Algebra I Lesson \#3 Unit 3 Class Worksheet \#3 For Worksheets \#4-6

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?
2. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?
2. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?
\mathbf{x}
2. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{1}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+1 \\
& x+\mathbf{2}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{1} \\
& \mathbf{x}+\mathbf{2} \\
& \mathbf{x}+\mathbf{3}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 .

What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{1} \\
& \mathbf{x}+\mathbf{2} \\
& \mathbf{x}+\mathbf{3}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 .

What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{1} \\
& \mathbf{x}+\mathbf{2} \\
& \mathbf{x}+\mathbf{3}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{1} \\
& \mathbf{x}+\mathbf{2} \\
& \mathbf{x}+\mathbf{3}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+1 \\
& x+2 \\
& x+3
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{ll}
\mathbf{x} & \mathbf{4 x}+ \\
\mathbf{x}+\mathbf{1} & \\
\mathbf{x}+\mathbf{2} & \\
\mathbf{x}+\mathbf{3} &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+6 \\
x+1 & \\
x+2 & \\
x+3 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{1} \\
& \mathbf{x}+\mathbf{2} \\
& \mathbf{x}+\mathbf{3}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+6=150 \\
x+1 & \\
x+2 & \\
x+3 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+6=150 \\
x+1 & \\
x+2 & \\
x+3 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{1} \\
& \mathbf{x}+\mathbf{2} \\
& \mathbf{x}+\mathbf{3}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x \\
x+2 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x= \\
x+2 & \\
x+3 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & \\
x+3 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x \\
x+3 & x
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x= \\
x+3 & x
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x=36
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x=36
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x=36 \\
x+3 & x+1=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x=36 \\
x+3 & x+1=37
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & \mathbf{x}+\mathbf{x}=\mathbf{1 5 0} \\
\mathrm{x}+1 & \mathbf{4 x}=\mathbf{1 4 4} \\
\mathrm{x}+\mathbf{2} & \mathrm{x}=\mathbf{3 6} \\
\mathrm{x}+3 & \mathrm{x}+\mathbf{1}=\mathbf{3 7} \\
& \mathrm{x}+\mathbf{2}=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & \mathbf{x}+\mathbf{x}=\mathbf{1 5 0} \\
\mathrm{x}+1 & \mathbf{4 x}=\mathbf{1 4 4} \\
\mathrm{x}+2 & \mathrm{x}=\mathbf{3 6} \\
\mathrm{x}+3 & \mathrm{x}+\mathbf{1}=\mathbf{3 7} \\
& \mathrm{x}+\mathbf{2}=\mathbf{3 8}
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & \mathbf{4 x}=\mathbf{1 4 4} \\
x+2 & x=\mathbf{3 6} \\
x+3 & x+1=\mathbf{3 7} \\
& x+2=\mathbf{3 8} \\
& x+3=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x=36 \\
x+3 & x+1=\mathbf{3 7} \\
& x+2=\mathbf{3 8} \\
& x+3=39
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x=36 \\
x+3 & x+1=\mathbf{3 7} \\
& x+2=\mathbf{3 8} \\
& x+3=\mathbf{3 9}
\end{array}
$$

The numbers are 36, 37, 38, and 39.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+6=150 \\
x+1 & 4 x=144 \\
x+2 & x=36 \\
x+3 & x+1=\mathbf{3 7} \\
& x+2=\mathbf{3 8} \\
& x+3=\mathbf{3 9}
\end{array}
$$

The numbers are 36, 37, 38, and 39.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?
\mathbf{x}

