Algebra I Lesson \#1 Unit 7 Class Worksheet \#1

 For Worksheets \#1-\#5
Algebra I Unit 7 The Equation of a Line

Algebra I Unit 7 The Equation of a Line

There are three types of lines to consider.

Algebra I Unit 7 The Equation of a Line

There are three types of lines to consider.
Horizontal

Algebra I Unit 7 The Equation of a Line

There are three types of lines to consider.
Horizontal $\longmapsto \begin{aligned} & \text { The } x \text {-axis or any line parallel to the } x \text {-axis } \\ & \text { is a horizontal line. }\end{aligned}$

Algebra I Unit 7 The Equation of a Line

There are three types of lines to consider.
Horizontal $\longrightarrow \begin{aligned} & \text { The } x \text {-axis or any line parallel to the } x \text {-axis } \\ & \text { is a horizontal line. }\end{aligned}$

Vertical

Algebra I Unit 7 The Equation of a Line

There are three types of lines to consider.
Horizontal \longrightarrow The x-axis or any line parallel to the x-axis is a horizontal line.

Vertical \longrightarrow The y-axis or any line parallel to the y-axis is a vertical line.

Algebra I Unit 7 The Equation of a Line

There are three types of lines to consider.
Horizontal \longrightarrow The x-axis or any line parallel to the x-axis is a horizontal line.

Vertical \longrightarrow The y-axis or any line parallel to the y-axis is a vertical line.

Oblique

Algebra I Unit 7 The Equation of a Line

There are three types of lines to consider.
Horizontal \qquad The x-axis or any line parallel to the x-axis is a horizontal line.

Vertical \longrightarrow The y-axis or any line parallel to the y-axis is a vertical line.

Oblique \qquad Any line that is neither horizontal nor vertical is an oblique line.

Algebra I Unit 7 The Equation of a Line

There are three types of lines to consider.
Horizontal \qquad The x-axis or any line parallel to the x-axis is a horizontal line.

Vertical \longrightarrow The y-axis or any line parallel to the y-axis is a vertical line.

Oblique \Longleftrightarrow Any line that is neither horizontal nor vertical is an oblique line.

You will be responsible for understanding how to find the equation for each type of line.

Algebra I Unit 7 The Equation of a Line
 Horizontal Lines

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines
The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.
equation:

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.
equation: $\mathbf{y}=6$

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.
Here are some examples.
equation: $\mathbf{y}=6$
Every point on this line has a y-coordinate equal to 6 !!!

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.
Here are some examples.
equation: $y=6$
Every point on this line has a y-coordinate equal to 6 !!!

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.
equation: $\mathbf{y}=\mathbf{2}$

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.
equation: $\mathbf{y}=\mathbf{2}$
Every point on this line has a y-coordinate equal to 2 !!!

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.
equation:
$y=-4$

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.
equation: $\mathbf{y}=-4$
Every point on this line has a y-coordinate equal to -4 !!!

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.
equation: $\mathbf{y}=-4$
Every point on this line has a y-coordinate equal to -4 !!!

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines
The \mathbf{x}-axis or any line parallel to the x -axis is a horizontal line.

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Every horizontal line has an equation with the form

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Every horizontal line has an equation with the form

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Every horizontal line has an equation with the form

$$
\mathbf{y}=\mathbf{k}
$$

The Slope of a Horizontal Line

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Every horizontal line has an equation with the form

$$
\mathbf{y}=\mathbf{k}
$$

The Slope of a Horizontal Line Slope $=\frac{\text { Rise }}{\text { Run }}$

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Every horizontal line has an equation with the form

$$
\mathbf{y}=\mathbf{k}
$$

The Slope of a Horizontal Line
Slope $=\frac{\text { Rise }}{\text { Run }}$
The rise is 0 !!

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Every horizontal line has an equation with the form

$$
\mathbf{y}=\mathbf{k} .
$$

The Slope of a Horizontal Line
Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{0}{\text { Run }}$
The rise is 0 !!

