = -3x + 2

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $-\frac{1}{3}$.

oblique line
$$\implies$$
 y = mx + b \implies m = $\frac{-1}{3}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3. y = -3x + 2

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $\frac{-1}{3}$.

oblique line
$$\implies$$
 y = mx + b \implies m = $\frac{-1}{3}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3. y = -3x + 2

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $\frac{-1}{3}$.

oblique line \implies y = mx + b \implies m = $-\frac{1}{3}$

The point (0, -3) is on the y-axis!!

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3. y = -3x + 2

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $\frac{-1}{3}$.

oblique line
$$\implies$$
 y = mx + b \implies m = $-\frac{1}{3}$

The point (0, -3) is on the y-axis $!! \implies b = -3$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3. y = -3x + 2

$$y = -3x + 2$$

oblique line
$$\implies$$
 y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $-\frac{1}{3}$.

$$y = \frac{1}{3}x - 3$$

oblique line
$$\implies$$
 y = mx + b \implies m = $\frac{-1}{3}$

The point (0, -3) is on the y-axis $!! \implies b = -3$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

9. The line through (0, 2) with slope -3. y = -3x + 2

$$y = -3x + 2$$

oblique line \implies y = mx + b \implies m = -3

The point (0, 2) is on the y-axis $!! \implies b = 2$

10. The line through (0, -3) with slope $-\frac{1}{3}$.

$$y = \frac{1}{3}x - 3$$

oblique line \implies y = mx + b \implies m = $\frac{-1}{3}$

The point (0, -3) is on the y-axis $!! \implies b = -3$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0,3) and (2,7).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

The line is not vertical!!

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0,3) and (2,7).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

The line is not horizontal!!

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0,3) and (2,7).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

oblique line

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

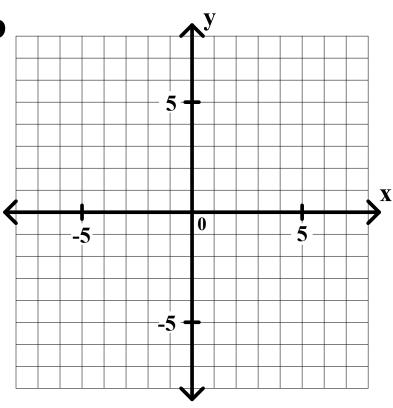
11. The line through (0, 3) and (2, 7).

oblique line
$$\implies$$
 y = mx + b

 $\mathbf{m} =$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

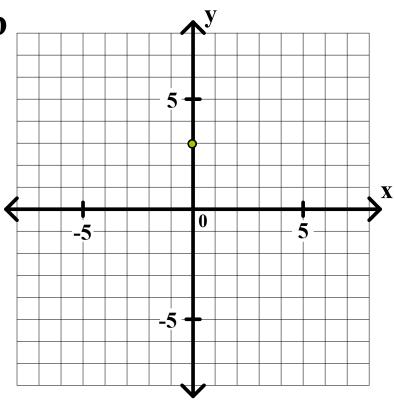
11. The line through (0, 3) and (2, 7).


oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run}$$

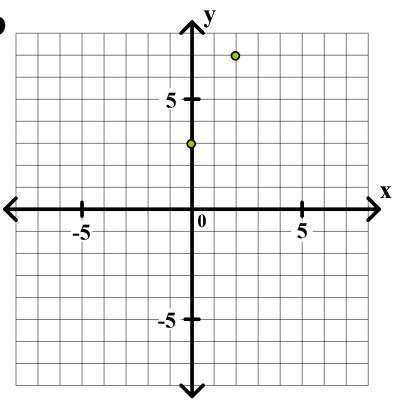
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


oblique line \implies y = mx + b

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

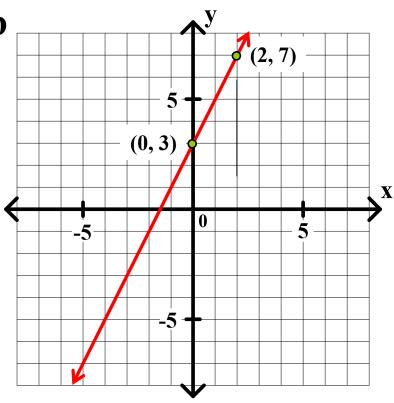
11. The line through (0, 3) and (2, 7).


