Algebra 1 Lesson \#4 Unit 6

 Class Worksheet \#4 For Worksheets \#6-8
Algebra I Slope of an Oblique Line

Algebra I Slope of an Oblique Line

Look at the lines below.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j Rise:

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j
Rise: 3

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j
Line k Rise: 3

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j
Line k Rise: 3

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j
Line k Rise: 3

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j
Line k Rise: 3

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j Rise: 3

Line k
Rise:

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô

Line j Rise: 3

Line k
Rise: 4

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô

Line j Rise: 3

Line k
Rise: 4

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô

Line j Rise: 3

Line k
Rise: 4

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô

Line j
Rise: 3
Run:

Line k
Rise: 4

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô

Line j
Rise: 3
Run: 9

Line k
Rise: 4

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô

Line j
Rise: 3
Run: 9

Line k
Rise: 4

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô

Line j
Rise: 3
Run: 9

Line k
Rise: 4
Run:

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô

Line j
Rise: 3
Run: 9

Line k
Rise: 4
Run: 6

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is ósteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9

Line k
Rise: 4
Run: 6

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9

Line k
Rise: 4
Run: 6

Slope $=\frac{\text { rise }}{\text { run }}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9

Line k
Rise: 4
Run: 6

Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9

Line k
Rise: 4
Run: 6

Slope $=\frac{\text { rise }}{\text { run }}=3$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9

Line k
Rise: 4
Run: 6

Slope $=\frac{\text { rise }}{\text { run }}=\underline{3}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9

Line k
Rise: 4
Run: 6

Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}$

Line k
Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ơiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}$

Line k
Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ơiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}$

Line k
Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=4$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ơiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}$

Line k
Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\underline{4}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ơiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.

Line j
Rise: 3
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}$

Line k
Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}$

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=$

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{1}{3} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=$

Algebra I Slope of an Oblique Line

Look at the lines below. Line \mathbf{k} is óteeperôthan line \mathbf{j}.
The óteepnessôof a line can be represented using a number called the slope.
The slope of a line is calculated using a ratio. \quad Slope $=\frac{\text { rise }}{\text { run }}$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9
run. o

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad \text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}
$$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .
(I donâ know who decided that!!)

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9
run. o

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad \text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}
$$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .

For line j

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .
For line $\mathrm{j}, \mathrm{m}=\frac{1}{3}$.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .
For line $\mathrm{j}, \mathrm{m}=\frac{1}{3}$.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .
For line $\mathrm{j}, \mathrm{m}=\frac{1}{3}$. For line k

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .
For line $\mathrm{j}, \mathrm{m}=\frac{1}{3}$. For line $\mathrm{k}, \mathrm{m}=\frac{2}{3}$.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

The slope of a line is represented using the letter m .
For line $\mathrm{j}, \mathrm{m}=\frac{1}{3}$. For line $\mathrm{k}, \mathrm{m}=\frac{2}{3}$.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 3
Run: 9

Line k

Rise: 4
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{3}{9}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{6}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise:
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise: 6
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise: 6
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise: 6
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise: 6
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise: 6
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise: 6
Run:
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise: 6
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k

Rise: 6
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=$

Line k
Rise: 6
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{2}{6}$

Line k
Rise: 6
Run: 9
Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{2}{6}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{2}{6}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{6}{9}$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{2}{6}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{6}{9}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

It does not matter which two points you use when finding the slope of a line.
This can be illustrated by picking different points on line j and k below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line j
Rise: 2
Run: 6
Slope $=\frac{\text { rise }}{\text { run }}=\frac{2}{6}=\frac{\mathbf{1}}{\mathbf{3}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{6}{9}=\frac{\mathbf{2}}{\mathbf{3}}$

Algebra I Slope of an Oblique Line

Look at the lines shown below.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óriseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óriseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e
Line f

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e
Line f

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e
Line f

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e
Line f

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e
Line f

Rise:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.

