Algebra I Lesson #3 Unit 3 Class Worksheet #3 For Worksheets #4 - 6

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

X

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x x + 1

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x x + 1 x + 2

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x x + 1 x + 2 x + 3

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x x + 1 x + 2 x + 3

Solve each of the following problems algebraically (one variable solution).

- 1. The sum of four consecutive whole numbers is 150. What are the whole numbers?
 - xx + 1 x + 2 x + 3

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x x + 1 x + 2 x + 3

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x 4x x + 1 x + 2 x + 3

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

$$x = 4x + 1$$

 $x + 2$
 $x + 3$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x = 4x + 6x + 2 = x + 3

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x = 4x + 6 = x + 2x + 2 = x + 3

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x = 4x + 6 = 150x + 2 = x + 3

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x = 4x + 6 = 150x + 2 = x + 3

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x = 4x + 6 = 150x + 2 = x + 3

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{l} x & & \\ x + 1 & & \\ x + 2 & & \\ x + 3 & & \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{l} x & & \\ x + 1 & & \\ x + 2 & & \\ x + 3 & & \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{l} x & & \\ x + 1 & & \\ x + 2 & & \\ x + 3 & \end{array} & 4x = 144 \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{ll} x & & & \\ x + 1 & & & \\ x + 2 & & & \\ x + 3 & & x \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{ll} x & & & \\ x + 1 & & & \\ x + 2 & & & \\ x + 3 & & & \\ x = \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x4x + 6 = 150x + 14x = 144x + 24x = 144x + 3x = 36

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x4x + 6 = 150x + 14x = 144x + 24x = 144x + 3x = 36

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x + 1x + 2x + 3x + 3x + 1 = 4x + 6 = 1504x = 144x = 36x + 1 =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{ll} x & & \\ x + 1 & & \\ x + 2 & & \\ x + 3 & & \\ x + 3 & & \\ x + 1 = 37 \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{ll} x & & & \\ x + 1 & & \\ x + 2 & & \\ x + 3 & & \\ x + 3 & & \\ x + 1 = 36 \\ & & \\ x + 1 = 37 \\ & & \\ x + 2 = \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{ll} x & & & \\ x + 1 & & \\ x + 2 & & \\ x + 3 & & \\ x + 3 & & \\ x + 1 = 36 \\ & & \\ x + 1 = 37 \\ & & \\ x + 2 = 38 \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{ll} x & & & \\ x + 1 & & \\ x + 2 & & \\ x + 3 & & \\ x + 3 & & \\ x + 1 = 36 & \\ x + 1 = 37 & \\ x + 2 = 38 & \\ x + 3 = & \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

 $\begin{array}{ll} x & & & \\ x + 1 & & \\ x + 2 & & & \\ x + 3 & & & \\ x + 3 & & & \\ x + 1 = 36 & \\ x + 1 = 37 & \\ x + 2 = 38 & \\ x + 3 = 39 & \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x
$$4x + 6 = 150$$

x + 1 $4x = 144$ The numbers are 36, 37, 38, and 39.
x + 3 $x = 36$
x + 1 = 37
x + 2 = 38
x + 3 = 39

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

1. The sum of four consecutive whole numbers is 150. What are the whole numbers?

x
$$4x + 6 = 150$$

x + 1 $4x = 144$ The numbers are 36, 37, 38, and 39.
x + 3 $x = 36$
x + 1 = 37
x + 2 = 38
x + 3 = 39

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

X

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x x + 2

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x x + 2 x + 4

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x x + 2 x + 4 x + 6

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x x + 2 x + 4 x + 6

Solve each of the following problems algebraically (one variable solution).

- 2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?
 - x x + 2 x + 4 x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x x + 2 x + 4 x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

$$x x + 2 x + 2 x + 4 x + 6$$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

$$x x + 2 x + 4 x + 6$$

$$4x + 4$$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

$$x = 4x + 12$$

 $x + 2 = 4x + 12$
 $x + 4 = 4x + 6$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x = 4x + 12 = x + 4x + 4 = x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x = 4x + 12 = 100 x + 4 = 4x + 6 = 4

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

xx + 2x + 4x + 6 4x + 12 = 1004x + 12 = 100

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x = 4x + 12 = 100 x + 4 = 4x + 6 = 4

