Algebra I Lesson \#4 Unit 13

 Class Worksheet \#4 For Worksheets \#5 \& \#7Complete the Square

Complete the Square

Consider the following problems.

Complete the Square

Consider the following problems.
$(x+5)^{2}=$

Complete the Square

Consider the following problems.

$$
(x+5)^{2}=
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}= \\
= & (x+5)(x+5)
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{gathered}
(x+5)^{2}= \\
=(x+5)(x+5)= \\
\substack{(x)}
\end{gathered}
$$

Complete the Square

Consider the following problems.

$$
\begin{gathered}
(x+5)^{2}= \\
=(x+5)(x+5)=x^{2} \\
\quad \begin{array}{l}
\text { (}
\end{array} \\
\hline
\end{gathered}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}= \\
& =(x+5)(x+5)=x^{2} \\
& \text { - } \uparrow
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}= \\
& =\underset{\substack{(x+5)(x+5) \\
\uparrow}}{ }=x^{2}+5 x
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}= \\
&=(x+5)(x+5)=x^{2}+5 x \\
& \bigsqcup
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}= \\
&=(x+5)(x+5)=x^{2}+5 x+5 x \\
& \quad 丩
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}= \\
&=(x+5)(x+5) \\
& \quad \underset{\sim}{\uparrow}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}= \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}= \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}= \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2} \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2} \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
= & (x+5)(x+5)=x^{2}+5 x+5 x+25=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
(x+5)^{2}=x^{2}+10 x+25
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}= \\
= & (x+A)(x+A)
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
(x+5)^{2}=x^{2}+10 x+25
$$

$$
(x+A)^{2}=
$$

$$
=(\mathbf{x}+\mathbf{A})(\mathbf{x}+\mathbf{A})=
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}= \\
= & (x+A)(x+A)=x^{2} \\
&
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}= \\
&=(x+A)(x+A) \\
&\underbrace{(x})
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+\mathbf{A})^{2}= \\
&=(x+\mathbf{A})(x+\underset{\sim}{\mathbf{A}})
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+\mathbf{A})^{2}= \\
= & (x+\underset{\sim}{\mathbf{A}})(x+A)=x^{2}+\mathbf{A x}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}= \\
= & (x+\underset{\sim}{A})(x+A)=x^{2}+A x+A x
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}= \\
&=(x+\underset{\sim}{A})(x+\underset{\sim}{A})
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}= \\
&=(x+\underset{\sim}{A})(x+\underset{\sim}{A})
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+\mathbf{A})^{2}= \\
= & (x+\mathbf{A})(x+\mathbf{A})=x^{2}+\mathbf{A x}+\mathbf{A x}+\mathbf{A}^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+\mathbf{A})^{2}= \\
= & (x+\mathbf{A})(x+\mathbf{A})=\mathbf{x}^{2}+\mathbf{A x}+\mathbf{A x}+\mathbf{A}^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+\mathbf{A})^{2}=\mathbf{x}^{2} \\
= & (x+\mathbf{A})(x+\mathbf{A})=\mathbf{x}^{2}+\mathbf{A x}+\mathbf{A x}+\mathbf{A}^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2} \\
= & (x+A)(x+A)=x^{2}+A x+A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x \\
= & (x+A)(x+A)=x^{2}+A x+A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x \\
= & (x+A)(x+A)=x^{2}+A x+A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
= & (x+A)(x+A)=x^{2}+A x+A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
= & (x+A)(x+A)=x^{2}+A x+A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}= \\
= & (x-7)(x-7)
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}= \\
&=(x-7)(x-7)= \\
&
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}= \\
= & (x-7)(x-7)=x^{2}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}= \\
= & (x-7)(x-7)=x^{2}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}= \\
&=(x-7)(x-7)=x^{2}-7 x \\
& \square
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}= \\
&=(x-7)(x-7)=x^{2}-7 x
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}= \\
&=(x-7)(x-7)=x^{2}-7 x-7 x
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}= \\
&=(x-7)(x-7)=x^{2}-7 x-7 x \\
& \square
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}= \\
= & (x-7)(x-7)=x^{2}-7 x-7 x+49
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}= \\
= & (x-7)(x-7)=x^{2}-7 x-7 x+49=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}= \\
= & (x-7)(x-7)=x^{2}-7 x-7 x+49=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2} \\
= & (x-7)(x-7)=x^{2}-7 x-7 x+49=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2} \\
= & (x-7)(x-7)=x^{2}-7 x-7 x+49=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x \\
= & (x-7)(x-7)=x^{2}-7 x-7 x+49=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x \\
= & (x-7)(x-7)=x^{2}-7 x-7 x+49=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}=x^{2}-14 x+49 \\
&=(x-7)(x-7)=x^{2}-7 x-7 x+49=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}=x^{2}-14 x+49 \\
&=(x-7)(x-7)=x^{2}-7 x-7 x+49=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}=x^{2}-14 x+49 \\
&(x-A)^{2}= \\
&=(x-A)(x-A)
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}= \\
& =(\mathbf{x}-\mathbf{A})(\mathbf{x}-\mathbf{A})= \\
& \square
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{gathered}
(x+5)^{2}=x^{2}+10 x+25 \\
(x+A)^{2}=x^{2}+2 A x+A^{2} \\
(x-7)^{2}=x^{2}-14 x+49 \\
(x-A)^{2}= \\
=(x-A)(x-A)=x^{2} \\
(\underset{\sim}{~}
\end{gathered}
$$