Step 2: Calculate the ớiseô

Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e
Line f

Rise:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô \uparrow positive rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e
Line f

Rise:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô \uparrow positive rise
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.
Line e
Line f

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óriseô \uparrow positive rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4

Line f
Rise:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô \uparrow positive rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4

Line f
Rise:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óriseô \uparrow positive rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4

Line f
Rise:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óriseô \uparrow positive rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4

Line f
Rise: -4

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e Rise: +4

Line f
Rise: -4

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4

Line f
Rise: -4

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run:

Line f
Rise: -4

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run:

Line f
Rise: -4

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run:

Line f
Rise: -4
Run:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line e and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run:

Line f
Rise: -4
Run:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óriseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run:

Line f
Rise: -4
Run:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run:

Line f
Rise: -4
Run:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run:

Line f
Rise: -4
Run:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run:

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óriseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the óriseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

號
Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }} \xrightarrow{\text { negative run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

Slope $=\frac{\text { rise }}{\text { run }}$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line e and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }} \xrightarrow{\text { negative run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}=4
$$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

Slope $=\frac{\text { rise }}{\text { run }}=\underline{4}$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }} \xrightarrow{\text { negative run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8

Line f
Rise: -4
Run: +8

Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=-4$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=-4$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{-4}{8}$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{-4}{8}=$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise

Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{-4}{8}=\frac{\mathbf{- 1}}{\mathbf{2}}$

Algebra I Slope of an Oblique Line

Look at the lines shown below. Line \mathbf{e} and line \mathbf{f} have the same óteepnessô
Their difference is the ólirectionôin which they slant.
This makes their slopes different as well.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the óiseô \uparrow positive rise \downarrow negative rise
Step 3: Calculate the ớunô $\xrightarrow{\text { positive run }}$
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Line e
Rise: +4
Run: +8
Slope $=\frac{\text { rise }}{\text { run }}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ Slope $=\frac{\text { rise }}{\text { run }}=\frac{-4}{8}=\frac{\mathbf{- 1}}{\mathbf{2}}$

Algebra I Slope of an Oblique Line

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

In general,

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.

Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

In general, lines that slant up to the right

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

In general, lines that slant up to the right (or down to the left)

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

In general, lines that slant up to the right (or down to the left) have positive slopes.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

In general, lines that slant up to the right (or down to the left) have positive slopes. Lines that slant down to the right

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

In general, lines that slant up to the right (or down to the left) have positive slopes. Lines that slant down to the right (or up to the left)

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the órunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

In general, lines that slant up to the right (or down to the left) have positive slopes. Lines that slant down to the right (or up to the left) have negative slopes.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

To find the slope follow these steps.
Step 1: Mark two points on the line.
Step 2: Calculate the ớiseô
Step 3: Calculate the ớunô
Step 4: Use the above equation to find the slope.
Note: The slope is always reduced to lowest terms.

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line $\mathrm{a}: \mathrm{m}=$

Line b: $m=$

2. Line c: $m=$

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line $\mathrm{a}: \mathrm{m}=$ rise:

Line b: $m=$

2. Line c: $m=$

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line $\mathrm{a}: \mathrm{m}=$
rise:
Line b: $m=$

2. Line c: $m=$

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line $\mathrm{a}: \mathrm{m}=$
rise: +1
Line b: $\quad \mathrm{m}=$

2. Line $\mathrm{c}: \mathrm{m}=$

Line d: $\quad \mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line $\mathrm{a}: \mathrm{m}=$
rise: +1 run:
Line b: $\quad \mathrm{m}=$

2. Line c: $m=$

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line $\mathrm{a}: \mathrm{m}=$
rise: +1 run:
Line b: $\quad \mathrm{m}=$

2. Line c: $m=$

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line $\mathrm{a}: \mathrm{m}=$
rise: +1 run: +4
Line b: $\quad \mathrm{m}=$

2. Line c: $m=$

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{\mathbf{4}}$
2. Line c: $m=$
rise: +1 run: +4
Line b: $\mathrm{m}=$

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{\mathbf{4}}$
2. Line c: $m=$
rise: +1 run: +4
Line b: $\mathrm{m}=$

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{\mathbf{4}}$
2. Line c: $m=$
rise: +1 run: +4
Line b: $\quad \mathrm{m}=$
rise:

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: m =
rise:

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: m =
rise: +6

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: m =
rise: +6 run:

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: m =
rise: +6 run:

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: m =
rise: +6 run: +4

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}$
rise: +6 run: +4

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=$
rise: +6 run: +4

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

Line d: m =

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4
Do not write the slope as a mixed number.