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

 $\begin{array}{ll} x & & & \\ x + 2 & & & \\ x + 4 & & & \\ x + 6 & & \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

 $\begin{array}{l} x & & \\ x + 2 & & \\ x + 4 & & \\ x + 6 & & \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

 $\begin{array}{l} x & & \\ x + 2 & & \\ x + 2 & & \\ x + 4 & & \\ x + 6 & & \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x4x + 12 = 100x + 24x = 88x + 44x = 88x + 6x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x4x + 12 = 100x + 24x = 88x + 44x = 88x + 6x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x4x + 12 = 100x + 24x = 88x + 44x = 88x + 6x = 22

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x4x + 12 = 100x + 24x = 88x + 44x = 88x + 6x = 22

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x x + 2 x + 4 x + 6 x + 2 = 100 4x + 12 = 100 4x = 88 x = 22x + 2 = 100

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x x + 2 x + 4 x + 6 x + 2 = 100 4x + 12 = 100 4x = 88 x = 22x + 2 = 24

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

 $\begin{array}{ll} x & & & & & & & \\ x + 2 & & & & & & \\ x + 2 & & & & & \\ x + 4 & & & & & & \\ x + 6 & & & & & & \\ x + 2 & & & & \\ x + 2 & & & & \\ x + 4 & & & \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

 $\begin{array}{ll} x & & & & & & & \\ x + 2 & & & & & & \\ x + 2 & & & & & \\ x + 4 & & & & & & \\ x + 6 & & & & & & \\ x + 2 & & & & \\ x + 2 & & & & \\ x + 4 & & & & \\ x + 4 & & & & \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

x + 2 = 100 x + 2 = 4x = 88 x + 6 = 4x = 88 x = 22 x + 2 = 24 x + 4 = 26x + 6 = 4

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

2. The sum of four consecutive even whole numbers is 100. What are the whole numbers?

 $\begin{array}{ll} x & & & \\ x + 2 & & \\ x + 2 & & \\ x + 4 & & \\ x + 6 & & \\ x = 22 & \\ & & \\ x + 2 = 24 & \\ & & \\ x + 4 = 26 & \\ & & \\ x + 6 = 28 & \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.

Solve each of the following problems algebraically (one variable solution).

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

X

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x x + 2

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x x + 2 x + 4

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x x + 2 x + 4 x + 6

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x x + 2 x + 4 x + 6

Solve each of the following problems algebraically (one variable solution).

- 3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?
 - x x + 2 x + 4 x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x x + 2 x + 4 x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

$$x x + 2 x + 4 x + 6$$

$$4x$$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

$$x x + 2 x + 4 x + 6$$

$$4x + 4$$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x = 4x + 12 = x + 4x + 4 = x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x = 4x + 12 = 200x + 4 = x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x = 4x + 12 = 200x + 4 = x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x = 4x + 12 = 200x + 4 = x + 6

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

 $\begin{array}{l} x & & \\ x + 2 & & \\ x + 4 & & \\ x + 6 & & \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

 $\begin{array}{l} x & & \\ x + 2 & & \\ x + 4 & & \\ x + 6 & & \\ \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

 $\begin{array}{l} x & & \\ x + 2 & & \\ x + 4 & & \\ x + 6 & \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x4x + 12 = 200x + 24x = 188x + 44x = 188x + 6x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x4x + 12 = 200x + 24x = 188x + 44x = 188x + 6x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x4x + 12 = 200x + 24x = 188x + 44x = 188x + 6x = 47

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x4x + 12 = 200x + 24x = 188x + 44x = 188x + 6x = 47

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x + 2x + 2x + 4x + 6x + 2 = 2004x + 12 = 2004x = 188x = 47x + 2 = 2004x + 12 = 200x + 2 = 188x + 2 = 200x + 200x + 200x + 200x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x x + 2 x + 4 x + 6 4x + 12 = 200 4x = 188 x = 47x + 2 = 49

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

 $\begin{array}{ll} x & & & & & & & \\ x + 2 & & & & & & \\ x + 2 & & & & & \\ x + 4 & & & & & & \\ x + 6 & & & & & & \\ x + 6 & & & & & & \\ x + 2 & = 49 & & \\ x + 2 & = 49 & & \\ x + 4 & = 51 & & \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

x + 2 = 47 x + 4 = 51 x + 6 = 4x + 12 = 200 4x + 12 = 200 4x = 188 x = 47 x + 2 = 49 x + 4 = 51x + 6 = 42