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{2}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+ \\
x+2 & \\
x+4 & \\
x+6
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+12 \\
x+2 & \\
x+4 & \\
x+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+12=100 \\
x+2 & \\
x+4 \\
x+6
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+12=100 \\
x+2 & \\
x+4 \\
x+6
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+12=100 \\
x+2 & \\
x+4 \\
x+6
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x \\
x+4 & \\
x+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x= \\
x+4 & \\
x+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & \\
x+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
\mathrm{x} & 4 x+12=100 \\
\mathrm{x}+2 & 4 \mathrm{x}=88 \\
\mathrm{x}+4 & \mathrm{x} \\
\mathrm{x}+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x= \\
x+6 & x
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
\mathrm{x} & 4 x+12=100 \\
\mathrm{x}+2 & 4 \mathrm{x}=88 \\
\mathrm{x}+4 & \mathrm{x}=22 \\
\mathrm{x}+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22 \\
x+6 & x+2=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22 \\
x+6 & x+2=24
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22 \\
x+6 & x+2=24 \\
& x+4=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22 \\
x+6 & x+2=24 \\
& x+4=26
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22 \\
x+6 & x+2=24 \\
& x+4=\mathbf{2 6} \\
& x+6=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22 \\
x+6 & x+2=24 \\
& x+4=26 \\
& x+6=28
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22 \\
x+6 & x+2=24 \\
& x+4=26 \\
& x+6=28
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The sum of four consecutive even whole numbers is 100 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=100 \\
x+2 & 4 x=88 \\
x+4 & x=22 \\
x+6 & x+2=24 \\
& x+4=26 \\
& x+6=28
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?
\mathbf{x}

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{aligned}
& \mathbf{x} \\
& \mathbf{x}+\mathbf{2}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+ \\
x+2 & \\
x+4 & \\
x+6
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+12 \\
x+2 & \\
x+4 & \\
x+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{aligned}
& x \\
& x+2 \\
& x+4 \\
& x+6
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+12=200 \\
x+2 & \\
x+4 \\
x+6
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+12=200 \\
x+2 & \\
x+4 \\
x+6
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{ll}
x & 4 x+12=200 \\
x+2 & \\
x+4 \\
x+6
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x \\
x+4 & \\
x+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x= \\
x+4 & \\
x+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & \\
x+6 &
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & x \\
x+6 & x
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & x= \\
x+6 & x
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & x=47 \\
x+6 & x
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & x=47 \\
x+6 & x
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & x=47 \\
x+6 & x+2=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & x=47 \\
x+6 & x+2=49
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & x=47 \\
x+6 & x+2=49 \\
& x+4=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=\mathbf{2 0 0} \\
x+2 & 4 x=188 \\
x+4 & x=47 \\
x+6 & x+2=49 \\
& x+4=51
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=\mathbf{2 0 0} \\
x+2 & 4 x=188 \\
x+4 & x=47 \\
x+6 & x+2=49 \\
& x+4=51 \\
& x+6=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=\mathbf{2 0 0} \\
x+2 & \mathbf{x x}=\mathbf{1 8 8} \\
\mathrm{x}+\mathbf{4} & \mathrm{x}=\mathbf{4 7} \\
\mathrm{x}+\mathbf{6} & \mathrm{x}+\mathbf{2}=\mathbf{4 9} \\
& \mathrm{x}+\mathbf{4}=\mathbf{5 1} \\
& \mathrm{x}+\mathbf{6}=\mathbf{5 3}
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The sum of four consecutive odd whole numbers is 200 . What are the whole numbers?

$$
\begin{array}{lc}
x & 4 x+12=200 \\
x+2 & 4 x=188 \\
x+4 & x=47 \\
x+6 & x+2=49 \\
& x+4=51 \\
& x+6=53
\end{array}
$$

The numbers are 47, 49, 51, and 53.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

Ken's number :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

Ken's number : x

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : x

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $\mathbf{x} \quad \mathbf{6 x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

Ken's number : \mathbf{x} 6x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

Ken's number : $\mathrm{x} \quad \mathbf{6 x}-$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

Ken's number : $x \quad 6 x-4$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

Ken's number : $x \quad 6 x-4$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken仑̂ original number?

Ken's number : $x \quad 6 x-4=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

$$
6 x
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

$$
6 x=
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

$$
6 x=192
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

$$
6 x=192
$$

x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

$$
\begin{gathered}
6 x=192 \\
x=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

$$
\begin{array}{r}
6 x=192 \\
x=32
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Ken@̂ original number?

Ken's number : $x \quad 6 x-4=188$

$$
\begin{array}{r}
6 x=192 \\
x=32
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?
$\begin{array}{rlr}\text { Ken's number : } x \quad 6 x-4=188 \quad \text { Ken's number was } 32 . \\ \mathbf{6 x}=192 \\ x=32 & \\ & \end{array}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188 . What was Kenô original number?