oblique line \implies y = mx + b

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

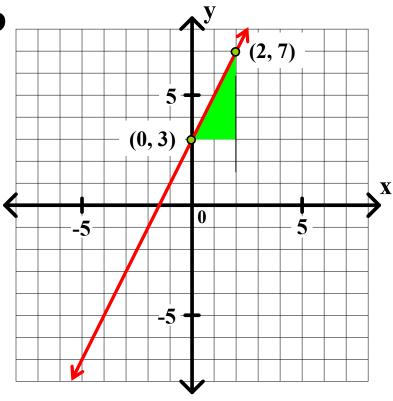
$$m = \frac{rise}{run}$$



Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

oblique line \implies y = mx + b


 $m = \frac{rise}{run}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

oblique line \implies y = mx + b

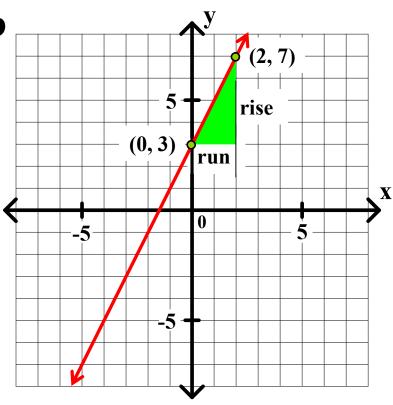
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

oblique line \implies y = mx + b

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


oblique line \implies y = mx + b

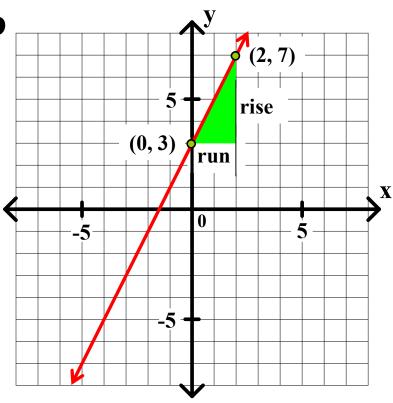
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

$$m = \frac{rise}{run} =$$

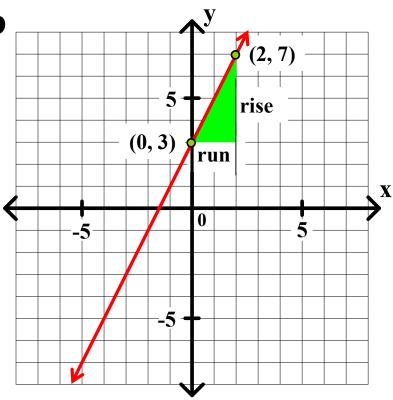
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$m = \frac{rise}{run} = ---$$

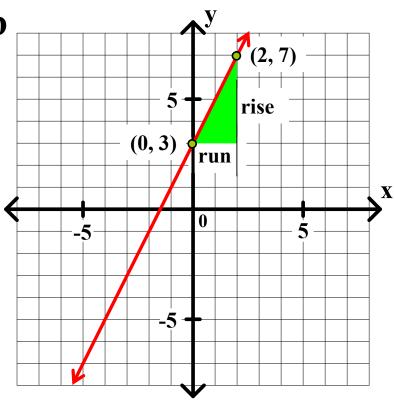
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$m = \frac{rise}{run} = \frac{7}{}$$

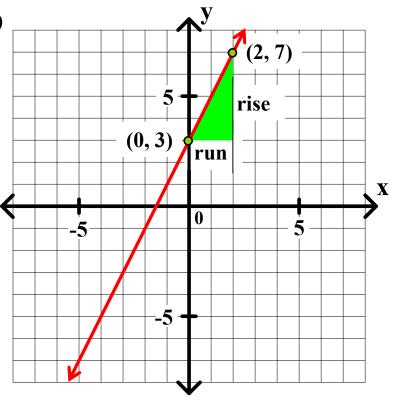
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$m = \frac{rise}{run} = \frac{7-}{}$$