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

3. The sum of four consecutive odd whole numbers is 200. What are the whole numbers?

 $\begin{array}{ll} x & & & & & & & \\ x + 2 & & & & & \\ x + 2 & & & & & \\ x + 4 & & & & & & \\ x + 6 & & & & & x = 188 \\ x + 6 & & & & & x = 47 \\ & & & & & & x = 47 \\ & & & & & x + 2 = 49 \\ & & & & & x + 4 = 51 \\ & & & & & x + 6 = 53 \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

x

$$x + 2$$

 $x + 4$
 $x + 6$
 $x + 4$
 $4x = 188$
 $x = 47$
 $x + 2 = 49$
 $x + 4 = 51$
 $x + 6 = 53$
The numbers are 47, 49, 51, and 53.

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number :

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x –

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x = 6x - 4

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x = 6x - 4

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : $x \qquad 6x - 4 =$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x = 6x - 4 = 188

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x = 6x - 4 = 188

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x = 6x - 4 = 188

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x - 4 = 1886x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x - 4 = 1886x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x - 4 = 1886x = 192

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x - 4 = 1886x = 192x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x - 4 = 1886x = 192x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x - 4 = 1886x = 192x = 32

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x 6x - 4 = 1886x = 192x = 32

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number : x
$$6x - 4 = 188$$

 $6x = 192$
 $x = 32$
Ken's number was 32.

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

4. Ken is thinking of a number. If he multiplies his number by six and then subtracts four, he gets 188. What was Kenøs original number?

Ken's number :
$$x$$
 $6x - 4 = 188$
 $6x = 192$
 $x = 32$ Ken's number was 32.

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number :

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x x –

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x x – 5

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x x – 5

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5)

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5)

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : $x \qquad 2(x-5) =$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x = 2(x-5) = 130

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x = 2(x-5) = 130

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x = 2(x-5) = 130

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 = 130

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 = 1302x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 = 1302x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 = 1302x = 140

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 = 1302x = 140x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 = 1302x = 140x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 = 1302x = 140x = 70

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x 2(x-5) = 1302x - 10 = 1302x = 140x = 70

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x

$$2(x-5) = 130$$
 Kim's number was 70.

 $2x - 10 = 130$
 $2x = 140$
 $x = 70$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

5. Kim is thinking of a number. If she subtracts five from her number and then multiplies by two, she gets 130. What was Kimøs original number?

Kim's number : x

$$2(x-5) = 130$$
 Kim's number was 70.

 $2x - 10 = 130$
 $2x = 140$
 $x = 70$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.

Solve each of the following problems algebraically (one variable solution).

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

Bill : Steve :

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

> driving time (hrs.)

Bill :

Steve :

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

> driving time (hrs.)

Bill: x

Steve :

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart. Bill averages 35 miles per hour, while Steve averages 42 miles per hour. If they both start driving at 8:00 AM, then at what time will they meet?

> driving time (hrs.)

Bill: x

Steve : x

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart.Bill averages 35 miles per hour, while Steve averages 42 miles per hour.If they both start driving at 8:00 AM, then at what time will they meet?

driving time (hrs.)

Bill: x

Steve : x

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart.Bill averages 35 miles per hour, while Steve averages 42 miles per hour.If they both start driving at 8:00 AM, then at what time will they meet?

driving time (hrs.)

Bill: x

Steve : x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

- 6. Bill and Steve drive toward each other from places that are 231 miles apart.Bill averages 35 miles per hour, while Steve averages 42 miles per hour.If they both start driving at 8:00 AM, then at what time will they meet?
- driving time rate (hrs.) (mph) Bill: x Steve: x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)
Bill :	X	35
Steve :	X	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	
	(hrs.)	(mph)
Bill :	X	35
Steve :	X	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)
Bill :	X	35
Steve :	X	42

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)
Bill :	X	35	
Steve :	X	42	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)
Bill :	X	35	35x
Steve :	X	42	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)	distance (miles)
Bill :	X	35	35x
Steve :	X	42	42 x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart.Bill averages 35 miles per hour, while Steve averages 42 miles per hour.If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)	10000	distance (miles)
Bill :	X	35	35x
Steve :	X	42	42x

total distance :