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Every horizontal line has an equation with the form

$$
\mathbf{y}=\mathbf{k}
$$

The Slope of a Horizontal Line
Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{0}{\text { Run }}$
The rise is 0 !! (The run is not 0 .)

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The \mathbf{x}-axis or any line parallel to the \mathbf{x}-axis is a horizontal line.
Every horizontal line has an equation with the form

$$
\mathbf{y}=\mathbf{k}
$$

The Slope of a Horizontal Line Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{0}{\text { Run }}=\mathbf{0}$

The rise is 0 !! (The run is not 0 .)

Algebra I Unit 7 The Equation of a Line

Horizontal Lines

The x -axis or any line parallel to the x -axis is a horizontal line.
Every horizontal line has an equation with the form

$$
\mathbf{y}=\mathbf{k} .
$$

The Slope of a Horizontal Line
Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{0}{\text { Run }}=\mathbf{0}$
The rise is $0!!$ (The run is not 0 .)

The slope of every horizontal line is $\mathbf{0}$.

Algebra I Unit 7 The Equation of a Line
 Vertical Lines

Algebra I Unit 7 The Equation of a Line
 Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Here are some examples.
Every point on this line has an x-coordinate equal to 7 !!!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Here are some examples.
Every point on this line has an x-coordinate equal to 7 !!!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Here are some examples.
Every point on this line has an x-coordinate equal to 3 !!!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Here are some examples.
Every point on this line has an x-coordinate equal to 3 !!!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.
equation:

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.
Every point on this line has an x-coordinate equal to -4!!!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.
Every point on this line has an x-coordinate equal to -4!!!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.
equation:

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Here are some examples.
Every point on the y-axis has an x-coordinate equal to 0 !!!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Here are some examples.
Every point on the y-axis has an x-coordinate equal to 0 !!!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.
Here are some examples.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The \mathbf{y}-axis or any line parallel to the \mathbf{y}-axis is a vertical line.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Unit 7 The Equation of a Line
 Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k} .
$$

The Slope of a Vertical Line

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

The Slope of a Vertical Line Slope $=\frac{\text { Rise }}{\text { Run }}$

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

The Slope of a Vertical Line
Slope $=\frac{\text { Rise }}{\text { Run }}$
The run is 0 !!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

The Slope of a Vertical Line
Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Rise }}{0}$
The run is 0 !!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

The Slope of a Vertical Line
Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Rise }}{0}$
The run is 0 !! (The rise is not 0 .)

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

The Slope of a Vertical Line Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Rise }}{0}=$?
The run is 0 !! (The rise is not 0 .)

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

The Slope of a Vertical Line Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Rise }}{0}=$?
The run is 0 !! (The rise is not 0 .)
Division by 0 is undefined !!

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

The Slope of a Vertical Line Slope $=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Rise }}{0}=$?
The run is $0!!$ (The rise is not 0 .)
Division by 0 is undefined !!

The slope of every vertical line is undefined.

Algebra I Unit 7 The Equation of a Line

Vertical Lines

The y-axis or any line parallel to the y-axis is a vertical line.
Every vertical line has an equation with the form

$$
\mathbf{x}=\mathbf{k}
$$

The Slope of a Vertical Line

$$
\text { Slope }=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Rise }}{0}=\text { ? }
$$

The run is 0 !! (The rise is not 0 .)
Division by 0 is undefined !!

The slope of every vertical line is undefined.
It is common to say that a vertical line has óno slopeô

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3)$. \qquad

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3)$. \qquad

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3)$.

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3)$.

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) ., y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) ., y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) ., y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3)$.

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3)$.

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3) . \quad x=2$

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3) . \quad \mathbf{x}=\mathbf{2}$

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through (2, 3). $\quad \mathbf{x}=\mathbf{2}$

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3) . \quad x=2$

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3) . \quad x=2$

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3) . \quad \mathbf{x}=\mathbf{2}$

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

1. The horizontal line through $(2,3) . \quad y=3$

$$
\mathbf{y}=\mathbf{k}
$$

2. The vertical line through $(2,3) . \quad \mathbf{x}=\mathbf{2}$

$$
\mathbf{x}=\mathbf{k}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 .

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 .