Complete the Square

Consider the following problems.

$$
\begin{gathered}
(x+5)^{2}=x^{2}+10 x+25 \\
(x+A)^{2}=x^{2}+2 A x+A^{2} \\
(x-7)^{2}=x^{2}-14 x+49 \\
(x-A)^{2}= \\
= \\
(x-A)(x-A)=x^{2}
\end{gathered}
$$

Complete the Square

Consider the following problems.

$$
\begin{gathered}
(x+5)^{2}=x^{2}+10 x+25 \\
(x+A)^{2}=x^{2}+2 A x+A^{2} \\
(x-7)^{2}=x^{2}-14 x+49 \\
(x-A)^{2}= \\
= \\
(x-A)(x-A)=x^{2}-A x
\end{gathered}
$$

Complete the Square

Consider the following problems.

$$
\begin{gathered}
(x+5)^{2}=x^{2}+10 x+25 \\
(x+A)^{2}=x^{2}+2 A x+A^{2} \\
(x-7)^{2}=x^{2}-14 x+49 \\
(x-A)^{2}= \\
=(x-A)(x-A)=x^{2}-A x \\
\end{gathered}
$$

Complete the Square

Consider the following problems.

$$
\begin{gathered}
(x+5)^{2}=x^{2}+10 x+25 \\
(x+A)^{2}=x^{2}+2 A x+A^{2} \\
(x-7)^{2}=x^{2}-14 x+49 \\
(x-A)^{2}= \\
= \\
(x-A)(x-A)=x^{2}-A x-A x
\end{gathered}
$$

Complete the Square

Consider the following problems.