Ken's number : $x \quad 6 x-4=188$

$$
\begin{array}{r}
6 x=192 \\
x=32
\end{array}
$$

Ken's number was 32.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : x

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $\mathbf{x} \quad \mathbf{x}$ -

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad x-5$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad x-5$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 \mathrm{x}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 \mathrm{x}-
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10=
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10=130
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10=130
$$

2x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10=130
$$

$$
2 \mathrm{x}=
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10=130
$$

$$
2 x=140
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

$$
\begin{array}{r}
2(x-5)=130 \\
2 x-10=130
\end{array}
$$

$$
2 x=140
$$

$$
\mathbf{x}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10=130
$$

$$
2 x=140
$$

$$
\mathbf{x}=
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10=130
$$

$$
2 x=140
$$

$$
x=70
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

Kim's number : $x \quad 2(x-5)=130$

$$
2 x-10=130
$$

$$
2 x=140
$$

$$
x=70
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

$$
\begin{array}{cc}
\text { Kim's number : } x & 2(x-5)=130 \quad \text { Kim's number was } 70 . \\
2 x-10=130 \\
2 x=140 \\
x=70
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130 . What was Kimô original number?

$$
\text { Kim's number : } \mathrm{x} \quad \begin{gathered}
2(\mathrm{x}-5)=130 \\
2 \mathrm{x}-10=130 \\
2 \mathrm{x}=140 \\
\mathrm{x}=70
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

Bill :

Steve :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving
 time
 (hrs.)

Bill :

Steve :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving
 time
 (hrs.)

Bill : $\quad x$

Steve :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving
 time
 (hrs.)

Bill : $\quad \mathbf{x}$

Steve: x

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving
 time
 (hrs.)

Bill : $\quad \mathbf{x}$

Steve: x

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving
 time
 (hrs.)

Bill : $\quad \mathbf{x}$

Steve: x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

```
driving
    time rate
(hrs.) (mph)
```


Bill : $\quad x$

Steve: x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

```
driving time rate
(hrs.) (mph)
```

Bill : $\quad 35$
Steve: x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving time rate
 (hrs.) (mph)

Bill : $\quad \mathbf{3 5}$
Steve: x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving time rate
 (hrs.) (mph)

Bill : $\quad \mathbf{3 5}$
Steve : x 42

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving time rate distance
 (hrs.) (mph) (miles)

Bill : $\quad \mathbf{x}$
 35

Steve : \mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving time rate distance (hrs.) (mph) (miles)

Bill : x $\quad \mathbf{3 5}$ 35x

Steve : x 42

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

driving time rate distance (hrs.) (mph) (miles)

Bill : x 35 35x

Steve : x 42 $\mathbf{~ 4 2 x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?
driving time rate distance
(hrs.) (mph) (miles)

Bill : x 35 35x
Steve : x 42 42
total distance :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

```
driving time rate distance (hrs.) (mph) (miles)
```

Bill : x 35 35x

Steve : $x \quad 42 \quad 42 x$

total distance :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

```
driving time rate distance (hrs.) (mph) (miles)
```

Bill : $x \quad 35$ 35x

Steve : x 42 42x
total distance : 231

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time	rate (hrs.)	distance $(\mathbf{m p h})$	
(miles)				