Line d: $\quad \mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
2. Line c: $m=$
rise: +1 run: +4
Line b: $\quad \mathrm{m}=\frac{\mathbf{6}}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

Line d: $\quad \mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{\mathbf{4}}$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

2. Line c: $m=$ rise:

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{\mathbf{4}}$
rise: +1 run: +4
Line b: $\quad \mathrm{m}=\frac{\mathbf{6}}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

2. Line c: $m=$ rise:

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{\mathbf{4}}$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

2. Line c: $m=$ rise: -4

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4

2. Line $\mathrm{c}: \mathrm{m}=$ rise: -4 run:

Line d: $\quad \mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4

2. Line $\mathrm{c}: \mathrm{m}=$ rise: -4 run:

Line d: $\quad \mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{\mathbf{4}}$
rise: +1 run: +4
Line b: $\quad \mathrm{m}=\frac{\mathbf{6}}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

2. Line $\mathrm{c}: \mathrm{m}=$ rise: -4 run: +10

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
rise: +1 run: +4
2. Line $\mathrm{c}: \quad \mathrm{m}=\frac{-4}{10}$
rise: -4 run: +10

Line b: $\quad \mathrm{m}=\frac{\mathbf{6}}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line $\mathrm{a}: \mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4

2. Line $c: m=\frac{-4}{10}=$ rise: -4 run: +10

Line d: $\quad \mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$
rise: -4 run: +10

Line b: $\quad \mathrm{m}=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$
rise: -4 run: +10

Line b: $\quad m=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4

Line d: $\mathrm{m}=$

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$ rise: -4 run: +10
Line d: $\mathrm{m}=$ rise:

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
Line b: $\quad m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$ rise: -4 run: +10
Line d: $\mathrm{m}=$ rise:

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$ rise: -4 run: +10

Line b: $m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4

Line d: $\quad \mathrm{m}=$ rise: -6

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$ rise: -4 run: +10

Line b: $m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4

Line d: $\quad \mathrm{m}=$ rise: -6 run:

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$ rise: -4 run: +10

Line b: $m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4

Line d: $\quad \mathrm{m}=$ rise: -6 run:

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$ rise: -4 run: +10

Line b: $\quad \mathrm{m}=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4
Line d: $\quad \mathrm{m}=$ rise: -6 run: +3

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$
rise: -4 run: +10

Line b: $\quad \mathrm{m}=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4
Line d: $\quad m=\frac{-6}{3}$
rise: -6 run: +3

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$
rise: -4 run: +10

Line b: $\quad \mathrm{m}=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4
Line d: $m=\frac{-6}{3}=$ rise: -6 run: +3

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{\mathbf{1}}{4}$
rise: +1 run: +4
2. Line $\mathrm{c}: \quad \mathrm{m}=\frac{-4}{10}=\frac{\mathbf{- 2}}{\mathbf{5}}$
rise: -4 run: +10

Line b: $\quad m=\frac{6}{4}=\frac{\mathbf{3}}{\mathbf{2}}$
rise: +6 run: +4
Line d: $\quad m=\frac{-6}{3}=\mathbf{- 2}$
rise: -6 run: +3

Algebra I Slope of an Oblique Line

Find the slope of each line.

1. Line a: $\mathrm{m}=\frac{1}{4}$
rise: +1 run: +4
2. Line c: $m=\frac{-4}{10}=\frac{-2}{5}$
rise: -4 run: +10

Line b: $\quad m=\frac{6}{4}=\frac{3}{2}$
rise: +6 run: +4
Line d: $\quad m=\frac{-6}{3}=\mathbf{- 2}$ rise: -6 run: +3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$

x	y
-2	
-1	
0	
1	
2	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	
0	
1	
2	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	
1	
2	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	
2	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$ rise:

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$ rise:

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
rise: +8
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
rise: +8 run:

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=2 \mathrm{x}+1 \quad \mathrm{~m}=$
rise: +8 run:

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=$
rise: +8 run: +4
4. $\mathbf{y}=\mathbf{- 3 x}+2 \quad \mathrm{~m}=$

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2}$
$\mathrm{m}=$
rise: +8 run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$ rise:

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=-\mathbf{- 3 x}+2 \quad \mathrm{~m}=$ rise:

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$ rise: -9

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$ rise: -9 run:

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$ rise: -9 run:

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=$ rise: -9 run: +3

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad m=\frac{-9}{3}$
rise: -9 run: +3

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=\mathbf{- 3 x}+\mathbf{2} \quad \mathrm{m}=\frac{-9}{3}=$ rise: -9 run: +3

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=-\mathbf{3 x}+\mathbf{2} \quad \mathrm{m}=\frac{-9}{3}=\mathbf{- 3}$
rise: - 9 run: +3

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: +8 run: +4
4. $\mathbf{y}=-\mathbf{3 x}+\mathbf{2} \quad \mathrm{m}=\frac{-9}{3}=\mathbf{- 3}$
rise: -9 run: +3

x	y
-2	-3
-1	-1
0	1
1	3
2	5

x	y
-2	8
-1	5
0	2
1	-1
2	-4

What do you observe?

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: $+\hat{\beta}$ run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

4. $\mathbf{y}=-\mathbf{3 x}+2 \quad \mathrm{~m}=\frac{-9}{3}=-\mathbf{3}$

$$
\text { rise: -9 run: }+3
$$

x	y
-2	8
-1	5
0	2
1	-1
2	-4

What do you observe?

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
3. $\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \mathrm{m}=\frac{8}{4}=\mathbf{2}$
rise: $+\hat{\beta}$ run: +4

x	y
-2	-3
-1	-1
0	1
1	3
2	5

4. $\mathbf{y}=-\mathbf{3 x}+2 \quad m=\frac{-9}{3}=-3$ rise: -9 run: +3

x	y
-2	8
-1	5
0	2
1	-1
2	-4

What do you observe?

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	
0	
2	
4	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	
2	
4	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	
4	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	
-3	
0	
3	
6	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise:

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise:

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathrm{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run:

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathrm{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathrm{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run:

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	
-3	
0	
3	
6	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathbf{x}-3 \quad \mathrm{~m}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathbf{x}-3 \quad \mathrm{~m}=\frac{4}{8}=$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	
-3	
0	
3	
6	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	
0	
3	
6	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	
3	
6	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	
6	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$ rise:

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$ rise:

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$ rise: -6

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$ rise: -6 run:

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1$
$\mathrm{m}=$ rise: -6 run:

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1 \quad m=$ rise: - 6 run: +9

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}$ rise: -6 run: +9

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=$ rise: - 6 run: +9

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$ rise: - 6 run: +9

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8
6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$ rise: - 6 run: +9

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

What do you observe?

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$ rise: -6 run: +9

x	y
-6	5
-3	3
0	1
3	-1
6	-3

What do you observe?

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$ rise: $-\uparrow$ run: +9

What do you observe?

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$ rise: $-\uparrow$ run: +9

x	y
-6	5
-3	3
0	1
3	-1
6	-3

It $\hat{@}$ no coincidence !!!

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$ rise: - -1 run: +9

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Itô no coincidence !!!

In the equation $y=a x+b$

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$ rise: - -1 run: +9

x	y
-6	5
-3	3
0	1
3	-1
6	-3

It \hat{Q} no coincidence !!!

In the equation $y=\mathbf{a x}+b$, the slope of the line is the coefficient of $\mathrm{x}!!!$

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

x	y
-6	5
-3	3
0	1
3	-1
6	-3

slope
Itô no coincidence !!!

In the equation $y=\mathbf{a x}+b$, the slope of the line is the coefficient of $\mathrm{x}!!!$

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

6. $\begin{aligned} & y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3} \\ & \text { rise: }-\uparrow \text { run: }+9\end{aligned}$

x	y
-6	5
-3	3
0	1
3	-1
6	-3

slope Itố no coincidence !!!

In the equation $y=\mathbf{a x}+b$, the slope of the line is the coefficient of $x!!!$
This equation is usually written as $\mathbf{y}=\mathbf{m x}+\mathbf{b}$.

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$ rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$
rise:

x	y
-6	5
-3	3
0	1
3	-1
6	-3

Itô no coincidence !!!

In the equation $y=\mathbf{a x}+b$, the slope of the line is the coefficient of $x!!!$
This equation is usually written as $\mathbf{y}=\mathbf{m x}+\mathbf{b}$. Can you figure out why?

