Algebra I Lesson \#2 Unit 3 Class Worksheet \#2

 For Worksheets \#2 \& 3
Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?
2. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
x+7
$$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
x+7
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
x+7
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.
3. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.
3. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\mathbf{x}+7 \quad 2 x+2(x+7)
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
x+7
$$

$$
2 x+2(x+7)=
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
x+7
$$

$$
2 x+2(x+7)=26
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
x+7
$$

$$
2 x+2(x+7)=26
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
x+7
$$

$$
2 x+2(x+7)=26
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
2 x+2(x+7)=26
$$

$$
2 \mathrm{x}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.
3. Write an Equation.
4. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.
3. Write an Equation.
4. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& 2 x+2(x+7)=26 \\
& 2 x+2 x+
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& 2 x+2(x+7)=26 \\
& 2 x+2 x+14
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& 2 x+2(x+7)=26 \\
& 2 x+2 x+14=
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& 2 x+2(x+7)=26 \\
& 2 x+2 x+14=26
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& 2 x+2(x+7)=26 \\
& 2 x+2 x+14=26 \\
& 4 x
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& 2 x+2(x+7)=26 \\
& 2 x+2 x+14=26 \\
& 4 x+
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& 2 x+2(x+7)=26 \\
& 2 x+2 x+14=26 \\
& 4 x+14
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{gathered}
2 x+2(x+7)=26 \\
2 x+2 x+14=26 \\
4 x+14=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{gathered}
2 x+2(x+7)=26 \\
2 x+2 x+14=26 \\
4 x+14=26
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{gathered}
2 x+2(x+7)=26 \\
2 x+2 x+14=26 \\
4 x+14=26 \\
4 x
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{gathered}
2 x+2(x+7)=26 \\
2 x+2 x+14=26 \\
4 x+14=26 \\
4 x=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{gathered}
2 x+2(x+7)=26 \\
2 x+2 x+14=26 \\
4 x+14=26 \\
4 x=12
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.
3. Write an Equation.
4. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{gathered}
2 x+2(x+7)=26 \\
2 x+2 x+14=26 \\
4 x+14=26 \\
4 x=12 \\
x=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

2. Represent all unknowns in terms of the same variable.
3. Write an Equation.
4. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{gathered}
2 x+2(x+7)=26 \\
2 x+2 x+14=26 \\
4 x+14=26 \\
4 x=12 \\
x=3
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& \mathbf{x + 7} \mathbf{x} \\
& 2 \mathrm{x}+2(\mathrm{x}+7)=26 \\
& 2 x+2 x+14=26 \\
& 4 x+14=26 \\
& 4 \mathrm{x}=12 \\
& \mathbf{x}=3 \\
& x+7
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& \mathbf{x + 7} \mathbf{x} \\
& 2 \mathrm{x}+2(\mathrm{x}+7)=26 \\
& 2 x+2 x+14=26 \\
& 4 x+14=26 \\
& 4 \mathrm{x}=12 \\
& \mathbf{x}=3 \\
& \mathbf{x}+7=
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& \mathbf{x + 7} \mathbf{x} \\
& 2 \mathrm{x}+2(\mathrm{x}+7)=26 \\
& 2 x+2 x+14=26 \\
& 4 x+14=26 \\
& 4 \mathrm{x}=12 \\
& \mathrm{x}=3 \\
& \mathbf{x}+\mathbf{7}=\mathbf{1 0}
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{aligned}
& \mathbf{x + 7} \mathbf{} \mathbf{x} \\
& 2 \mathrm{x}+2(\mathrm{x}+7)=26 \\
& 2 \mathrm{x}+2 \mathrm{x}+14=26 \\
& 4 x+14=26 \\
& 4 \mathrm{x}=12 \\
& \mathrm{x}=3 \\
& \mathbf{x}+\mathbf{7}=\mathbf{1 0}
\end{aligned}
$$

The rectangle is $\mathbf{1 0}$ inches long

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

The rectangle is $\mathbf{1 0}$ inches long and 3 inches wide.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).

1. The length of a rectangle is seven inches more than the width. The perimeter of the rectangle is 26 inches. What are the dimensions (the length and the width) of the rectangle?

$$
\begin{gathered}
2 x+2(x+7)=26 \\
2 x+2 x+14=26 \\
4 x+14=26 \\
4 x=12 \\
x=3 \\
x+7=10
\end{gathered}
$$

The rectangle is $\mathbf{1 0}$ inches long and 3 inches wide.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

2x	\mathbf{x}	$2 \mathrm{x}+4 \mathrm{x}=24$
		$6 \mathrm{x}=24$
		$x=4$
		$2 \mathrm{x}=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

2x	\mathbf{x}	$2 \mathrm{x}+4 \mathrm{x}=24$
		$6 \mathrm{x}=24$
		$x=4$
		$2 \mathrm{x}=8$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

2x	\mathbf{x}	$\begin{gathered} 2 x+4 x=24 \\ 6 x=24 \end{gathered}$
		$x=4$
		$2 \mathrm{x}=8$

The rectangle is 8 inches long

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

The rectangle is 8 inches long and 4 inches wide.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
2. The length of a rectangle is two times the width. The perimeter of the rectangle is 24 inches. What are the dimensions of the rectangle?