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$
	total distance	$\mathbf{2 3 1}$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}$
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	
	total distance $:$	$\mathbf{2 3 1}$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$
	total distance	$\mathbf{2 3 1}$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$
	total distance	$\mathbf{2 3 1}$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$
	total distance	$\mathbf{2 3 1}$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	$\mathbf{7 7 x}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	
	total distance $:$	$\mathbf{2 3 1}$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	$\mathbf{7 7 x}=$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	
	total distance $:$	$\mathbf{2 3 1}$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	$\mathbf{7 7 x}=\mathbf{2 3 1}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	
	total distance $:$	$\mathbf{2 3 1}$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	$\mathbf{7 7 x}=\mathbf{2 3 1}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	\mathbf{x}
	total distance	$\mathbf{2 3 1}$	$\mathbf{2 3 1}$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time	rate (hrs.)	distance $(\mathbf{m p h})$	(miles)
Bill :	\mathbf{x}	$\mathbf{3 5} \mathbf{x}+\mathbf{4 2 x}=\mathbf{3 5 1}$		
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	$\mathbf{7 7 x}=\mathbf{2 3 1}$
	total distance $:$	$\mathbf{2 3 1}$	$\mathbf{x}=$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	$\mathbf{7 7 x}=\mathbf{2 3 1}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	$\mathbf{x}=\mathbf{3}$
	total distance $:$	$\mathbf{2 3 1}$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	$\mathbf{7 7 x}=\mathbf{2 3 1}$
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	$\mathbf{x}=\mathbf{3}$
	total distance $:$	$\mathbf{2 3 1}$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$	They left at 8:00 AM.
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	$\mathbf{7 7 x}=\mathbf{2 3 1}$	
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	$\mathbf{x}=3$	
	total distance $:$	231			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$	They left at 8:00 AM.
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$	$\mathbf{7 7 x}=\mathbf{2 3 1}$	They drove for 3 hours.
Steve :	\mathbf{x}	$\mathbf{4 2}$	$\mathbf{4 2 x}$	$\mathbf{x}=3$	
	total distance $:$	231			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$	They left at 8:00 AM.
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$		$77 \mathrm{x}=231$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)	$\mathbf{3 5 x}+\mathbf{4 2 x}=\mathbf{2 3 1}$	They left at 8:00 AM.
Bill :	\mathbf{x}	$\mathbf{3 5}$	$\mathbf{3 5 x}$		$77 \mathrm{x}=231$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

Ann :
Kate :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

driving time
 (hrs.)

Ann :

Kate :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

driving time
 (hrs.)

Ann : $\quad x$

Kate :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

driving time
 (hrs.)

Ann : $\quad x$
Kate : \mathbf{x}

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

driving time
 (hrs.)

Ann : $\quad x$
Kate : \mathbf{x}

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

driving time
 (hrs.)

Ann : $\quad x$
Kate : \mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

```
driving
    time rate
(hrs.) (mph)
```

Ann : $\quad x$
Kate : \mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

```
driving
    time rate
(hrs.) (mph)
```

Ann : 45
Kate : \mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

```
driving
    time rate
(hrs.) (mph)
```

Ann : $\quad 45$
Kate : \mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

```
driving
    time rate
(hrs.) (mph)
```

Ann : $x 45$
Kate : \mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

driving time rate distance
 (hrs.) (mph) (miles)

Ann : $\quad 45$

Kate : \mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving
time

(hrs.) \quad\begin{tabular}{c}
rate

(mph)

distance

(miles)
\end{tabular}

Ann : x 45 4

Kate : x 38

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

driving		
me		
(hrs.)	(mph)	

Ann : x 45 45x

Kate : $\mathbf{x} 38$ 38x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles)

Ann :	x	$\mathbf{4 5}$	$\mathbf{4 5 x}$
Kate :	\mathbf{x}	$\mathbf{3 8}$	$\mathbf{3 8 x}$

total distance :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles)

Ann :	\mathbf{x}	$\mathbf{4 5}$	$\mathbf{4 5 x}$
Kate :	\mathbf{x}	$\mathbf{3 8}$	$\mathbf{3 8 x}$

total distance :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles)

Ann :	\mathbf{x}	45	45x
Kate :	\mathbf{x}	38	38x
	total distance : 415		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

Ann :	\mathbf{x}	$\mathbf{4 5}$	$\mathbf{4 5 x}$
Kate :	\mathbf{x}	$\mathbf{3 8}$	$\mathbf{3 8 x}$

total distance : 415

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

| driving
 time
 (hrs.) |
| :---: | | rate |
| :---: |
| $(\mathbf{m p h})$ | | distance |
| :---: |
| (miles) |$\quad \mathbf{4 5 x}+\mathbf{3 8 x}$