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart.Bill averages 35 miles per hour, while Steve averages 42 miles per hour.If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)		distance (miles)
Bill :	X	35	35x
Steve :	X	42	42x

total distance :

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

6. Bill and Steve drive toward each other from places that are 231 miles apart.Bill averages 35 miles per hour, while Steve averages 42 miles per hour.If they both start driving at 8:00 AM, then at what time will they meet?

	driving time (hrs.)		distance (miles)
Bill :	X	35	35x
Steve :	X	42	42x
		• •	001

total distance : 231

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	35x
Bill :	X	35	35x	UUM
Steve :	X	42	42 x	
	total d	listance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	35x +
Bill :	X	35	35x	
Steve :	X	42	42 x	
	total d	listance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)	35x + 42x
Bill :	X	35	35x	
Steve :	X	42	42x	
	total d	listance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	35x + 42x =
Bill :	X	35	35x	
Steve :	X	42	42x	
	total d	istance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	35x + 42x = 231
Bill :	X	35	35x	
Steve :	X	42	42x	
	total d	istance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

		rate	distance (miles)	35x + 42x = 231
Bill :	X	35	35x	
Steve :	X	42	42 x	
	total d	istance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	35x + 42x = 231
Bill :	X	35	35x	77x
Steve :	X	42	42x	//X
	total d	listance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)	35x + 42x = 231
Bill :	X	35	35x	77x =
Steve :	X	42	42x	// X —
	total d	listance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	35x + 42x = 231
Bill :	X	35	35x	77x = 231
Steve :	X	42	42x	//X - 231
	total d	listance	: 231	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	10000	distance (miles)	35x + 42x = 231
Bill :	X	35	35x	77x = 231
Steve :	X	42	42x	//X - 231
	total d	istance	: 231	X

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)	35x + 42x = 231
Bill :	X	35	35x	77x = 231
Steve :	X	42	42 x	//X = 231
	total d	istance	: 231	x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	1000	distance (miles)	35x + 42x = 231
Bill :	X	35	35x	77x = 231
Steve :	X	42	42x	
	total d	listance	: 231	$\mathbf{x} = 3$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	10000	distance (miles)	35x + 42x = 231
Bill :	X	35	35x	77x = 231
Steve :	X	42	42x	-
	total d	listance	: 231	$\mathbf{x} = 3$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

Bill : Steve :	X X	rate	distance (miles) 35x 42x • 231	35x + 42x = 231 77x = 231 x = 3	They left at 8:00 AM.
	total d	instance	: 231		

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

Bill : Steve :	driving time (hrs.) x x	rate (mph) 35 42	distance (miles) 35x 42x	35x + 42x = 231 77x = 231	They left at 8:00 AM. They drove for 3 hours.
		listance	: 231	$\mathbf{x} = 3$	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)	distance (miles)	35x + 42x = 232	1 There left at 9.00 ANT
Bill :	X	35	35x	77x = 231	I They left at 8:00 AM. They drove for 3 hours.
Steve :	X	42	42x	$\mathbf{x} = 3$	They will meet at 11:00 AM.
	total d	listance	: 231	Αυ	incy will meet at 11.00 million

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)	distance (miles)	35x + 42x = 23	1 There left at 9.00 AM
Bill :	X	35	35x	77x = 231	They left at 8:00 AM. They drove for 3 hours.
Steve :	X	42	42x	$\mathbf{x} = 3$	They will meet at 11:00 AM.
	total d	listance	: 231		

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.

Solve each of the following problems algebraically (one variable solution).

Solve each of the following problems algebraically (one variable solution).

7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

Solve each of the following problems algebraically (one variable solution).

 Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

Solve each of the following problems algebraically (one variable solution).

 Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

Ann : Kate :

Solve each of the following problems algebraically (one variable solution).

 Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

> driving time (hrs.)

Ann :

Kate :

Solve each of the following problems algebraically (one variable solution).

 Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

> driving time (hrs.)

Ann: x

Kate :

Solve each of the following problems algebraically (one variable solution).

 Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

> driving time (hrs.)

Ann: x

Kate : x

Solve each of the following problems algebraically (one variable solution).