The rectangle is 8 inches long and 4 inches wide.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{aligned}
& 2 x+2(2 x+5)=46 \\
& 2 x+4 x+10=46 \\
& 6 x+
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{aligned}
& 2 x+2(2 x+5)=46 \\
& 2 x+4 x+10=46 \\
& 6 x+10
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{array}{ll}
2 x+5 & \begin{array}{l}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
\end{array} \\
& \\
& 6 x+10=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{array}{ll}
2 x+5 & \left.\begin{array}{l}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
\\
\end{array}\right\} \\
& 6 x+10=46
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
2 x+2(2 x+5)=46
$$

$$
2 x+4 x+10=46
$$

$$
6 x+10=46
$$

6x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=36
\end{gathered}
$$

$$
\mathbf{x}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=36 \\
x=6
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=36 \\
x=6
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{aligned}
& 2 x+2(2 x+5)=46 \\
& 2 x+4 x+10=46 \\
& 6 x+10=46 \\
& 6 x=36 \\
& x=6 \\
& 2 x+5
\end{aligned}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=36 \\
x=6 \\
2 x+5=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=36 \\
x=6 \\
2 x+5=17
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=36 \\
x=6 \\
2 x+5=17
\end{gathered}
$$

The rectangle is $\mathbf{1 7}$ inches long

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=36 \\
x=6 \\
2 x+5=17
\end{gathered}
$$

The rectangle is $\mathbf{1 7}$ inches long and 6 inches wide.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
3. The length of a rectangle is five inches more than two times its width. The perimeter of the rectangle is 46 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(2 x+5)=46 \\
2 x+4 x+10=46 \\
6 x+10=46 \\
6 x=36 \\
x=6 \\
2 x+5=17
\end{gathered}
$$

The rectangle is $\mathbf{1 7}$ inches long and 6 inches wide.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36
\end{gathered}
$$

$$
10 \mathrm{x}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{array}{l|l}
4 x-2 & \left.\begin{array}{c}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
\\
\end{array}\right) \\
x & 10 x-4=
\end{array}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40 \\
x=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40 \\
x=4
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40 \\
x=4
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40 \\
x=4 \\
4 x-2
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

\[

\]

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40 \\
x=4 \\
4 x-2=14
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40 \\
x=4 \\
4 x-2=14
\end{gathered}
$$

The rectangle is $\mathbf{1 4}$ inches long

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40 \\
x=4 \\
4 x-2=14
\end{gathered}
$$

The rectangle is 14 inches long and 4 inches wide.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
4. The length of a rectangle is two inches less than four times its width. The perimeter of the rectangle is 36 inches. What are the dimensions of the rectangle?

$$
\begin{gathered}
2 x+2(4 x-2)=36 \\
2 x+8 x-4=36 \\
10 x-4=36 \\
10 x=40 \\
x=4 \\
4 x-2=14
\end{gathered}
$$

The rectangle is $\mathbf{1 4}$ inches long and 4 inches wide.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
dimes :
nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

dimes :
 nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number
dimes :
nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number
dimes :
nickels : $\quad \mathbf{x}$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number
dimes: $x+5$
nickels : $\quad \mathrm{x}$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number
dimes: $x+5$
nickels : $\quad \mathrm{x}$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number
dimes: $x+5$
nickels : $\quad \mathbf{x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number
dimes: $x+5$
nickels : $\quad \mathrm{x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $x+5$
nickels : $\quad \mathrm{x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes : $x+5 \quad 10$ (
nickels : $\quad \mathrm{x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad \mathrm{x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad \mathbf{5 x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad \mathbf{x} \quad \mathbf{5 x}$
total value :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad \mathbf{x} \quad \mathbf{5 x}$
total value :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad \mathbf{x} \quad \mathbf{5 x}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $c \quad 10(x+5)$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad \mathbf{x} \quad \mathbf{5 x}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad x \quad 5 x$

$$
10(x+5)+
$$

$$
\text { total value : } 500
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad x \quad 5 x$

$$
10(x+5)+5 x
$$

$$
\text { total value : } 500
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad x \quad 5 x$

$$
10(x+5)+5 x=
$$

$$
\text { total value : } 500
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad x \quad 5 x$

$$
10(x+5)+5 x=500
$$

$$
\text { total value : } 500
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad \mathbf{x} \quad \mathbf{5 x}$

$$
10(x+5)+5 x=500
$$

$$
\text { total value : } 500
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad x+5 \quad 10(x+5)$
nickels : $\quad \mathbf{x} \quad \mathbf{5 x}$

$$
10(x+5)+5 x=500
$$

$$
\text { total value : } 500
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value $¢$	$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$	$10 x$
nickels :	x	$5 x$	
	total value $:$	$\mathbf{5 0 0}$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