Ann :	\mathbf{x}	$\mathbf{4 5}$	$\mathbf{4 5 x}$
Kate :	x	$\mathbf{3 8}$	$\mathbf{3 8 x}$

total distance : 415

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	x	45	45x
Kate :	\mathbf{x}	38	38x
	total distance : 415		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	\mathbf{x}	$\mathbf{4 5}$		$\mathbf{4 5 x}$
Kate :	\mathbf{x}	38		$\mathbf{3 8 x}$
	total distance	$\mathbf{4 1 5}$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	x	45	45x	83x
Kate :	\mathbf{x}	38	38x	
	tota	tan		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	\mathbf{x}	$\mathbf{4 5}$	$\mathbf{4 5 x}$	$\mathbf{3 3 x}=$
Kate :	\mathbf{x}	$\mathbf{3 8}$	$\mathbf{3 8 x}$	
		total distance $:$	$\mathbf{4 1 5}$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	x	45	45x	$83 \mathrm{x}=415$
Kate :	\mathbf{x}	38	38x	
	total distance : 415			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	\mathbf{x}	45	45x	$83 x=415$
Kate :	\mathbf{x}	38	38x	
		an		x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	\mathbf{x}	45	45x	$83 x=415$
Kate :	x	38	38x	
		ance	415	\mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	x	45	45x	$83 x=415$
Kate :	\mathbf{x}	38	38x	
	total distance : 415			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance
(hrs.) (mph) (miles) $\quad 45 x+38 x=415$

Ann :	x	45	45x	$83 x=415$
Kate :	\mathbf{x}	38	38x	
	total distance : 415			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance (hrs.) (mph) (miles)

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance (hrs.) (mph) (miles)

Ann :	x	45	45	$45 x+38 x=415$	They left at 1:00 PM.
	x	45	45x	$83 \mathrm{x}=415$	
Kate :	\mathbf{x}	38	38x		hey drove for 5 hours.
	total distance : 415			$x=5$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance (hrs.) (mph) (miles)

total distance : 415
$45 x+38 x=415 \quad$ They left at 1:00 PM. $83 x=415 \quad$ They drove for 5 hours.
$x=5$
They will meet at 6:00 PM.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
driving time rate distance (hrs.) (mph) (miles)

total distance : 415
$45 x+38 x=415 \quad$ They left at 1:00 PM. $83 x=415 \quad$ They drove for 5 hours.
$x=5$
They will meet at 6:00 PM.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving
 time
 (hrs.)

Sue :

Mark :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

> driving
> time
> (hrs.)

Sue:
Mark : $\quad x$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

$$
\begin{aligned}
& \text { driving } \\
& \text { time } \\
& \text { (hrs.) }
\end{aligned}
$$

Sue: $x+3$
Mark : $\quad x$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

$$
\begin{aligned}
& \text { driving } \\
& \text { time } \\
& \text { (hrs.) }
\end{aligned}
$$

Sue: $x+3$
Mark : $\quad x$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

$$
\begin{aligned}
& \text { driving } \\
& \text { time } \\
& \text { (hrs.) }
\end{aligned}
$$

Sue: $x+3$
Mark : $\quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

```
driving
    time rate
    (hrs.) (mph)
```

Sue: $x+3$
Mark : $\quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

```
driving
    time rate
    (hrs.) (mph)
```

Sue: $x+3$
Mark : $\quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

> driving time (hrs.) $\underset{\text { rate }}{\text { (mph) }}$

Sue: $\mathrm{x}+3 \mathrm{3}$
Mark: $\quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

> driving time (hrs.) $\underset{\text { rate }}{\text { (mph) }}$

Sue: $\mathrm{x}+3 \mathrm{3}$
Mark: $\quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

> driving time (hrs.) $\underset{\text { rate }}{\text { (mph) }}$

Sue: $\mathrm{x}+3 \mathrm{3}$
Mark : x 45

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

```
driving
    time rate distance
    (hrs.) (mph) (miles)
```

Sue: $\mathrm{x}+3 \mathrm{3}$
Mark : x 45

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

```
driving
    time rate distance
    (hrs.) (mph) (miles)
Sue: \(\begin{array}{llll}\mathrm{x}+3 & 52 & 52(x+3)\end{array}\)
```

Mark : 45

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

```
driving
    time rate distance
    (hrs.) (mph) (miles)
    Sue: x+3 52 52(x+3)
Mark : x 45 45x
```