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 .
horizontal line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 .
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 .
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow y=k$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope $0 . \quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope $0 . \quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'.
'no slope' \Rightarrow

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'.
'no slope' \Rightarrow vertical line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'.
'no slope' \Rightarrow vertical line
The slope is undefined !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'.
'no slope' \Rightarrow vertical line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'.
'no slope' \Rightarrow vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'.
'no slope' \Rightarrow vertical line $\Rightarrow x=k$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'. $\quad x=-3$
'no slope' \Rightarrow vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'. $\quad x=-3$
'no slope' \Rightarrow vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'. $x=-3$
'no slope' \Rightarrow vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'. $x=-3$
'no slope' \Rightarrow vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'. $x=-3$
'no slope' \Rightarrow vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'. $x=-3$
'no slope' \Rightarrow vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
3. The line through $(-3,5)$ with slope 0 . $\quad y=5$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
4. The line through $(-3,5)$ with 'no slope'. $x=-3$
'no slope' \Rightarrow vertical line $\Rightarrow x=k$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through ($-2,-4$) and (3, -4).

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through ($-2,-4$) and (3, -4). horizontal line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and ($3,-4)$.
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.

5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$ horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5)$.
 vertical line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5)$.

vertical line $\Rightarrow x=k$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through (-2, -4) and $(-2,5) . \quad x=-2$ vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4) . \quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5) \quad x=-2$
 vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4) . \quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5) \quad x=-2$
 vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5) \quad x=-2$
 vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4) . \quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5) \quad x=-2$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5) \quad x=-2$
 vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4)$. $\quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5) \quad x=-2$ vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines.
5. The line through $(-2,-4)$ and $(3,-4) \quad y=-4$
horizontal line $\Rightarrow \mathbf{y}=\mathbf{k}$
6. The line through $(-2,-4)$ and $(-2,5) \quad x=-2$ vertical line $\Rightarrow \mathbf{x}=\mathbf{k}$

Algebra I Unit 7 The Equation of a Line Oblique Lines

Algebra I Unit 7 The Equation of a Line
 Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

Algebra I Unit 7 The Equation of a Line
 Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

Algebra I Unit 7 The Equation of a Line
 Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

$$
y=3 x+1
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
\mathbf{y}=3 \mathbf{x}+\mathbf{1} & \longmapsto \text { slope: } \\
& \longrightarrow \text { y-intercept: }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
\mathbf{y}=3 \mathbf{x}+\mathbf{1} & \longmapsto \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
\mathbf{y}=\mathbf{3 x}+\mathbf{1} & \longmapsto \text { slope: } \mathbf{3} \\
& \longleftrightarrow y \text {-intercept: } \mathbf{1}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{3 x}+\mathbf{1} & \xrightarrow{\longrightarrow} \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1
\end{array}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{3 x}+\mathbf{1} & \xrightarrow{\longrightarrow} \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1
\end{array}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{3 x}+\mathbf{1} & \xrightarrow{\longrightarrow} \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1
\end{array}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{3 x}+\mathbf{1} & \xrightarrow{\longrightarrow} \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1
\end{array}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line. Here are some examples.

$$
\begin{array}{ll}
\mathbf{y}=3 \mathrm{x}+1 & \begin{array}{l}
\text { slope: } \mathbf{3} \\
\\
\\
\mathrm{y}=\frac{2}{3} \mathrm{x}-3
\end{array}
\end{array}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
\mathrm{y}=3 \mathrm{x}+1 & \mapsto \text { slope: } \mathbf{3} \\
& \longleftrightarrow \text { y-intercept: } 1 \\
y=\frac{2}{3} \mathrm{x}-3 & \mapsto \text { slope: } \frac{2}{3} \\
& \longleftrightarrow \text { y-intercept: }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

\[

\]