			$(x+5)+5 x=500$
	number	value ¢	$(x+5)+5 x=500$
dimes :	$x+5$	10(x+5)	10x +
nickels :	\mathbf{x}	5x	
	tal value	500	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value c	$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$	$10 x+50$
nickels :	x	$5 x$	
	total value $:$	500	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value $¢$	$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$	$10 x+50+$
nickels :	x	$5 x$	
	total value $:$	500	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

dimes : nickels :	number		$10(x+5)+5 x=500$
	$x+5$	$10(x+5)$	10x $+50+5 x$
	\mathbf{x}	5x	
	tal value	500	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

			$\begin{aligned} & 10(x+5)+5 x=500 \\ & 10 x+50+5 x= \end{aligned}$
dimes :	number $x+5$	value c $10(x+5)$	
nickels :	\mathbf{x}	5x	
	al value	500	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

			$10(x+5)+5 x=500$
dimes :	number $x+5$	value c $10(x+5)$	$10 x+50+5 x=500$
nickels :	x	5x	
	al value	500	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value $¢$		$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$		$10 x+50+5 x=500$
nickels :	x	$5 x$		$15 x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value $¢$		$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$		$10 x+50+5 x=500$
nickels :	x	$5 x$		$15 x+$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

促			$10(x+5)+5 x=500$
dimes :	number	value ¢	
	$x+5$	$10(x+5)$	$10 x+50+5 x=500$
nickels :	\mathbf{x}	5 x	15x +50
	al value	500	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value c		$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$		$10 x+50+5 x=500$
nickels :	x	$5 x$		$15 x+50=$
	total value $:$	500		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

			$10(x+5)+5 x=500$
dimes :	number $x+5$	$\begin{aligned} & \text { value ¢ } \\ & 10(x+5) \end{aligned}$	$10 x+50+5 x=500$
nickels :	\mathbf{x}	5x	$15 x+50=500$
	tal value	500	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value $\&$		$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$		$10 x+50+5 x=500$
nickels :	x	$5 x$		$15 x+50=500$
		500		$15 x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

促			
dimes :	number $x+5$	value $¢$ $10(x+5)$	$\begin{aligned} & 10(x+5)+5 x=500 \\ & 10 x+50+5 x=500 \end{aligned}$
nickels :	\mathbf{x}	5x	$15 \mathrm{x}+50=500$
total value : 500			$15 \mathrm{x}=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

			$10(x+5)+5 x=500$
	number	value ¢	$10(x+5)+5 x$
dimes :	$x+5$	10(x+5)	$10 x+50+5 x=500$
nickels :	x	5 x	$15 \mathrm{x}+50=500$
	al valu	500	$15 \mathrm{x}=450$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

dimes :	$\begin{gathered} \text { number } \\ x+5 \end{gathered}$	$\begin{aligned} & \text { value } ¢ \\ & 10(x+5) \end{aligned}$	$\begin{aligned} & 10(x+5)+5 x=500 \\ & 10 x+50+5 x=500 \end{aligned}$
nickels :	\mathbf{x}	5x	$15 \mathrm{x}+50=500$
total value : 500			$15 \mathrm{x}=450$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

			$10(x+5)+5 x=500$
	number	value ¢	
dimes :	$x+5$	$10(x+5)$	$10 x+50+5 x=500$
nickels :	\mathbf{x}	5 x	$15 \mathrm{x}+50=500$
total value : 500			$15 x=450$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value ¢	$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$	$10 x+50+5 x=500$
nickels :	\mathbf{x}	5 x	$15 \mathrm{x}+50=500$
	tal value	500	$15 \mathrm{x}=450$
			$\mathbf{x}=30$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

	number	value ¢	$10(x+5)+5 x=500$
dimes :	$x+5$	$10(x+5)$	$10 x+50+5 x=500$
nickels :	\mathbf{x}	5 x	$15 \mathrm{x}+50=500$
	tal value	500	$15 \mathrm{x}=450$
			$\mathbf{x}=30$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

			$10(x+5)+5 x=500$
	number	value $¢$	
dimes :	$x+5$	10(x+5)	$10 x+50+5 x=500$
nickels :	x	5x	$15 \mathrm{x}+50=500$
total value :		500	$15 \mathrm{x}=450$
			$\mathrm{x}=30$
			$x+5=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

There are 35 dimes and 30 nickels.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
5. A collection of ordinary dimes and nickels is worth $\$ 5$. If the number of dimes is five more than the number of nickels, then how many coins of each type are there in the collection?

dimes :	$\begin{gathered} \text { number } \\ x+5 \end{gathered}$	value $¢$ $10(x+5)$	$10 x+50+5 x=500$
nickels :	\mathbf{x}	5 x	$15 \mathrm{x}+50=500$
	tal value	500	$15 \mathrm{x}=450$
			$\mathrm{x}=30$
			$x+5=35$