Algebra I Slope of an Oblique Line

Graph each equation, and then find the slope of the line.
5. $\mathbf{y}=\frac{1}{2} \mathbf{x}-\mathbf{3} \quad \mathrm{m}=\frac{4}{8}=\frac{\mathbf{1}}{\mathbf{2}}$
rise: +4 run: +8

x	y
-4	-5
-2	-4
0	-3
2	-2
4	-1

6. $y=\frac{-2}{3} x+1 \quad m=\frac{-6}{9}=\frac{-2}{3}$
rise:

x	y
-6	5
-3	3
0	1
3	-1
6	-3

slope
It $\hat{\text { on no coincidence !!! }}$

In the equation $y=\mathbf{a x}+b$, the slope of the line is the coefficient of $x!!!$
This equation is usually written as $\mathbf{y}=\mathbf{m x}+\mathbf{b}$. Can you figure out why?
slope

Algebra I y-intercept of a line

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
y=2 x+1
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
y=2 x+1 \quad \text { When } x=0
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \text { When } \mathrm{x}=0, \mathrm{y}=1
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} .
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{2 x}+\mathbf{1} \quad \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
& \mathbf{y}=\mathbf{- 3 x}+\mathbf{2}
\end{aligned}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2 x}+\mathbf{1} & \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } x=0
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2 x}+\mathbf{1} & \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } x=0, y=2 .
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2 x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} .
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{aligned}
& \mathbf{y}=\mathbf{2} \mathbf{x}+\mathbf{1} \quad \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
& \mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} \quad \text { When } x=0, y=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
& \mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3}
\end{aligned}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2} \mathbf{x}+\mathbf{1} & \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } x=0, y=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } x=0
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2} \mathbf{x}+\mathbf{1} & \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } x=0, y=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\mathbf{1} \mathbf{2} \mathbf{x}-\mathbf{3} & \text { When } x=0, y=-3 .
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} .
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2 x}+\mathbf{1} & \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} . \\
\mathbf{y}=\frac{\mathbf{- 2}}{\mathbf{3}} \mathbf{x}+\mathbf{1} &
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2} \mathbf{x}+\mathbf{1} & \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} . \\
\mathbf{y}=\frac{\mathbf{- 2}}{\mathbf{3}} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} . \\
\mathbf{y}=\frac{\mathbf{- 2}}{\mathbf{3}} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 .
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} . \\
\mathbf{y}=\frac{\mathbf{- 2}}{\mathbf{3}} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} .
\end{array}
$$

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} . \\
\mathbf{y}=\frac{\mathbf{- 2}}{\mathbf{3}} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} .
\end{array}
$$

Conclusion:

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2 x}+\mathbf{1} & \text { When } x=0, y=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} . \\
\mathbf{y}=\frac{\mathbf{- 2}}{\mathbf{3}} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} .
\end{array}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$,

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2 x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} . \\
\mathbf{y}=\mathbf{- \mathbf { 2 }} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} .
\end{array}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope

Algebra I y-intercept of a line

The y-intercept of a line is defined to be the value of y when $x=0$.
Find the y-intercept of each equation.

$$
\begin{array}{ll}
\mathbf{y}=\mathbf{2 x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1} . \\
\mathbf{y}=\mathbf{- 3} \mathbf{x}+\mathbf{2} & \text { When } \mathrm{x}=0, \mathrm{y}=2 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{2} . \\
\mathbf{y}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}-\mathbf{3} & \text { When } \mathrm{x}=0, \mathrm{y}=-3 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{- 3} . \\
\mathbf{y}=\mathbf{- \mathbf { 2 }} \mathbf{x}+\mathbf{1} & \text { When } \mathrm{x}=0, \mathrm{y}=1 . \text { Therefore, the } \mathbf{y} \text {-intercept is } \mathbf{1}
\end{array}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope:
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope:
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope:
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope:
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope:
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Slope:
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\stackrel{\downarrow}{\mathbf{m}} \mathbf{x}+\mathbf{b}$,
m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=\stackrel{\downarrow}{2 \mathrm{x}-1}$

Slope: 2
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\stackrel{\downarrow}{\mathbf{m}} \mathbf{x}+\mathbf{b}$,
m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Slope: 2
y-intercept:
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: $-1 \leftarrow$
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2
y-intercept: $-1 \longleftrightarrow$
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: $-1 \longleftrightarrow$
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: $2 \leftarrow$
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

$$
\text { 7. } \mathbf{y}=2 x-1 \quad \text { Slope }=\frac{\text { rise }}{\text { run }}
$$

