Algebra I Worksheet \#3 Unit 2 page 1

Complete the table for each input-output chart shown.

1.		2.	3.	4.
Input	$\mathrm{x}+12=35$	$x-17=25$	$6 \mathrm{x}=102$	$\frac{x}{9}=23$
Operation	subtract 12 from both sides	$\text { add } 17$ to both sides	divide both sides by 6	multiply both sides by 9
Output				

5.
6.
7.
8.

Input	$x+45=68$	$x-34=95$	$4 x=228$	$\frac{x}{8}=24$
\downarrow Operation				
\downarrow Output				

Solve the following equations.
9. $x+4=13$
10. $x-5=13$
11. $4 x=36$
12. $\frac{\mathrm{x}}{5}=5$
13. $x+12=15$
14. $\mathrm{x}-12=9$
15. $3 x=51$
16. $\frac{x}{4}=24$
17. $x+25=43$
18. $x-19=43$
19. $7 x=196$
20. $\frac{x}{9}=17$

Algebra I Worksheet \#3 Unit 2 page 2

Write an algebraic expression for each of the following.
21. the distance driven at 50 miles per hour for k hours \qquad
22. the distance walked at 7 miles per hour for h hours \qquad
23. the distance biked at 15 miles per hour for t hours \qquad
24. The length of a rectangle is 3 centimeters longer than the width. If w represents the width, then represent the length in terms of w. \qquad
25. The length of a rectangle is 3 times longer than the width. If w represents the width, then represent the length in terms of w. \qquad
26. Mary is five years younger than her brother Bill. If B represents Billốs age, then represent Maryô age in terms of B. \qquad
27. Kathy is three years older than her brother Jim. If J represents Jimô age, then represent Kathyôs age in terms of J. \qquad
28. Tom $\hat{\delta}$ age is one-fourth of his mother $\hat{\propto}$ age. If x represents his mother $\hat{\alpha}$ age, then represent Tomô age in terms of x.
29. Timô age is six times his sonố age. If y represents his sonô age, then represent Timôs age in terms of y. \qquad
30. Sarah has twice as many marbles as Ted. John has 6 fewer marbles than Ted. If t represents the number of marbles Ted has, then represent each of the following in terms of t.

The number of marbles that Sarah has: \qquad
The number of marbles that John has: \qquad