There are 35 dimes and 30 nickels.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?

dimes :

quarters :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?

dimes :

quarters :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number

dimes :

quarters :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number
dimes: $\quad x$
quarters :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number
dimes: x
quarters : $\quad \mathbf{x}-8$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number
dimes: x
quarters : $\quad \mathbf{x}-\mathbf{8}$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number
dimes: x
quarters : $\quad \mathbf{x}-\mathbf{8}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number
dimes: x
quarters : $\quad \mathbf{x}-\mathbf{8}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢$
dimes: x
quarters : $\quad \mathbf{x}-\mathbf{8}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢$
dimes : x 10x
quarters : $\quad \mathbf{x}-8$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢$
dimes: x 10x
quarters : $\quad \mathbf{x}-8 \quad 25(x-8)$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢$
dimes: x 10x
quarters : $\quad \begin{array}{cc}x-8 & \mathbf{2 5}(x-8)\end{array}$
total value :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢$
dimes: x 10x
quarters : $\quad x-8 \quad \mathbf{2 5 (x - 8)}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $\mathfrak{c} \quad 10 x$
dimes: x 10x
quarters: $\quad x-8 \quad 25(x-8)$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+$
dimes: x 10x
quarters: $\quad x-8 \quad 25(x-8)$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)$
dimes: x 10x
quarters: $\quad x-8 \quad 25(x-8)$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $\& \quad 10 x+25(x-8)=$

quarters : $\quad x-8 \quad \underline{25(x-8)}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: x 10x
quarters: $\quad x-8 \quad 25(x-8)$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: x 10x
quarters : $\quad x-8 \quad 25(x-8)$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: x 10x
quarters : $\quad x-8 \quad 25(x-8)$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: x 10x 10x
quarters: $\quad x-8 \quad 25(x-8)$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $\quad x \quad 10 x \quad 10 x+$
quarters: $\quad x-8 \quad \underline{25(x-8)}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x$
quarters : $\quad x-8 \quad \underline{25(x-8)}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes : $x \quad 10 x \quad 10 x+25 x-$
quarters: $\quad x-8 \quad 25(x-8)$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200$
quarters : $\quad x-8 \quad \underline{25(x-8)}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes : $x \quad 10 x \quad 10 x+25 x-200=$
quarters : $\quad x-8 \quad \underline{25(x-8)}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢ \quad 10 x+25(x-8)=500$
dimes : $\quad x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\quad x-8 \quad \underline{25(x-8)}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢ \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters: $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x\end{array}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢ \quad 10 x+25(x-8)=500$
dimes : $x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $x-8 \quad \underline{25(x-8)} \quad 35 x-$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $¢ \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200\end{array}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes : $x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{ll}x-8 \quad 25(x-8) & 35 x-200=\end{array}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes : $x \quad 10 x \quad 10 x+25 x-200=500$
quarters: $\begin{array}{lll}x-8 & \underline{25(x-8)} \quad 35 x-200=500\end{array}$
total value : 500

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{lll}x-8 & \underline{25(x-8)} \quad 35 x-200=500\end{array}$
total value : 500
35x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
35 x=
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters: $\begin{array}{lll}x-8 & \underline{25(x-8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
35 x=700
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes : $\quad x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
35 x=700
$$

X

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters: $\begin{array}{ll}x-8 & 25(x-8) \\ 35 x-200=500\end{array}$
total value : 500

$$
\begin{gathered}
35 x=700 \\
x=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters: $\begin{array}{ll}x-8 & 25(x-8) \\ 35 x-200=500\end{array}$
total value : 500

$$
35 x=700
$$

$$
x=20
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
35 x=700
$$

$$
x=20
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters: $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
\begin{gathered}
\mathbf{3 5 x}=\mathbf{7 0 0} \\
x=20 \\
x-8
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters: $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
\begin{gathered}
\mathbf{3 5 x}=\mathbf{7 0 0} \\
x=\mathbf{2 0} \\
x-8=
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?
number value $x \quad 10 x+25(x-8)=500$
dimes: $x \quad 10 x \quad 10 x+25 x-200=500$
quarters: $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
\begin{gathered}
\mathbf{3 5 x}=\mathbf{7 0 0} \\
x=\mathbf{2 0} \\
x-8=12
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?

$$
\text { number value } \& \quad 10 x+25(x-8)=500
$$

dimes : $\quad x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
\begin{gathered}
\mathbf{3 5 x}=\mathbf{7 0 0} \\
x=\mathbf{2 0} \\
x-8=\mathbf{1 2}
\end{gathered}
$$

There are 20 dimes

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?

$$
\text { number value } \& \quad 10 x+25(x-8)=500
$$

dimes : $\quad x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{lll}x-8 & \mathbf{2 5 (x - 8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
\begin{gathered}
\mathbf{3 5 x}=\mathbf{7 0 0} \\
x=\mathbf{2 0} \\
x-\mathbf{8}=\mathbf{1 2}
\end{gathered}
$$