7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

> driving time (hrs.)

Ann: x

Kate : x

Solve each of the following problems algebraically (one variable solution).

7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

> driving time (hrs.)

Ann: x

Kate : x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

- 7. Ann and Kate drive toward each other from places that are 415 miles apart.
 Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?
 - driving time rate (hrs.) (mph)
- Ann: x
- Kate : x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)
Ann:	X	45
Kate :	X	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)
Ann:	X	45
Kate :	X	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)
Ann :	X	45
Kate :	X	38

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)
Ann :	X	45	
Kate :	X	38	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)
Ann:	X	45	45x
Kate :	X	38	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)	distance (miles)
Ann :	X	45	45x
Kate :	X	38	38 x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.

Solve each of the following problems algebraically (one variable solution).

7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

	driving time (hrs.)	1	distance (miles)
Ann :	X	45	45x
Kate :	X	38	38x

total distance :

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

	driving time (hrs.)		distance (miles)
Ann :	X	45	45x
Kate :	X	38	38x

total distance :

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

7. Ann and Kate drive toward each other from places that are 415 miles apart. Ann starts driving at 1:00 PM and averages 45 miles per hour. Kate also starts driving at 1:00 PM and averages 38 miles per hour. At what time will they meet?

	driving time (hrs.)	rate (mph)	distance (miles)
Ann :	X	45	45x
Kate :	X	38	38x
		_	

total distance: 415

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	45x
Ann :	X	45	45x	
Kate :	X	38	38x	
	total d	listance	: 415	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	10000	distance (miles)	45x +
Ann :	X	45	45x	
Kate :	X	38	38x	
	total d	listance	: 415	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)	45x + 38x
Ann :	X	45	45 x	
Kate :	X	38	38 x	
	total d	listance	: 415	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate	distance (miles)	45x + 38x =
Ann :	X	45	45x	
Kate :	X	38	38 x	
	total d	istance	: 415	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate	distance (miles)	45x + 38x = 415
Ann :	X	45	45x	
Kate :	X	38	38 x	
	total d	listance	: 415	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate	distance (miles)	45x + 38x = 415
Ann :	X	45	45x	
Kate :	X	38	38 x	
	total d	listance	: 415	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	45x + 38x = 415
Ann :	X	45	45x	83x
Kate :	X	38	38 x	OJX
	total d	listance	: 415	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	45x + 38x = 415
Ann :	X	45	45x	83x =
Kate :	X	38	38 x	031 -
	total d			

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	10000	distance (miles)	45x + 38x = 415
Ann :	X	45	45x	83x = 415
Kate :	X	38	38 x	03x - 413
	total d	listance	: 415	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	10000	distance (miles)	45x + 38x = 415
Ann :	X	45	45x	83x = 415
Kate :	X	38	38 x	63x - 413
	total d	listance	: 415	X

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	45x + 38x = 415
Ann :	X	45	45x	83x = 415
Kate :	X	38	38 x	03x - 413
	total d	listance	: 415	x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	10000	distance (miles)	45x + 38x = 415
Ann :	X	45	45x	83x = 415
Kate :	X	38	38 x	_
	total d	listance	: 415	$\mathbf{x} = 5$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)		distance (miles)	45x + 38x = 415
Ann :	X	45	45x	83x = 415
Kate :	X	38	38 x	_
	total d	listance	: 415	$\mathbf{x} = 5$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

Ann : Kate :	driving time (hrs.) X X	rate	distance (miles) 45x 38x	45x + 38x = 415 83x = 415	They left at 1:00 PM.
	total d	listance	: 415	$\mathbf{x} = 5$	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

		rate (mph)	distance (miles)	45x + 38x = 415	They left at 1:00 PM.
Ann :	X	45	45x	83x = 415	They drove for 5 hours.
Kate :	X	38	38x	x = 5	They drove for 5 hours.
	total d	listance	: 415	$\mathbf{x} = \mathbf{y}$	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

Ann :	driving time (hrs.) x	rate (mph) 45	distance (miles) 45x	45x + 38x = 415	
Kate :	X	38	38x	83x = 415 $x = 5$	They drove for 5 hours.
	total d	listance	: 415	X – 5	They will meet at 6:00 PM.