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathrm{y}=-\mathbf{2 x}-\mathbf{1} \mapsto \text { slope: } \\
& \rightarrow \text { y-intercept: }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathrm{y}=-\mathbf{2 x}-1 \underset{\text { slope: }-2}{\longleftrightarrow} \text { y-intercept: }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \begin{aligned}
\mathrm{y}=-\mathbf{2 x}-1 & \longrightarrow \text { slope: }-\mathbf{2} \\
\longrightarrow & \text {-intercept: }-\mathbf{1}
\end{aligned}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \begin{aligned}
\mathrm{y}=-\mathbf{2 x}-1 & \longmapsto \\
\longrightarrow & \text { s-intercept: -1 }
\end{aligned}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \begin{aligned}
\mathrm{y}=-\mathbf{2 x}-1 & \longmapsto \\
\longrightarrow & \text { s-intercept: -1 }
\end{aligned}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \begin{aligned}
\mathrm{y}=-\mathbf{2 x}-1 & \longmapsto \\
\longrightarrow & \text { s-intercept: -1 }
\end{aligned}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \begin{aligned}
\mathrm{y}=-\mathbf{2 x}-1 & \longmapsto \\
\longrightarrow & \text { s-intercept: -1 }
\end{aligned}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathrm{y}=-\mathbf{2 x}-1 \xrightarrow{\longrightarrow} \text { slope: - } \mathbf{~} \text { - }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathrm{y}=-\mathbf{2 x}-1 \xrightarrow{\longrightarrow} \text { slope: - } \mathbf{~} \text { - }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathrm{y}=-\mathbf{2 x}-1 \xrightarrow{\longrightarrow} \text { slope: - } \mathbf{~} \text { - }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathrm{y}=-\mathbf{2 x}-1 \xrightarrow{\longrightarrow} \text { slope: - } \mathbf{~} \text { - }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \begin{aligned}
\mathrm{y}=-\mathbf{2 x}-1 & \longmapsto \\
\longrightarrow & \text { s-intercept: -1 }
\end{aligned}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \begin{aligned}
\mathrm{y}=-\mathbf{2 x}-1 & \longmapsto \\
\longrightarrow & \text { s-intercept: -1 }
\end{aligned}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \begin{aligned}
\mathrm{y}=-\mathbf{2 x}-1 & \longrightarrow \text { slope: }-\mathbf{2} \\
\longrightarrow & \text {-intercept: }-\mathbf{1}
\end{aligned}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& y=\frac{2}{3} x-3 \xrightarrow{\longrightarrow} \text { slope: } \frac{2}{3} \\
& \mathrm{y}=-\mathbf{2 x - 1} \xrightarrow{\longrightarrow} \text { y-intercept: -1 } \\
& y=-\frac{1}{4} x+2
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \mapsto \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: }-\mathbf{2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& \mathrm{y}=\frac{-1}{4} \mathrm{x}+\mathbf{2} \xrightarrow{\longrightarrow} \text { slope: }
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \upharpoonright \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: }-\mathbf{2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} x+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} x+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} x+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} x+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} x+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} x+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} x+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} \mathbf{x}+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} \mathbf{x}+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Here are some examples.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{3 x}+\mathbf{1} \quad \text { slope: } \mathbf{3} \\
& \longrightarrow \text { y-intercept: } 1 \\
& \mathrm{y}=\frac{2}{3} \mathrm{x}-3 \quad \longrightarrow \text { slope: } \frac{2}{3} \\
& \longrightarrow \text { y-intercept: -3 } \\
& \mathbf{y}=-\mathbf{2 x}-1 \upharpoonright \text { slope: } \mathbf{- 2} \\
& \longrightarrow \text { y-intercept: -1 } \\
& y=-\frac{1}{4} \mathbf{x}+2 \xrightarrow{\longrightarrow} \text { slope: } \frac{-1}{4}
\end{aligned}
$$

Algebra I Unit 7 The Equation of a Line
 Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Every oblique line has an equation with the form

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Every oblique line has an equation with the form

$$
\mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Every oblique line has an equation with the form

$$
\mathbf{y}=\mathbf{m x}+\mathbf{b} .
$$

m is the slope of the line.

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Every oblique line has an equation with the form

$$
\mathbf{y}=\mathbf{m x}+\mathbf{b} .
$$

m is the slope of the line.
b is y-intercept of the line.