$$
\begin{gathered}
(x+5)^{2}=x^{2}+10 x+25 \\
(x+A)^{2}=x^{2}+2 A x+A^{2} \\
(x-7)^{2}=x^{2}-14 x+49 \\
(x-A)^{2}= \\
=(x-A)(x-A)=x^{2}-A x-A x \\
\qquad
\end{gathered}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}= \\
& =(x-A)(x-A)=x^{2}-A x-A x+A^{2} \\
&
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}= \\
= & (x-A)(x-A)=x^{2}-A x-A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}= \\
= & (x-A)(x-A)=x^{2}-A x-A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}=x^{2}-14 x+49 \\
&(x-A)^{2}=x^{2} \\
&=(x-A)(x-A)=x^{2}-A x-A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}=x^{2}-14 x+49 \\
&(x-A)^{2}=x^{2} \\
&=(x-A)(x-A)=x^{2}-A x-A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
&(x+5)^{2}=x^{2}+10 x+25 \\
&(x+A)^{2}=x^{2}+2 A x+A^{2} \\
&(x-7)^{2}=x^{2}-14 x+49 \\
&(x-A)^{2}=x^{2}-2 A x \\
&=(x-A)(x-A)=x^{2}-A x-A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=x^{2}-2 A x \\
& = \\
& (x-A)(x-A)=x^{2}-A x-A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=x^{2}-2 A x+A^{2} \\
& =(x-A)(x-A)=x^{2}-A x-A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=x^{2}-2 A x+A^{2} \\
& = \\
& (x-A)(x-A)=x^{2}-A x-A x+A^{2}=
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=x^{2}-2 A x+A^{2}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=x^{2}-2 A x+A^{2}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=x^{2}-2 A x+A^{2}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& (x+5)^{2}=x^{2}+10 x+25 \\
& (x+A)^{2}=x^{2}+2 A x+A^{2} \quad \text { These are 'perfect square trinomials'. } \\
& (x-7)^{2}=x^{2}-14 x+49 \\
& (x-A)^{2}=x^{2}-2 A x+A^{2}
\end{aligned}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \text { (trinomials that are perfect squares) } \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \text { reverse order. }
\end{array}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \text { (trinomials that are perfect squares) } \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \text { reverse order. } \\
x^{2}+10 x+25= &
\end{array}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \text { (trinomials that are perfect squares) } \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \begin{array}{l}
\text { reverse order. }
\end{array} \\
x^{2}+10 x+25=(x+5)^{2} &
\end{array}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \text { (trinomials that are perfect squares) } \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \text { reverse order. } \\
x^{2}+10 x+25=(x+5)^{2} & \\
x^{2}+2 A x+A^{2}= &
\end{array}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \begin{array}{l}
\text { (trinomials that are perfect squares) }
\end{array} \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \text { reverse order. } \\
x^{2}+10 x+25=(x+5)^{2} & \\
x^{2}+2 A x+A^{2}=(x+A)^{2} &
\end{array}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \text { (trinomials that are perfect squares) } \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \text { reverse order. } \\
x^{2}+10 x+25=(x+5)^{2} & \\
x^{2}+2 A x+A^{2}=(x+A)^{2} & \\
x^{2}-14 x+49= &
\end{array}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \text { (trinomials that are perfect squares) } \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \text { reverse order. } \\
x^{2}+10 x+25=(x+5)^{2} & \\
x^{2}+2 A x+A^{2}=(x+A)^{2} & \\
x^{2}-14 x+49=(x-7)^{2} &
\end{array}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \begin{array}{l}
\text { (trinomials that are perfect squares) }
\end{array} \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \text { reverse order. } \\
x^{2}+10 x+25=(x+5)^{2} & \\
x^{2}+2 A x+A^{2}=(x+A)^{2} & \\
x^{2}-14 x+49=(x-7)^{2} & \\
x^{2}-2 A x+A^{2}= &
\end{array}
$$

Complete the Square

Consider the following problems.

$$
\begin{array}{ll}
(x+5)^{2}=x^{2}+10 x+25 & \text { These are 'perfect square trinomials'. } \\
(x+A)^{2}=x^{2}+2 A x+A^{2} & \text { (trinomials that are perfect squares) } \\
(x-7)^{2}=x^{2}-14 x+49 & \text { These equations can be written in } \\
(x-A)^{2}=x^{2}-2 A x+A^{2} & \begin{array}{l}
\text { reverse order. }
\end{array} \\
x^{2}+10 x+25=(x+5)^{2} & \\
x^{2}+2 A x+A^{2}=(x+A)^{2} & \\
x^{2}-14 x+49=(x-7)^{2} & \\
x^{2}-2 A x+A^{2}=(x-A)^{2} &
\end{array}
$$