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)	distance (miles)	45x + 38x = 415	5 They left at 1:00 PM.
Ann:	X	45	45 x	83x = 415	They drove for 5 hours.
Kate :	X	38	38 x		v
	total d	listance	: 415	$\mathbf{x} = 5$	They will meet at 6:00 PM.

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.

Solve each of the following problems algebraically (one variable solution).

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

Solve each of the following problems algebraically (one variable solution).

 Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

Sue : Mark :

Solve each of the following problems algebraically (one variable solution).

 Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

> driving time (hrs.)

Sue :

Mark :

Solve each of the following problems algebraically (one variable solution).

 Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

> driving time (hrs.)

Sue :

Mark: x

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.) Sue: x + 3 Mark: x

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.) Sue: x + 3 Mark: x

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

driving time (hrs.) Sue: x + 3 Mark: x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

- 8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?
- driving time rate (hrs.) (mph) Sue: x + 3 Mark: x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

- 8. Sue and Mark drive toward each other from places that are 350 miles apart.
 Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?
- driving time rate (hrs.) (mph) Sue: x + 3 Mark: x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

- 8. Sue and Mark drive toward each other from places that are 350 miles apart.
 Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?
- driving time rate (hrs.) (mph) Sue: x + 3 52 Mark: x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

- 8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?
- driving time rate (hrs.) (mph) Sue: x + 3 52 Mark: x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	S
	(hrs.)	(mph)
Sue :	x + 3	52
Mark :	X	45

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)
Sue :	x + 3	52	
Mark :	X	45	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)
Sue :	x + 3	52	52(x+3)
Mark :	X	45	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)
Sue :	x + 3	52	52(x+3)
Mark :	X	45	45x

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

			distance (miles)
Sue :			52(x+3)
Mark :	X	45	45 x

total distance :

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

	driving time (hrs.)		distance (miles)
Sue :	x + 3	52	52(x+3)
Mark :	X	45	45x

total distance :

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate (mph)	distance (miles)
Sue :	x + 3	52	52(x+3)
Mark :	X	45	45x
	total di	stance	: 350

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)	52(x+3)
Sue :	x + 3	52	52(x+3)	
Mark :	X	45	45x	
	total d	istance [–]	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

			distance (miles)	52(x+3) +
Sue :	x + 3	52	52(x+3)	
Mark :	X	45	45x	
	total di	istance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

 $\begin{array}{rl} \text{driving} \\ \text{time} & \text{rate} & \text{distance} \\ (\text{hrs.}) & (\text{mph}) & (\text{miles}) \end{array} & 52(x+3) + 45x \\ \text{Sue:} & x+3 & 52 & 52(x+3) \\ \text{Mark:} & x & 45 & 45x \\ \text{total distance:} & 350 \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

 $\begin{array}{rl} \text{driving} \\ \text{time} & \text{rate} & \text{distance} \\ (\text{hrs.}) & (\text{mph}) & (\text{miles}) \end{array} & 52(x+3) + 45x = \\ \text{Sue: } x + 3 & 52 & 52(x+3) \\ \text{Mark: } x & 45 & 45x \\ \text{total distance: } 350 \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

 $\begin{array}{rl} \text{driving} \\ \text{time} & \text{rate} & \text{distance} \\ (\text{hrs.}) & (\text{mph}) & (\text{miles}) \end{array} & 52(x+3) + 45x = 350 \\ \text{Sue:} & x+3 & 52 & 52(x+3) \\ \text{Mark:} & x & 45 & 45x \\ \text{total distance:} & 350 \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.

Solve each of the following problems algebraically (one variable solution).

8. Sue and Mark drive toward each other from places that are 350 miles apart. Sue starts driving at 8:00 AM and averages 52 miles per hour. Mark starts driving at 11:00 AM and averages 45 miles per hour. At what time will they meet?