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?
driving
time rate distance
(hrs.) (mph) (miles)
Sue: $\mathbf{x}+3 \quad 52 \quad 52(x+3)$
Mark: $\quad 45$ 45x
total distance :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate (mph)	distance (miles)
$\mathbf{x + 3}$	52	52($x+3$)
x	$\mathbf{4 5}$	$\mathbf{4 5 x}$

total distance :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?
driving
time rate distance
(hrs.) (mph) (miles)
Sue : $\mathbf{x}+3 \quad 52 \quad 52(x+3)$
Mark : $\quad \mathbf{x} \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?
driving $_{\text {time }}$ rate distance $52(x+3)$
(hrs.) (mph) (miles)
Sue : $\begin{array}{llll}\mathbf{x}+3 & 52 & 52(x+3)\end{array}$
Mark : $\quad \mathbf{x} \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

$\begin{gathered} \text { driving } \\ \text { time } \\ \text { (hrs.) } \end{gathered}$	$\begin{gathered} \text { rate } \\ (\mathrm{mph}) \end{gathered}$	distance (miles)	$52(\mathrm{x}+3)+$
$\mathrm{x}+3$	52	52(x+3)	
\mathbf{x}	45	45x	
total distance : 350			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate distance (mph) (miles)	$52(x+3)+45 x$
$\mathrm{x}+3$	$5252(x+3)$	
\mathbf{x}	45 45x	
total dis	stance : 350	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	$\begin{aligned} & \text { rate } \\ & (\mathrm{mph}) \end{aligned}$	distance (miles)	$52(x+3)+45 x=$
$\mathbf{x}+3$	52	52(x+3)	
\mathbf{x}	45	45x	
total distance : 350			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate distance (mph) (miles)	$52(x+3)+45 x=350$
$\mathbf{x}+3$	52 52(x+3)	
x	45 45x	
total distance : 350		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate distance (mph) (miles)	$52(x+3)+45 x=350$
$\mathbf{x}+3$	52 52(x+3)	
x	45 45x	
total distance : 350		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate distance (mph) (miles)	$\begin{aligned} & 52(x+3)+45 x=350 \\ & 52 x \end{aligned}$
$\mathrm{x}+3$	$5252(x+3)$	
\mathbf{x}	45 45x	
total dis	stance : 350	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	$\begin{array}{r} \text { rate } \\ (\mathrm{mph}) \end{array}$	distance (miles)	$\begin{aligned} & 52(x+3)+45 x=350 \\ & 52 x+ \end{aligned}$
$\mathrm{x}+3$	52	52(x+3)	
\mathbf{x}	45	45x	
total distance : 350			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	$\begin{gathered} \text { rate } \\ \text { (mph) } \end{gathered}$	distance (miles)	$\begin{aligned} & 52(x+3)+45 x=350 \\ & 52 x+156 \end{aligned}$
$\mathbf{x}+3$	52	52(x+3)	
x	45	45x	
total distance : 350			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate distance (mph) (miles)	$\begin{aligned} & 52(x+3)+45 x=350 \\ & 52 x+156+ \end{aligned}$
$\mathrm{x}+3$	$5252(x+3)$	
\mathbf{x}	45 45x	
total dis	stance : 350	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)
$\mathbf{5 2 (x + 3)}+\mathbf{4 5 x}=350$		
$\mathbf{5 2 x}+\mathbf{1 5 6}+\mathbf{4 5 x}$		

Sue : $\mathrm{x}+3 \mathrm{5} \quad 52(\mathrm{x}+3)$
Mark : $\quad \mathbf{x} \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	$\underset{(\mathrm{mph})}{\text { rate }} \boldsymbol{\text { distance }}$ (miles)	$\begin{aligned} & 52(x+3)+45 x=350 \\ & 52 x+156+45 x= \end{aligned}$
$\mathrm{x}+3$	$5252(\mathrm{x}+3)$	
\mathbf{x}	45 45x	
total di	stance : 350	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue: $\mathbf{x}+3 \quad 52 \quad 52(x+3)$
Mark : $x \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)
$\mathbf{5 2}(\mathrm{x}+3)+\mathbf{4 5 x}=\mathbf{3 5 0}$		
$\mathbf{5 2 x}+\mathbf{1 5 6}+\mathbf{4 5 x}=\mathbf{3 5 0}$		