There are 20 dimes and 12 quarters.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
6. A collection of ordinary dimes and quarters is worth $\$ 5$. If the number of quarters is eight less than the number of dimes, then how many coins of each type are there in the collection?

$$
\text { number value } \& \quad 10 x+25(x-8)=500
$$

dimes : $\quad x \quad 10 x \quad 10 x+25 x-200=500$
quarters : $\begin{array}{lll}x-8 & \underline{25(x-8)} \quad 35 x-200=500\end{array}$
total value : 500

$$
\begin{gathered}
\mathbf{3 5 x}=\mathbf{7 0 0} \\
x=\mathbf{2 0} \\
x-\mathbf{8}=\mathbf{1 2}
\end{gathered}
$$

There are 20 dimes and 12 quarters.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
dimes :
nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
dimes :
nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number
dimes :
nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

number

dimes :

nickels : $\quad \mathrm{x}$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

number

dimes: 2x

nickels : $\quad \mathbf{x}$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number
dimes : $2 x-5$
nickels : $\quad \mathrm{x}$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number
dimes : $2 x-5$
nickels : $\quad x$

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number
dimes: $2 x-5$
nickels : $\quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number
dimes: $2 x-5$
nickels : $\quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

number value $¢$

dimes : $2 x-5$
nickels : $\quad x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $2 x-5 \quad 10(2 x-5)$
nickels : $\quad \mathbf{x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $2 x-5 \quad 10(2 x-5)$
nickels : $\quad x \quad 5 x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $2 x-5 \quad 10(2 x-5)$
nickels : $\quad x \quad 5 x$
total value :

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $2 x-5 \quad 10(2 x-5)$
nickels : $\quad x \quad 5 x$
total value : $\mathbf{3 7 5}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number value $¢$

$$
10(2 x-5)
$$

dimes: $\quad 2 \mathrm{x}-5 \quad 10(2 \mathrm{x}-5)$
nickels : $\quad x \quad 5 x$
total value : 375

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?
number value $¢$
dimes: $\quad 2 x-5 \quad 10(2 x-5)$
nickels : $\quad x \quad 5 x$
total value : $\mathbf{3 7 5}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

$$
10(2 x-5)+5 x
$$

dimes: $2 x-5 \quad 10(2 x-5)$
nickels : $\quad x \quad \mathbf{5 x}$
total value : $\mathbf{3 7 5}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

$$
10(2 x-5)+5 x=
$$ number value $¢$

$$
\text { dimes : } \quad 2 x-5 \quad 10(2 x-5)
$$

nickels : $\quad x \quad \mathbf{5 x}$
total value : 375

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

$$
10(2 x-5)+5 x=375
$$

dimes: $2 x-5 \quad 10(2 x-5)$
nickels : $\quad x \quad \mathbf{5 x}$
total value : $\mathbf{3 7 5}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

$$
10(2 x-5)+5 x=375
$$

dimes: $2 x-5 \quad 10(2 x-5)$
nickels : $\quad \mathbf{x} \quad \mathbf{5 x}$
total value : $\mathbf{3 7 5}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

$$
10(2 x-5)+5 x=375
$$

dimes: $2 x-5 \quad 10(2 x-5)$
nickels : $\quad \mathbf{x} \quad \mathbf{5 x}$
total value : $\mathbf{3 7 5}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

			$10(2 x-5)+5 x=375$
dimes :	number $2 x-5$	$\begin{gathered} \text { value } \subset \\ 10(2 x-5) \end{gathered}$	20x
nickels :	X	5x	
	tal value	375	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

			$\begin{aligned} & 10(2 x-5)+5 x=375 \\ & 20 x- \end{aligned}$
dimes :	number $2 x-5$	$\begin{gathered} \text { value } ¢ \\ 10(2 x-5) \end{gathered}$	
nickels :	x	5x	
total value : 375			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

			10(2x-5) $+5 \mathrm{x}=375$
dimes :	number $2 x-5$	$\begin{gathered} \text { value } ¢ \\ 10(2 x-5) \end{gathered}$	$20 x-50$
nickels :	X	5x	
	al value	375	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	um	val	$\begin{aligned} & 10(2 x-5)+5 x=375 \\ & 20 x-50+ \end{aligned}$
dimes :	2x-5	10(2x-5)	
nickels :	\mathbf{x}	5x	
total value : 375			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

			$10(2 x-5)+5 x=375$
dimes :	number $2 x-5$	$\begin{gathered} \text { value } \mathfrak{c} \\ 10(2 x-5) \end{gathered}$	$20 x-50+5 x$
nickels :	x	5x	
	tal value	375	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	valu	$\begin{aligned} 10(2 x-5)+5 x & =375 \\ 20 x-50+5 x & = \end{aligned}$
dimes :	$2 x-5$	$10(2 x-5)$	
nickels :	x	5x	
total value : 375			