Slope: $2 \leftarrow$
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2

> y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2

> y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

> y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$, m is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope: -3
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope: -3
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept: 11

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept: 1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept: 1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2
y-intercept: -1
8. $y=-3 x+1$

Slope: -3
y-intercept: $1 \leftarrow$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept: 1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: $-3 \leftarrow$
y-intercept: 1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{array}{cc}
\text { 8. } y=-3 x+1 & \\
\text { Slope: }-3 & \leftarrow \\
\text { y-intercept: } & 1
\end{array}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } y=-3 x+1
\end{aligned} \text { Slope }=\frac{\text { rise }}{\text { run }}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{gathered}
\text { 8. } y=-3 x+1
\end{gathered} \text { Slope }=\frac{\text { rise }}{\text { run }}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } \mathbf{y}=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& y \text {-intercept: } \\
& \hline 1
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } \mathbf{y}=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& y \text {-intercept: } \\
& \hline 1
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } y=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& \text { y-intercept: } 1 \quad \frac{-3}{1} \downarrow
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } \mathbf{y}=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& y \text {-intercept: } \\
& \hline 1
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } \mathbf{y}=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& y \text {-intercept: } \\
& \hline 1
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } \mathbf{y}=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& y \text {-intercept: } \\
& \hline 1
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } \mathbf{y}=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& y \text {-intercept: } \\
& \hline 1
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $y=2 x-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } \mathbf{y}=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& y \text {-intercept: } \\
& \hline 1
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

$$
\begin{aligned}
& \text { 8. } y=-3 x+1 \\
& \text { Slope: }-3 \leftarrow \\
& \text { y-intercept: } 1 \quad \frac{-3}{1} \downarrow
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept: 1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept: 1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

$$
y \text {-intercept: -1 }
$$

8. $y=-3 x+1$

Slope: -3
y-intercept: 1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
7. $\mathrm{y}=2 \mathrm{x}-1$

Slope: 2

> y-intercept: -1
8. $y=-3 x+1$

Slope: -3
y-intercept: 1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope:
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope:
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope:
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope:
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope:
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope:
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$,
\mathbf{m} is the slope and \mathbf{b} is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: $2 \leftarrow$
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

Slope: $\frac{2}{3} \leftarrow$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}
$$

Slope: $\frac{2}{3} \leftarrow$
y-intercept: 2

$$
\frac{2}{3}
$$

10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3} \leftarrow$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and \mathbf{b} is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope:
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

$$
\begin{aligned}
& \text { 9. } y=\frac{2}{3} x+2 \\
& \text { Slope: } \frac{2}{3} \\
& y \text {-intercept: } 2 \\
& \text { 10. } y=\frac{-3}{4} x-1 \\
& \text { Slope: } \frac{-3}{4} \\
& \text { y-intercept: }
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept: $-1 \leftarrow$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

$$
\begin{aligned}
& \text { 9. } y=\frac{2}{3} x+2 \\
& \text { Slope: } \frac{2}{3} \\
& y \text {-intercept: } 2 \\
& \text { 10. } y=\frac{-3}{4} x-1 \\
& \text { Slope: } \frac{-3}{4} \\
& \text { y-intercept: }
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

$$
\begin{aligned}
& \text { 9. } y=\frac{2}{3} x+2 \\
& \text { Slope: } \frac{2}{3} \\
& \text { y-intercept: } 2 \\
& \text { 10. } y=\frac{-3}{4} x-1 \\
& \text { Slope: } \frac{-3}{4} \leftarrow \\
& y \text {-intercept: } \\
& \text { (-1 }
\end{aligned}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:
10. $y=\frac{-3}{4} x-1 \quad$ Slope $=\frac{\text { rise }}{\text { run }}$