Algebra I Unit 7 The Equation of a Line

Oblique Lines

Any line that is neither horizontal nor vertical is an oblique line.
Every oblique line has an equation with the form

$$
\mathbf{y}=\mathbf{m x}+\mathbf{b} .
$$

m is the slope of the line.
b is y-intercept of the line.
This is called the slope-intercept
 equation of the line.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4.
oblique line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4 .

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \underset{\longrightarrow}{\longleftrightarrow} \text { m=2 }
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $y=2 x+4$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \underset{\longrightarrow \mathrm{m}=\mathbf{2}}{\longrightarrow}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $\quad y=2 x+4$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \underset{ }{\longrightarrow} \mathbf{m}^{\longrightarrow}=\mathbf{2}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $y=2 x+4$

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \stackrel{\mathrm{~m}=2}{\longleftrightarrow \mathrm{~b}=4}
$$

8. The line with slope $\frac{2}{3}$ and y-intercept -1 .

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $\quad y=2 x+4$

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \stackrel{\mathrm{~m}=2}{\longleftrightarrow \mathrm{~b}=4}
$$

8. The line with slope $\frac{2}{3}$ and y-intercept $\mathbf{- 1}$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $\quad y=2 x+4$

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \stackrel{\mathrm{~m}=2}{\longleftrightarrow \mathrm{~b}=4}
$$

8. The line with slope $\frac{2}{3}$ and y-intercept $\mathbf{- 1}$.
oblique line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $\quad y=2 x+4$

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \quad \begin{array}{|}
\longleftrightarrow \\
\longleftrightarrow \mathrm{m}=\mathbf{2}
\end{array}
$$

8. The line with slope $\frac{2}{3}$ and y-intercept -1 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $\quad y=2 x+4$ oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \underset{ }{\longleftrightarrow \mathrm{m}=\mathbf{2}}$
8. The line with slope $\frac{2}{3}$ and y-intercept $\mathbf{- 1}$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$
$\mathrm{m}=\frac{2}{3}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $\quad y=2 x+4$

8. The line with slope $\frac{2}{3}$ and y-intercept -1 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$
$m=\frac{2}{3}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $\quad y=2 x+4$ oblique line $\Rightarrow \mathrm{y}=\mathrm{mx}+\mathrm{b} \underset{\mathrm{m}=\mathbf{2}}{\longleftrightarrow \mathrm{b}=4}$
8. The line with slope $\frac{2}{3}$ and y-intercept -1 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\begin{array}{r}
\longrightarrow m=\frac{2}{3} \\
\longrightarrow b=-1
\end{array}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4. $\quad y=2 x+4$

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \quad \begin{array}{|}
\longleftrightarrow \\
\longleftrightarrow \mathrm{m}=\mathbf{2}
\end{array}
$$

8. The line with slope $\frac{2}{3}$ and y-intercept -1 . $\quad y=\frac{2}{3} x-1$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\begin{array}{r}
\longrightarrow m=\frac{2}{3} \\
\longleftrightarrow b=-1
\end{array}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
7. The line with slope 2 and y-intercept 4 . $\quad y=2 x+4$

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathrm{b} \quad \begin{array}{|}
\longleftrightarrow \\
\longleftrightarrow \mathrm{m}=\mathbf{2}
\end{array}
$$

8. The line with slope $\frac{2}{3}$ and y-intercept -1 . $y=\frac{2}{3} x-1$ oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\begin{array}{r}
\longrightarrow m=\frac{2}{3} \\
\longrightarrow b=-1
\end{array}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $\mathbf{- 3}$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 .