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

		迷	$10(2 x-5)+5 x=375$
	number	value c	$10(2 x-5)+5 x=375$
dimes :	2x-5	10(2x-5)	$20 x-50+5 x=375$
nickels :	\mathbf{x}	5x	
	tal value	375	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

			$10(2 x-5)+5 x=375$
dimes :	number $2 x-5$	$\begin{gathered} \text { value } ¢ \\ 10(2 x-5) \end{gathered}$	$20 x-50+5 x=375$
nickels :	x	5x	25x
	al val	375	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	value c	$\mathbf{1 0}(2 x-5)+5 x=375$
dimes :	$2 x-5$	$\mathbf{1 0 (2 x - 5)}$	$20 x-50+5 x=375$
nickels :	x	$5 x$	$25 x-$
	total value $:$	375	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	value c	$\mathbf{1 0}(2 x-5)+5 x=375$
dimes :	$2 x-5$	$\mathbf{1 0 (2 x - 5)}$	$20 x-50+5 x=375$
nickels :	x	$5 x$	$25 x-50$
	total value $:$	375	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

,			$10(2 x-5)+5 x=375$
	number	value ¢	$10(2 x-5)+5 x=375$ $20 x-50+5 x=375$
dimes :	$2 \mathrm{x}-5$	10(2x-5)	$20 x-50+5 x=375$
nickels :	X	5x	25x-50 =
	al valu	375	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	value \subset	$\mathbf{1 0}(2 x-5)+5 x=375$
dimes :	$2 x-5$	$10(2 x-5)$	$20 x-50+5 x=375$
nickels :	x	$5 x$	$25 x-50=375$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

			$10(2 x-5)+5 x=375$
dimes :	number $2 x-5$	$\begin{gathered} \text { value } ¢ \\ 10(2 x-5) \end{gathered}$	$20 x-50+5 x=375$
nickels :	X	5x	$25 x-50=375$
	tal value	375	25x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	value ¢	$\mathbf{1 0}(2 x-5)+5 x=375$
dimes :	$2 x-5$	$10(2 x-5)$	$20 x-50+5 x=375$
nickels :	x	$5 x$	$25 x-50=375$
	total value $:$	375	$25 x=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	value ¢	$\mathbf{1 0}(2 x-5)+5 x=375$
dimes :	$2 x-5$	$10(2 x-5)$	$20 x-50+5 x=375$
nickels :	x	$5 x$	$25 x-50=375$
	total value $:$	375	$25 x=425$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

,			$10(2 x-5)+5 x=375$
	number	value ¢	$10(2 x-5)+5 x=375$
dimes :	2x-5	10(2x-5)	$20 x-50+5 x=375$
nickels :	\mathbf{x}	5x	$25 \mathrm{x}-50=375$
	tal value	: 375	25x $=425$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

,			
	number	value ¢	$10(2 x-5)+5 x=375$
dimes :	2x-5	10(2x-5)	$20 \mathrm{x}-50+5 \mathrm{x}=375$
nickels :	x	5x	$25 \mathrm{x}-50=375$
	tal value	: 375	$25 \mathrm{x}=425$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

,			$10(2 x-5)+5 x=375$
dimes :	$\begin{gathered} \text { number } \\ 2 x-5 \end{gathered}$	$\begin{gathered} \text { value } ¢ \\ 10(2 x-5) \end{gathered}$	$20 x-50+5 x=375$
nickels :	x	5x	$25 \mathrm{x}-50=375$
	tal value	: 375	$25 \mathrm{x}=425$
			$\mathrm{x}=17$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	value $¢$
dimes :	$2 x-5$	$10(2 x-5)$
nickels :	x	$5 x$
total value $:$	375	

$$
\begin{gathered}
10(2 x-5)+5 x=375 \\
20 x-50+5 x=375 \\
25 x-50=375 \\
25 x=425 \\
x=17
\end{gathered}
$$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

There are 17 nickels

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	value ¢	$10(2 x-5)+5 x=375$
dimes :	2x-5	10(2x-5)	$20 \mathrm{x}-50+5 \mathrm{x}=375$
nickels :	X	5x	$25 \mathrm{x}-50=375$
	total value	375	25x $=425$
			$\mathrm{x}=17$
			$2 \mathrm{x}-5=29$

There are 17 nickels and 29 dimes.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
7. A collection of ordinary dimes and nickels is worth $\$ 3.75$. If the number of dimes is five less than twice the number of nickels, then how many coins of each type are there in the collection?

	number	value ¢	$10(2 x-5)+5 x=375$
dimes :	2x-5	10(2x-5)	$20 \mathrm{x}-50+5 \mathrm{x}=375$
nickels :	X	5x	$25 \mathrm{x}-50=375$
	total value	375	25x $=425$
			$\mathrm{x}=17$
			$2 \mathrm{x}-5=29$