Slope: $\frac{-3}{4} \leftarrow$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:

$$
\begin{array}{cc}
\text { 10. } y=\frac{-3}{4} x-1 & \text { Slope }=\frac{\text { rise }}{\text { run }} \\
\text { Slope: } & \frac{-3}{4} \leftarrow \\
\text { y-intercept: } & -1
\end{array}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:

$$
\begin{array}{cc}
\text { 10. } y=\frac{-3}{4} x-1 & \text { Slope }=\frac{\text { rise }}{\text { run }} \\
\text { Slope: } \frac{-3}{4} \leftarrow & \frac{-3}{4} \downarrow \\
\text { y-intercept: } & -1
\end{array}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, \mathbf{m} is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:
10. $y=\frac{-3}{4} x-1 \quad$ Slope $=\frac{\text { rise }}{\text { run }}$ Slope: $\frac{-3}{4} \leftarrow$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:
10. $y=\frac{-3}{4} x-1 \quad$ Slope $=\frac{\text { rise }}{\text { run }}$ Slope: $\frac{-3}{4} \leftarrow$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:
10. $y=\frac{-3}{4} x-1 \quad$ Slope $=\frac{\text { rise }}{\text { run }}$ Slope: $\frac{-3}{4} \leftarrow$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:
10. $y=\frac{-3}{4} x-1 \quad$ Slope $=\frac{\text { rise }}{\text { run }}$ Slope: $\frac{-3}{4} \leftarrow$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:
10. $y=\frac{-3}{4} x-1 \quad$ Slope $=\frac{\text { rise }}{\text { run }}$ Slope: $\frac{-3}{4} \leftarrow$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:
10. $y=\frac{-3}{4} x-1 \quad$ Slope $=\frac{\text { rise }}{\text { run }}$ Slope: $\frac{-3}{4} \leftarrow$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:

$$
\text { 10. } y=\frac{-3}{4} x-1 \quad \text { Slope }=\frac{\text { rise }}{\text { run }}
$$

$$
\text { Slope: } \frac{-3}{4} \leftarrow
$$

$$
\text { y-intercept: }-1
$$

$$
\frac{-3}{4} \xrightarrow{\downarrow}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.

> 9. $y=\frac{2}{3} x+2$
> Slope: $\frac{2}{3}$
> y-intercept:

$$
\begin{aligned}
& \text { 10. } y=\frac{-3}{4} x-1
\end{aligned} \text { Slope }=\frac{\text { rise }}{\text { run }}
$$

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and \mathbf{y}-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{-3}{\mathbf{4}}$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{\mathbf{- 3}}{\mathbf{4}}$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the \mathbf{y}-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$
y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{\mathbf{- 3}}{\mathbf{4}}$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing a line using the slope and y-intercept
For each of the following equations, (a) give the slope, (b) give the y-intercept, and (c) graph the equation. Label each graph with its equation.
9. $y=\frac{2}{3} x+2$

Slope: $\frac{2}{3}$ y-intercept: 2
10. $y=\frac{-3}{4} x-1$

Slope: $\frac{\mathbf{- 3}}{\mathbf{4}}$
y-intercept: -1

Conclusion: In the equation $\mathbf{y}=\mathbf{m x}+\mathbf{b}$, m is the slope and b is the y-intercept !!!

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

Every point on this line has a y-coordinate of $\mathbf{- 5}$.

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines :

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Every point on this line has
Horizontal Lines : $\mathbf{y}=\mathbf{k}$ an x-coordinate of 4.

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Every point on this line has
Horizontal Lines : $\mathbf{y}=\mathbf{k}$ an x-coordinate of 4. Right?

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Every point on this line has an x-coordinate of $\mathbf{- 7}$.

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

These are examples of vertical lines.
Horizontal Lines : $\mathbf{y}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

These are examples of vertical lines.
Horizontal Lines : $\mathbf{y}=\mathbf{k}$
Vertical Lines :

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $\mathrm{y}=-5$
13. $x=4$
14. $x=-7$

These are examples of vertical lines.
Horizontal Lines : $\mathbf{y}=\mathbf{k}$
Vertical Lines : $\mathbf{x}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$
13. $x=4$
14. $x=-7$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$
Vertical Lines : $\mathbf{x}=\mathbf{k}$

Algebra I Graphing horizontal and vertical lines
Graph each of the following equations. Label each graph with its equation.
11. $\mathrm{y}=3$
12. $y=-5$

Good luck on your homework !!

14. $x=-1$

Horizontal Lines : $\mathbf{y}=\mathbf{k}$
Vertical Lines : $\mathbf{x}=\mathbf{k}$