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 .
oblique line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the y-axis !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 .
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=2$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 . $\quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope -3 . $\quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $-\frac{1}{3}$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $\frac{-1}{3}$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $\frac{-1}{3}$. oblique line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $-\frac{1}{3}$. oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $-\frac{1}{3}$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Longrightarrow \mathbf{m}=\frac{-1}{3}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=2$
10. The line through $(0,-3)$ with slope $-\frac{1}{3}$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Longrightarrow \mathbf{m}=\frac{-1}{3}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $-\frac{1}{3}$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\frac{-1}{3}$
The point $(0,-3)$ is on the y-axis !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $-\frac{1}{3}$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\frac{-1}{3}$
The point $(0,-3)$ is on the y-axis $!!\Rightarrow b=-3$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $\frac{-1}{3}$. $\quad y=-\frac{1}{3} x-3$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\frac{-1}{3}$
The point $(0,-3)$ is on the y-axis $!!\Rightarrow b=-3$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
9. The line through $(0,2)$ with slope $-3 . \quad y=-3 x+2$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\mathbf{- 3}$
The point $(0,2)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=\mathbf{2}$
10. The line through $(0,-3)$ with slope $\frac{-1}{3}$. $\quad y=-\frac{1}{3} x-3$
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \Rightarrow \mathbf{m}=\frac{-1}{3}$
The point $(0,-3)$ is on the y-axis !! $\Rightarrow b=-3$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(\mathbf{0}, 3)$ and $(\underset{\uparrow}{\uparrow} 7)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(\mathbf{0}, 3)$ and $(\underset{\uparrow}{\boldsymbol{1}} \mathbf{7})$.

The line is not vertical !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

The line is not horizontal !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.
oblique line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$ $\mathbf{m}=$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathbf{m}=\frac{\text { rise }}{\text { run }}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathbf{m}=\frac{\text { rise }}{\text { run }}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \begin{array}{l}
\text { oblique line } \\
\mathbf{m}=\frac{\text { rise }}{\text { run }}
\end{array} \\
& \\
& \hline
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \begin{array}{l}
\text { oblique line } \\
\mathbf{m}=\frac{\text { rise }}{\text { run }}
\end{array} \\
& \\
& \hline
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

> oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$ $\mathrm{m}=\frac{\text { rise }}{\text { run }}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \begin{array}{l}
\text { oblique line } \\
\mathbf{m}=\frac{\text { rise }}{\text { run }}
\end{array} \\
& \hline
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

> oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$ $\mathrm{m}=\frac{\text { rise }}{\text { run }}=$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \\
& \mathbf{m}=\frac{\mathbf{r i s e}}{\text { run }}=- \\
& \\
& \hline
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{gathered}
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \\
\mathbf{m}=\frac{\text { rise }}{\text { run }}=\frac{7}{} \\
\\
\sim
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

> oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$ $\mathrm{m}=\frac{\text { rise }}{\text { run }}=\underline{7-}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

> oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$ $\mathrm{m}=\frac{\text { rise }}{\text { run }}=\underline{7-3}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \\
& \mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \\
& \mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=-
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \\
& \mathbf{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-\mathbf{0}}=\underline{4} \\
& \hline
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \\
& \mathbf{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-\mathbf{0}}=\frac{\mathbf{4}}{\mathbf{2}} \\
& \hline
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$
$\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b} \\
& \mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \text { oblique line } \Longrightarrow y=m x+b \\
& \mathbf{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, }
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\begin{aligned}
& \text { oblique line } \Rightarrow y=m x+b \\
& m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}}{}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-}{}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-y_{1}}{}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-y_{1}}{x_{2}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-y_{1}}{x_{2}-}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $\underset{x_{1}}{(0,3)} \underset{y_{1}}{\mathbf{3}}$) and (2, 7). oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $\left.\underset{x_{1}^{\prime}}{(0,} \underset{\mathbf{y}_{1}}{\mathbf{3}}\right)$ and $\underset{x_{2}^{2}}{(2,7)}$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $\left(\mathbf{0}, \underset{\mathbf{x}_{1}}{\mathbf{3}}\right)$ and $\left(\underset{\mathbf{y}_{1}}{2}, 7 \mathbf{y}_{2}\right)$. oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2 \quad \text { In general, } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
$$

$$
\text { In general, } \mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
$$

The point $(0,3)$ is on the y-axis !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7)$.