There are 17 nickels and 29 dimes.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters :

nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters :

nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

number

quarters :
nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

number

quarters: $\quad \mathbf{x}$
nickels :

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?
number
quarters: $\quad \mathbf{x}$
nickels : 60

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?
number
quarters: $\quad \mathbf{x}$
nickels : 60 -

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?
number
quarters: $\quad \mathbf{x}$
nickels : 60-x

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?
number
quarters: $\quad \mathbf{x}$
nickels : 60-x

1. Represent all unknowns in terms of the same variable.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?
number
quarters: $\quad \mathbf{x}$
nickels : $60-\mathbf{x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?
number
quarters: $\quad \mathbf{x}$
nickels : $60-\mathbf{x}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

```
    number value c
quarters : }\quad\mathbf{x
    nickels: 60-x
```

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

	number	value $¢$
quarters :	\mathbf{x}	$\mathbf{2 5 x}$
nickels :	$\mathbf{6 0 - x}$	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

	number	value $¢$
quarters :	\mathbf{x}	$\mathbf{2 5 x}$
nickels :	$\mathbf{6 0}-\mathbf{x}$	$\mathbf{5 (6 0 - x})$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

	number	value \boldsymbol{c}
quarters :	\mathbf{x}	$\mathbf{2 5 x}$
nickels :	$\mathbf{6 0}-\mathbf{x}$	$\mathbf{5 (6 0 - x)}$
total value :		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

	number	value $¢$
quarters :	x	$25 x$
nickels :	$60-x$	$\mathbf{5 (6 0 - x)}$
total value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :	number	value ¢
	\mathbf{x}	25x
	$60-\mathrm{x}$	$5(60-x)$
	tal value	400

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

	number	value \boldsymbol{c}	$\mathbf{2 5 x}+$
quarters :	\mathbf{x}	$\mathbf{2 5 x}$	
nickels :	$\mathbf{6 0}-\mathbf{x}$	$\mathbf{5 (6 0 - x)}$	
total value $:$	$\mathbf{4 0 0}$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			$\mathbf{2 5 x}+5(60-x)$
	$\underset{x}{\text { number }}$	value $¢$ $25 x$	25x $+5(60-x)$
	$60-x$	$5(60-x)$	
	tal value	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			$25 x+5(60-x)=400$
	number	value ¢	
	\mathbf{x}	25x	
	$60-\mathrm{x}$	$5(60-x)$	
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			$25 x+5(60-x)=400$
	number	value ¢	
	\mathbf{x}	25x	
	$60-\mathrm{x}$	$5(60-x)$	
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

| | number | value $¢$ |
| ---: | :---: | :---: |$\quad \mathbf{2 5 x}+\mathbf{5 (6 0 - x) = 4 0 0}$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels			
	$\underset{\mathbf{x}}{\text { number }}$	$\text { value } ¢$ $25 x$	$\begin{aligned} & \mathbf{2 5 x}+5(60-x)=400 \\ & 25 x \end{aligned}$
	$60-\mathrm{x}$	$5(60-x)$	
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels			$x)=4$
	$\underset{\mathbf{x}}{\text { number }}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\mathbf{2 5 x}+$
	60-x	$5(60-x)$	
	tal value	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters :nickels :			
	$\begin{gathered} \text { number } \\ \mathrm{x} \end{gathered}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300 \end{aligned}$
	$60-\mathrm{x}$	$5(60-x)$	
	al value	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters	$\underset{\mathbf{x}}{\text { number }}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300- \end{aligned}$
nickels :	$60-\mathrm{x}$	5(60-x)	
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters	$\underset{\mathbf{x}}{\text { number }}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x \end{aligned}$
nickels :	$60-\mathrm{x}$	5(60-x)	
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

arters	$\underset{\mathbf{x}}{\text { number }}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x= \end{aligned}$
nickels :	$60-x$	$5(60-x)$	
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	$\underset{\mathbf{x}}{\text { number }}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	60-x	$5(60-x)$	
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels			
	$\begin{gathered} \text { number } \\ \mathbf{x} \end{gathered}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$25 x+300-5 x=400$
	$60-\mathrm{x}$	$5(60-x)$	20x
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels			
	$\begin{gathered} \text { number } \\ \mathbf{x} \end{gathered}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	$60-\mathbf{x}$	$5(60-x)$	20x +
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels			
	$\text { number }_{x}$	$\begin{gathered} \text { value } \propto \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	$60-\mathrm{x}$	$5(60-x)$	20x +300
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels			
	$\begin{aligned} & \text { number } \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \text { value } ф \\ & \text { 25x } \end{aligned}$	$25 x+300-5 x=400$
	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=$
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters nickels			
	$\underset{\mathbf{x}}{\text { number }}$	$\begin{aligned} & \text { value } ¢ \\ & \text { 25x } \end{aligned}$	$25 x+300-5 x=400$
	$60-\mathrm{x}$	$5(60-x)$	$20 x+300=400$
	tal value :	400	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	$\underset{\mathbf{x}}{\text { number }}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$25 x+300-5 x=400$
	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=400$
	tal value :	400	20x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	$\underset{\mathbf{x}}{\text { number }}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$25 x+300-5 x=400$
	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=400$
	tal value :	400	20x $=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels			
	$\underset{\mathbf{x}}{\text { number }}$	$\begin{aligned} & \text { value } \boldsymbol{¢} \\ & \text { 25x } \end{aligned}$	$25 x+300-5 x=400$
	$60-x$	$5(60-x)$	$20 \mathrm{x}+300=400$
	tal value :	400	$20 \mathrm{x}=100$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	$\underset{x}{\text { number }}$	$\begin{aligned} & \text { value } ¢ \\ & 25 x \end{aligned}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=400$
total value :		400	$20 \mathrm{x}=100$
			x