 $\begin{array}{rl} \text{driving} \\ \text{time} & \text{rate} & \text{distance} \\ (\text{hrs.}) & (\text{mph}) & (\text{miles}) \end{array} & 52(x+3) + 45x = 350 \\ \text{Sue:} & x+3 & 52 & 52(x+3) \\ \text{Mark:} & x & 45 & 45x \\ \text{total distance:} & 350 \end{array}$

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

		rate	distance (miles)	52(x+3) + 45x = 350 52x
Sue :	x + 3	52	52(x+3)	
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

		rate	distance (miles)	52(x+3) + 45x = 350 52x +
Sue :	x + 3	52	52(x+3)	
Mark :	X	45	45 x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

		rate	distance (miles)	52(x+3) + 45x = 350 $52x + 156$
Sue :	x + 3	52	52(x+3)	
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

		rate	distance (miles)	52(x+3) + 45x = 350 52x + 156 +
Sue :	x + 3	52	52(x+3)	
Mark :	X	45	45x	
	total di	istance [–]	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

		rate	distance (miles)	52(x+3) + 45x = 350 $52x + 156 + 45x$
Sue :	x + 3	52	52(x+3)	
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
			(miles)	52x + 156 + 45x =
Sue :	x + 3	52	52(x+3)	
Mark :	X	45	45 x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate	distance (miles)	52(x+3) + 45x = 350 $52x + 156 + 45x = 350$
Sue :			(1111c3) 52(x + 3)	52A 150 1 5A - 550
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

		rate	distance (miles)	52(x+3) + 45x = 350 $52x + 156 + 45x = 350$
Sue :			52(x+3)	97x
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
	(hrs.)	(mph)	(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x +
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time (hrs.)	rate	distance (miles)	52(x+3) + 45x = 350 $52x + 156 + 45x = 350$
Sue :	x + 3	52	52(x+3)	97x + 156
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
			(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 =
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
			(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350
Mark :	X	45	45x	
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
			(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350
Mark :	X	45	45x	97x
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
			(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350
Mark :	X	45	45x	97x =
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
			(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350
Mark :	X	45	45x	97x = 194
	total di	stance	: 350	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
			(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350
Mark :	X	45	45x	97x = 194
	total di	stance	: 350	X

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
			(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350
Mark :	X	45	45x	97x = 194
	total di	stance	: 350	x =

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
		10000	(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350
Mark :	X	45	45x	97x = 194
	total di	stance	: 350	x = 2

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3) + 45x = 350
		10000	(miles)	52x + 156 + 45x = 350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350
Mark :	X	45	45x	97x = 194
	total di	stance	: 350	x = 2

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. **Solve the equation**.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

	driving time	g rate distance		52(x+3) + 45x = 3	50
			(miles)	52x + 156 + 45x = 3	350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350	
Mark :	X	45	45x	97x = 194	Mark left at 11:00 AM.
total distance : 350			: 350	$\mathbf{x} = 2$	

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

	driving time rate distance		distance	52(x+3)+45x=3	50
			(miles)	52x + 156 + 45x = 3	350
Sue :	x + 3	52	52(x+3)	97x + 156 = 350	
Mark :	X	45	45x	97x = 194	Mark left at 11:00 AM.
total distance: 350			: 350	x = 2	He drove for 2 hours.

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an **E**quation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

	driving time	; rate	distance	52(x+3) + 45x = 350				
	(hrs.)		(miles)	52x + 156 + 45x = 350				
Sue :	x + 3	52	52(x+3)	97x + 156 =	350			
Mark :	X	45	45x	97x = 194	Mark left at 11:00 AM.			
	total distance : 350		x = 2	He drove for 2 hours.				
					They will meet at 1:00 PM.			

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).

Solve each of the following problems algebraically (one variable solution).

	driving time	; rate	distance	52(x+3) + 45x = 350				
	(hrs.)		(miles)	52x + 156 + 45x = 350				
Sue :	x + 3	52	52(x+3)	97x + 156 =	350			
Mark :	X	45	45x	97x = 194	Mark left at 11:00 AM.			
	total distance : 350		x = 2	He drove for 2 hours.				
					They will meet at 1:00 PM.			

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.

Solve each of the following problems algebraically (one variable solution).

	driving time	rate	distance	52(x+3)+45x=	350	
	(hrs.)	(mph)	(miles)	52x + 156 + 45x =	350	
	x + 3	52 45	52(x+3) 45x	97x + 156 = 35	50	
Mark :	X	45 _	45X 250	97x = 194	Mark left at 11:00 AM.	
G	Good luck on your homework.					

- 1. **R**epresent all unknowns in terms of the same variable.
- 2. Write an Equation.
- 3. Solve the equation.
- 4. Answer the question (complete sentence).
- 5. Check your solution.