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
$$

The point $(0,3)$ is on the \mathbf{y}-axis $!!\Rightarrow \mathbf{b}=3$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7) . \quad y=2 x+3$

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
$$

The point $(0,3)$ is on the y-axis $!!\Rightarrow \mathbf{b}=3$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
11. The line through $(0,3)$ and $(2,7) . \quad y=2 x+3$

$$
\text { oblique line } \Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{7-3}{2-0}=\frac{4}{2}=2
$$

The point $(0,3)$ is on the y-axis $!!\Rightarrow \mathbf{b}=3$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

The line is not vertical !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

The line is not horizontal !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

$$
\text { oblique line } \Longrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
\mathbf{m}=
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathbf{m}=\frac{\text { rise }}{\text { run }}=
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathbf{m}=\frac{\text { rise }}{\text { run }}=
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\underline{\mathbf{y}_{2}-\mathrm{y}_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{\mathbf{y}_{2}-\mathrm{y}_{1}}{\mathbf{x}_{2}-\mathrm{x}_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{\mathbf{y}_{2}-\mathrm{y}_{1}}{\mathbf{x}_{2}-\mathrm{x}_{1}}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathbf{m}=\frac{\text { rise }}{\text { run }}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{2}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\mathbf{y}_{2}-y_{1}}{\mathbf{x}_{2}-x_{1}}=\underline{2-}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\underline{2-5}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $\left(\underset{x_{1}}{(-4,5)} \underset{\mathbf{y}_{1}}{5}\right.$ and $\underset{x_{2}^{\prime}}{(0,2)} \underset{\mathbf{y}_{2}}{2}$ oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0-}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $\left(\underset{x_{1}}{(-4,5)} \underset{\mathbf{y}_{1}}{5}\right.$ and $\underset{x_{2}^{\prime}}{(0,2)} \underset{\mathbf{y}_{2}}{2}$ oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0--4}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $\left(\underset{x_{1}}{(-4,5)} \underset{\mathbf{y}_{1}}{5}\right.$ and $\underset{x_{2}^{\prime}}{(0,2)} \underset{\mathbf{y}_{2}}{2}$ oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0-4}=
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
 oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0--4}=-
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $\underset{\mathbf{x}_{1}}{(0,2)} \quad \underset{\mathbf{y}_{1}^{\prime}}{(0)} \underset{\mathbf{y}_{2}}{ }$ oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0-4}=\frac{-3}{}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $\underset{\mathbf{x}_{1}^{\prime}}{(0,2)} \underset{\mathbf{y}_{1}^{\prime}}{(0)} \underset{\mathbf{y}_{2}}{2}$ oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0-4}=\frac{-3}{4}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.

$$
\text { oblique line } \Longleftrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0--4}=\frac{-3}{4}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0--4}=\frac{-3}{4}
$$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0-4}=\frac{-3}{4}
$$

The point $(0,2)$ is on the y-axis !!

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation.
12. The line through $(-4,5)$ and $(0,2)$.
oblique line $\Rightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0-4}=\frac{-3}{4}
$$

The point $(0,2)$ is on the y-axis !! $\Rightarrow \mathbf{b}=\mathbf{2}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation. 12. The line through $(-4,5)$ and $(0,2)$. $\quad y=-\frac{3}{4} x+2$

$$
\text { oblique line } \Longrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0--4}=\frac{-3}{4}
$$

The point $(0,2)$ is on the y-axis !! $\Rightarrow \mathbf{b}=\mathbf{2}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation. 12. The line through $(-4,5)$ and $(0,2)$. $\quad y=-\frac{3}{4} x+2$

$$
\text { oblique line } \Longrightarrow \mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0--4}=\frac{-3}{4}
$$

The point $(0,2)$ is on the y-axis !! $\Rightarrow \mathbf{b}=\mathbf{2}$

Algebra I Class Worksheet \#1 Unit 7

Find the equation of each of the following lines. If the line is oblique, then write its slope-intercept equation. 12. The line through $(-4,5)$ and $(0,2)$. $\quad y=-\frac{3}{4} x+2$

Good luck on your homework !!

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-5}{0--4}=\frac{-3}{4}
$$

The point $(0,2)$ is on the y-axis !! $\Rightarrow \mathbf{b}=2$