Complete the Square

Consider the following problems.
$x^{2}+10 x+25=(x+5)^{2}$
$x^{2}+2 A x+A^{2}=(x+A)^{2}$
$\mathrm{x}^{2}-14 \mathrm{x}+49=(\mathrm{x}-7)^{2}$
$\mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2}=(\mathrm{x}-\mathrm{A})^{2}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial,

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$2 \mathrm{~A}=10$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$2 \mathrm{~A}=10 \rightarrow$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$2 \mathrm{~A}=10 \rightarrow \mathrm{~A}=5$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$2 \mathrm{~A}=10 \rightarrow \mathrm{~A}=5 \rightarrow$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$2 A=10 \rightarrow A=5 \rightarrow A^{2}=25$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$2 A=10 \rightarrow A=5 \rightarrow A^{2}=25$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square. The key here is to see the relationship between the coefficient of x in the middle term and the third term.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the

$$
2 A=10 \rightarrow A=5 \rightarrow A^{2}=25
$$ expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the

$$
2 A=10 \rightarrow A=5 \rightarrow A^{2}=25
$$ expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the

$$
2 A=10 \rightarrow A=5 \rightarrow A^{2}=25
$$ expression a perfect square.

$$
x^{2}+10 x
$$

Complete the Square

Consider the following problems.
$\mathrm{x}^{2}+10 \mathrm{x}+25=(\mathrm{x}+5)^{2}$
$x^{2}+2 A x+A^{2}=(x+A)^{2}$
$x^{2}-14 x+49=(x-7)^{2}$
$\mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2}=(\mathrm{x}-\mathrm{A})^{2}$
$2 A=10 \rightarrow A=5 \rightarrow A^{2}=25$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}+10 x
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$2 A=10 \rightarrow A=5 \rightarrow A^{2}=25$
Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}+10 x
$$

Step 1:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 A=10 \rightarrow A=5 \rightarrow A^{2}=25$

$$
x^{2}+10 x
$$

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 A=10 \rightarrow A=5 \rightarrow A^{2}=25$

$$
\mathbf{x}^{2}+10 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=10 \rightarrow \mathrm{~A}=5 \rightarrow \mathrm{~A}^{2}=\mathbf{2 5}$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}+10 x
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by 2.V

$$
2 \mathrm{~A}=10 \rightarrow \mathrm{~A}=\underset{\substack{5 \\ \text { Square it. }}}{\rightarrow \mathbf{A}^{2}=25}
$$

$$
x^{2}+10 x
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& \mathrm{x}^{2}+10 \mathrm{x}+25=(\mathrm{x}+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& \mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2}=(\mathrm{x}-\mathrm{A})^{2} \\
& \text { Divide by } 2 . \downarrow
\end{aligned}
$$

Given the first two terms of
any perfect square trinomial,
you will have to 'complete the
square'. This means you will
have to determine the third
term that will make the
expression a perfect square.
$\mathbf{x}^{2}+10 x$

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& \mathrm{x}^{2}+10 \mathrm{x}+25=(\mathrm{x}+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& \mathrm{x}^{2}-14 \mathrm{x}+49=(\mathrm{x}-7)^{2} \\
& \mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2}=(\mathrm{x}-\mathrm{A})^{2} \\
& \text { Divide by } 2 . \downarrow \\
& 2 A=10 \rightarrow A=\underset{\substack{\text { Square it. }}}{\boldsymbol{q}} \underset{\substack{\mathbf{A}^{2}=25}}{ } \\
& x^{2}+10 x+25
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{gathered}
x^{2}+10 x+25=(x+5)^{2} \\
x^{2}+2 A x+A^{2}=(x+A)^{2} \\
x^{2}-14 x+49=(x-7)^{2} \\
x^{2}-2 A x+A^{2}=(x-A)^{2} \\
\boxed{D i v i d e ~ b y ~ 2 . V} \\
2 A=10 \rightarrow A=5 \rightarrow A^{2}=25 \\
\text { Square it. } \uparrow
\end{gathered}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square' ${ }^{\text {.) }}$
Step 3:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2} \\
& \boxed{D i v i d e ~ b y ~ 2 . V} \\
& 2 A=10 \rightarrow A=5 \rightarrow A^{2}=25 \\
& \text { Square it. } \uparrow
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& \mathrm{x}^{2}+10 \mathrm{x}+25=(\mathrm{x}+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& \mathrm{x}^{2}-14 \mathrm{x}+49=(\mathrm{x}-7)^{2} \\
& \mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2}=(\mathrm{x}-\mathrm{A})^{2} \\
& \text { Divide by } 2 . \downarrow
\end{aligned}
$$