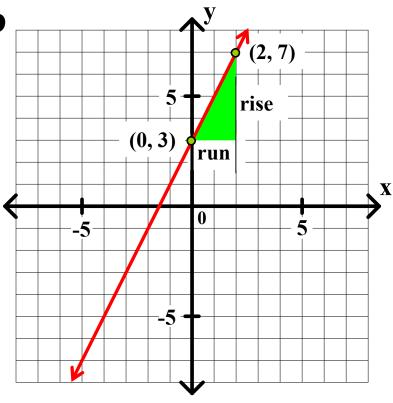
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{7-3}{3}$$

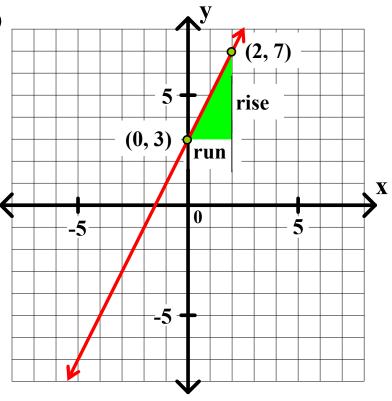
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{7-3}{2}$$

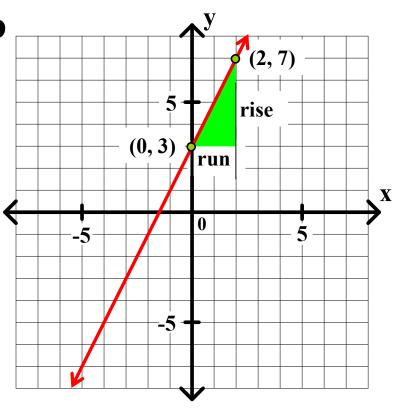
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{7-3}{2-}$$

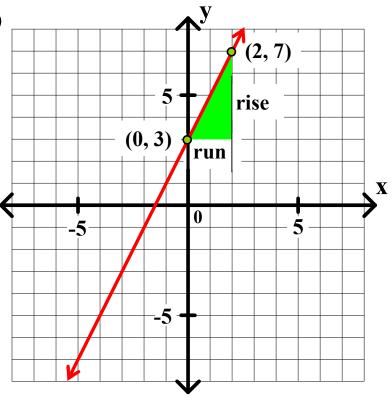
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{7-3}{2-0}$$

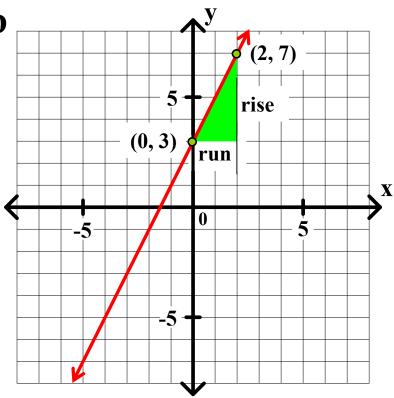
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{7-3}{2-0} =$$

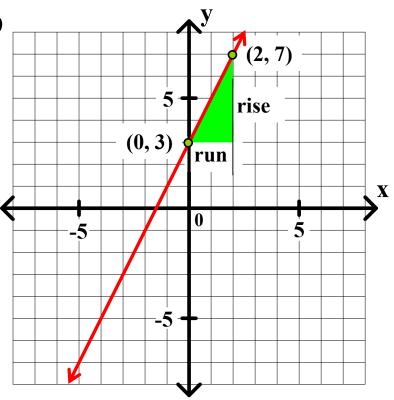
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{7-3}{2-0} = -$$

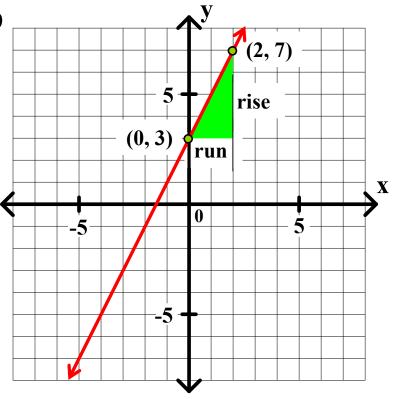
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2}$$

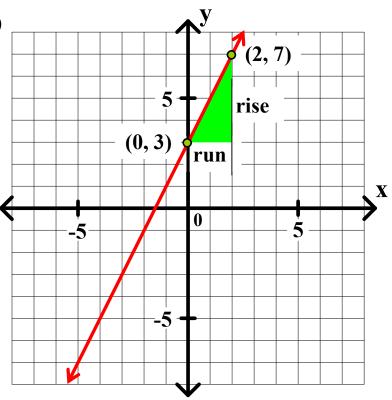
Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).