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

	number	value $¢$	$\mathbf{2 5 x}+\mathbf{5 (6 0 - x)}=\mathbf{4 0 0}$
quarters :	\mathbf{x}	$\mathbf{2 5 x}$	$\mathbf{2 5 x}+\mathbf{3 0 0}-\mathbf{5 x}=\mathbf{4 0 0}$
nickels :	$\mathbf{6 0 - x}$	$\mathbf{5 (6 0 - x)}$	$\mathbf{2 0 x}+\mathbf{3 0 0}=\mathbf{4 0 0}$
total value :	$\mathbf{4 0 0}$		$\mathbf{2 0 x}=\mathbf{1 0 0}$
			$x=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	number	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=400$
total value :		400	$20 \mathrm{x}=100$
			$\mathrm{x}=5$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters nickels			
	$\begin{aligned} & \text { number } \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \text { value } ¢ \\ & \text { 25x } \end{aligned}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=400$
total value :		400	$20 \mathrm{x}=100$
			$x=5$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	$\begin{aligned} & \text { number } \\ & x \\ & 60-x \end{aligned}$	$\begin{gathered} \text { value } \varnothing \\ 25 x \\ \mathbf{5 (6 0 - x}) \\ \hline \end{gathered}$	$\begin{gathered} 25 x+5(60-x)=400 \\ 25 x+300-5 x=400 \\ 20 x+300=400 \end{gathered}$
total value :		400	$20 \mathrm{x}=100$
			$x=5$
			$60-x$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	number \mathbf{x}	$\begin{aligned} & \text { value } \varnothing \\ & 25 x \end{aligned}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=400$
total value :		400	$20 \mathrm{x}=100$
			$x=5$
			$60-\mathrm{x}=$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	${ }_{x}^{\text {number }}$	$\begin{gathered} \text { value } ¢ \\ 25 x \end{gathered}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	$60-\mathrm{x}$	$5(60-x)$	$20 \mathrm{x}+300=400$
total value :		400	$20 \mathrm{x}=100$
			$x=5$
			$60-x=55$

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :	number	value ¢	$25 x+5(60-x)=400$	
		$25 x$	$25 x+300-5 x=400$	
	$60-\mathrm{x}$	$5(60-x)$	$20 x+300=400$	
total value :		400	$20 \mathrm{x}=100$	
		$x=5$	There are 5 quarters	
		$60-x=55$		

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :	umber	value ¢	$25 x+5(60-x)=400$	
	\mathbf{x}	$25 x$	$25 x+300-5 x=400$	
	$60-x$	$5(60-x)$	$20 \mathrm{x}+300=400$	
total value :		400	$20 \mathrm{x}=100$	
		$\begin{gathered} x=5 \\ 60-x=55 \end{gathered}$	There are 5 quarters and 55 nickels.	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :	umber	value ¢	$25 x+5(60-x)=400$	
	\mathbf{x}	$25 x$	$25 x+300-5 x=400$	
	$60-x$	$5(60-x)$	$20 \mathrm{x}+300=400$	
total value :		400	$20 \mathrm{x}=100$	
		$\begin{gathered} x=5 \\ 60-x=55 \end{gathered}$	There are 5 quarters and 55 nickels.	

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.

Algebra I Class Worksheet \#2 Unit 3 RESAC Method

Solve each of the following problems algebraically (one variable solution).
8. A collection of ordinary quarters and nickels has a total value of $\$ 4$. If there are 60 coins in the collection, then how many coins of each type are there?

quarters : nickels :			
	$\underset{\mathbf{x}}{\text { number }}$	$\begin{aligned} & \text { value } ¢ \\ & 25 x \end{aligned}$	$\begin{aligned} & 25 x+5(60-x)=400 \\ & 25 x+300-5 x=400 \end{aligned}$
	$60-x$	$5(60-x)$	20x $+300=400$
total value :		400	$20 \mathrm{x}=100$
			$x=5$

There are 5 quarters

Good luck on your homework.

1. Represent all unknowns in terms of the same variable.
2. Write an Equation.
3. Solve the equation.
4. Answer the question (complete sentence).
5. Check your solution.