Given the first two terms of
any perfect square trinomial,
you will have to 'complete the
square'. This means you will
have to determine the third
term that will make the
expression a perfect square.
$x^{2}+10 x+25=$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

\[

\]

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 A=10 \rightarrow A=\underset{\substack{\text { Square it. }}}{\boldsymbol{\wedge}} \underset{\sim}{A^{2}=25}$

$$
x^{2}+10 x+25=(x+5)^{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}+10 x+25=(x+5)^{2}
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square' ${ }^{\text {.) }}$
Step 3: Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
\mathbf{x}^{2}-14 x
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}-14 x
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
\mathbf{x}^{2}-14 x
$$

Step 1:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
\mathbf{x}^{2}-14 x
$$

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.
$2 \mathrm{~A}=14$

$$
\mathbf{x}^{2}-14 x
$$

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.
$2 A=14 \rightarrow$

$$
\mathbf{x}^{2}-14 x
$$

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 A=14 \rightarrow A=7$

$$
x^{2}-14 x
$$

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 A=14 \rightarrow A=7$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}-14 x
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 A=14 \rightarrow A=7$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}-14 x
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 A=14 \rightarrow A=7$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}-14 x
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow$

$$
x^{2}-14 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow \mathrm{~A}^{2}=49$
Square it.

$$
x^{2}-14 x
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow \mathrm{~A}^{2}=49$
Square it.

$$
\mathbf{x}^{2}-14 x
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow \mathrm{~A}^{2}=49$
Square it.

$$
x^{2}-14 x+49
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow \mathrm{~A}^{2}=49$
Square it.

$$
x^{2}-14 x+49
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow \mathrm{~A}^{2}=49$
Square it.

$$
x^{2}-14 x+49
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow \mathrm{~A}^{2}=49$
Square it.

$$
x^{2}-14 x+49=
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow \mathrm{~A}^{2}=49$
Square it.

$$
x^{2}-14 x+49=
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'. $(x-A)^{2}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=14 \rightarrow \mathrm{~A}=7 \rightarrow \mathrm{~A}^{2}=49$
Square it.

$$
x^{2}-14 x+49=(x-7)^{2}
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'. $(x-A)^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
x^{2}-14 x+49=(x-7)^{2}
$$

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'. $(x-A)^{2}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-14 x+49=(x-7)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.
$x^{2}+2 A x+A^{2}=(x+A)^{2}$
$x^{2}-2 A x+A^{2}=(x-A)^{2}$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

$2 \mathrm{~A}=8$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

$2 \mathrm{~A}=8 \rightarrow$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=8 \rightarrow \mathrm{~A}=4$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=8 \rightarrow \mathrm{~A}=4$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=8 \rightarrow \mathrm{~A}=4$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=8 \rightarrow \mathrm{~A}=4$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=8 \rightarrow \mathrm{~A}=4$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=8 \rightarrow \mathrm{~A}=4 \rightarrow$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

$$
2 A=8 \rightarrow A=\underset{\substack{\text { Divide by } 2 . \\ \text { Square it. }}}{\rightarrow}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x
$$