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 & 52(x+3) \\ \text { 97x }\end{array}$
Mark : $x \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.)	rate $(\mathbf{m p h})$	distance (miles)
$\mathbf{5 2}(\mathrm{x}+3)+\mathbf{4 5 x}=\mathbf{3 5 0}$		
$\mathbf{5 2 x}+\mathbf{1 5 6}+\mathbf{4 5 x}=\mathbf{3 5 0}$		

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 & 52(x+3) \\ \text { 97x }\end{array}$
Mark : $x \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue: $\begin{array}{llll}\mathrm{x}+3 & 5252(x+3) & 97 x+156\end{array}$
Mark : $x \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue : $\mathrm{x}+3 \mathrm{52} \quad \mathbf{5 2}(\mathrm{x}+3) \quad 97 \mathrm{x}+156=$
Mark : $x \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(x+3) & 97 x+156=350\end{array}$
Mark : $x \quad 45 \quad 45 x$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(x+3) & 97 x+156=350\end{array}$
Mark : $x \quad 45 \xrightarrow[35 x]{ }$ 97x
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(x+3) & 97 x+156=350\end{array}$
Mark : $x \quad 45 \xrightarrow{45 x} \quad 97 x=$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(x+3) & 97 x+156=350\end{array}$
Mark : $\quad \mathbf{x} \quad 45 \quad 45 \mathrm{x} \quad 97 \mathrm{x}=194$
total distance : 350

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(\mathrm{x}+3) \quad 97 \mathrm{x}+156=350\end{array}$
Mark : $x \quad 45 \quad 45 x$
total distance : 350
$97 \mathrm{x}=194$
\mathbf{x}

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Mark : $\quad \mathbf{x} \quad 45$ 45x

$$
\begin{aligned}
97 x & =194 \\
x & =
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(x+3) & 97 x+156=350\end{array}$
Mark : $\quad \mathbf{x} \quad 45$ 45x

$$
\begin{aligned}
97 x & =194 \\
x & =2
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart.

Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=3$

Sue : $\begin{array}{ccc}\mathrm{x}+3 \mathrm{5} & 52(\mathrm{x}+3) \quad 97 \mathrm{x}+156=350\end{array}$
Mark : $\quad x \quad 45$ 45x

$$
\begin{aligned}
97 x & =194 \\
x & =2
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=35$

Mark : $x \quad 45 \quad 45 x$
total distance : 350

$$
\begin{aligned}
97 x & =194 \quad \text { Mark left at 11:00 AM. } \\
x & =2
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	rate distance	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=35$

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(x+3) & 97 x+156=350\end{array}$

Mark : $\quad \mathbf{4 5} \quad 45 \mathrm{x}$ total distance : 350

$$
\begin{array}{rlr}
97 \mathrm{x} & =194 & \\
x=2 & & \text { Mark left at 11:00 AM. } \\
\mathrm{x} & \text { He drove for } 2 \text { hours. }
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time	ce	$52(x+3)+45 x=350$
(hrs.)	(mph) (miles)	$52 \mathrm{x}+156+45 \mathrm{x}=35$

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(x+3) & 97 x+156=350\end{array}$

Mark : $\quad \mathbf{x} \quad 45 \quad 45 x$ total distance : 350

$$
\begin{array}{rlr}
97 x & =194 & \\
x=2 & \text { Mark left at 11:00 AM. } \\
x=\text { He drove for } 2 \text { hours. }
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 & 52(\mathrm{x}+3) \\ \mathbf{3}) & 97 \mathrm{x}+156=350\end{array}$

Mark : $x \quad 45 \quad 45 x$ total distance : 350

97x $=194 \quad$ Mark left at 11:00 AM.
$\mathbf{x}=2 \quad$ He drove for 2 hours.
They will meet at 1:00 PM.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#3 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

Sue : $\begin{array}{lll}\mathrm{x}+3 & 52 \quad 52(\mathrm{x}+3) \quad 97 \mathrm{x}+156=350\end{array}$
Mark: $x \quad 45 \xrightarrow{45 x} \quad 97 x=194 \quad$ Mark left at 11:00 AM.

Good luck on your homework.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.