$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} =$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general,

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, m =

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, $m = ----$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, $m = \frac{y_2}{y_2}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, $m = \frac{y_2 - y_2}{y_2 - y_2}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, $m = \frac{y_2 - y_1}{2}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, $m = \frac{y_2 - y_1}{x_2}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, $m = \frac{y_2 - y_1}{x_2 - y_2}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, $m = \frac{y_2 - y_1}{x_2 - x_1}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$
 In general, $m = \frac{y_2 - y_1}{x_2 - x_1}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7). x_1 y_1 oblique line $\implies y = mx + b$

 $m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$ In general, $m = \frac{y_2 - y_1}{x_2 - x_1}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through
$$(0, 3)$$
 and $(2, 7)$.

 x_1
 y_1
 x_2

oblique line $\implies y = mx + b$
 $m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$ In general, $m = \frac{y_2 - y_1}{x_2 - x_1}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7). $x_1 \quad y_1 \quad x_2 \quad y_2$ oblique line $\implies y = mx + b$ $m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$ In general, $m = \frac{y_2 - y_1}{x_2 - x_1}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).
$$x_1 y_1 x_2 y_2$$

oblique line $\implies y = mx + b$
 $m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$ In general, $m = \frac{y_2 - y_1}{x_2 - x_1}$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0,3) and (2,7).

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$

The point (0, 3) is on the y-axis!!

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0,3) and (2,7).

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$

The point (0, 3) is on the y-axis $!! \implies b = 3$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0,3) and (2,7).

$$y = 2x + 3$$

oblique line \implies y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$

The point (0, 3) is on the y-axis $!! \implies b = 3$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

11. The line through (0, 3) and (2, 7).

$$y = 2x + 3$$

oblique line \implies y = mx + b

$$m = \frac{rise}{run} = \frac{7-3}{2-0} = \frac{4}{2} = 2$$

The point (0, 3) is on the y-axis $!! \implies b = 3$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

The line is not vertical!!

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

The line is not horizontal!!

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

oblique line

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

oblique line
$$\implies$$
 y = mx + b

 $\mathbf{m} =$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

oblique line
$$\implies$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} =$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = ----$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{\mathbf{y_2} - \mathbf{y_1}}{\mathbf{run}}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{\mathbf{y_2} - \mathbf{y_1}}{\mathbf{x_2} - \mathbf{x_1}}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).
$$x_1$$
 y_1

$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{\mathbf{y_2} - \mathbf{y_1}}{\mathbf{x_2} - \mathbf{x_1}}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.
 x_1, y_1, x_2, y_2

$$\mathbf{m} = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{\mathbf{y_2} - \mathbf{y_1}}{\mathbf{x_2} - \mathbf{x_1}}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.
 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} =$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.
 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = ----$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.
 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2}{x_1}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.
 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - y_1}{x_2 - x_1}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{x_2 - x_1}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.
 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 1}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.

 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.

 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} =$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.
 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = -$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - -4} = \frac{-3}{2}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through
$$(-4, 5)$$
 and $(0, 2)$.
 x_1, y_1, x_2, y_2

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = \frac{-3}{4}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = \frac{-3}{4}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = \frac{-3}{4}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = \frac{-3}{4}$$

The point (0, 2) is on the y-axis!!

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

oblique line
$$\implies$$
 y = mx + b

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = \frac{-3}{4}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

$$y = \frac{-3}{4}x + 2$$

oblique line \implies y = mx + b

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = \frac{-3}{4}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

$$y = \frac{-3}{4}x + 2$$

oblique line \implies y = mx + b

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = \frac{-3}{4}$$

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

12. The line through (-4, 5) and (0, 2).

$$y = \frac{-3}{4}x + 2$$

Good luck on your homework!!

$$m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 4} = \frac{-3}{4}$$