$$
2 A=8 \rightarrow A=\underset{\substack{\text { Divide by } 2 . \\ \text { Square it. }}}{\rightarrow}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x+16
$$

$$
2 A=8 \rightarrow A=\underset{\substack{\text { Divide by } 2 . \\ \text { Square it. }}}{\rightarrow}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x+16
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x+16
$$

$$
\left.2 A=8 \rightarrow A=4 \rightarrow A^{\text {Divide by } 2 .} \begin{array}{l}
\text { Square it. }
\end{array}\right)
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x+16
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x+16=
$$

$$
\text { Divide by } 2 . \Downarrow
$$

$$
2 A=8 \rightarrow A=4 \rightarrow A^{2}=16
$$

Square it.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x+16=
$$

Divide by 2.V

$$
2 A=8 \rightarrow A=4 \rightarrow A^{2}=16
$$

Square it.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x+16=(x+4)^{2}
$$

Divide by 2. \downarrow
$2 A=8 \rightarrow A=4 \rightarrow A^{2}=16$ Square it.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'. $(x+A)^{2}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+8 x+16=(x+4)^{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)
Step 3: Write the trinomial in 'factored form'. $(x+A)^{2}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

$2 \mathrm{~A}=12$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

$$
2 \mathrm{~A}=12 \rightarrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

$$
\text { Step 1: Divide the coefficient of } x \text { by 2. (This is the value of A.) }
$$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

$$
\begin{aligned}
& \stackrel{\text { Divide by } 2 .}{ } \\
& 2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36 \\
& \underset{\text { Square it. }}{ } \uparrow
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36$
Square it.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36
$$

$$
\begin{aligned}
& \stackrel{\text { Divide by } 2 . \Downarrow}{ } \\
& 2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36 \\
& \underset{\text { Square it. }}{ } \uparrow
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36
$$

$$
\begin{aligned}
& \stackrel{\text { Divide by } 2 . \Downarrow}{ } \\
& 2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36 \\
& \underset{\text { Square it. }}{ } \uparrow
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36
$$

$$
\begin{aligned}
& \stackrel{\text { Divide by } 2 . \downarrow}{ } \\
& 2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36 \\
& \underset{\text { Square it. }}{ } \uparrow
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36$
Square it.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36=
$$

$$
\text { Divide by } 2 . \downarrow
$$

$$
2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36
$$

Square it.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square' ${ }^{\prime}$)

Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36=
$$

$$
\text { Divide by } 2 . \downarrow
$$

$$
2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36
$$

Square it.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square' ${ }^{\prime}$)

Step 3: Write the trinomial in 'factored form'. $(x-A)^{2}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36=(x-6)^{2}
$$

$$
\text { Divide by } 2 . \downarrow
$$

$$
2 \mathrm{~A}=12 \rightarrow \mathrm{~A}=6 \rightarrow \mathrm{~A}^{2}=36
$$

Square it.

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'. $(x-A)^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-12 x+36=(x-6)^{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square' ${ }^{\prime}$)

Step 3: Write the trinomial in 'factored form'. $(x-\mathbf{A})^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

$$
2 \mathrm{~A}=5
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

$2 \mathrm{~A}=5 \rightarrow$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2}$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2}$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2}$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Divide by 2. \downarrow

$$
2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Divide by $2 . \downarrow$

$$
2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2} \rightarrow$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2} \rightarrow \mathrm{~A}^{2}=\frac{25}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2} \rightarrow \mathrm{~A}^{2}=\frac{25}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x+\frac{25}{4}
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2} \rightarrow \mathrm{~A}^{2}=\frac{25}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x+\frac{25}{4}
$$

$$
\text { Divide by } 2 . \downarrow
$$

$$
2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2} \rightarrow \mathrm{~A}^{2}=\frac{25}{4}
$$

$$
\text { Square it. } \uparrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x+\frac{25}{4}
$$

$$
\text { Divide by } 2 . \Downarrow
$$

$$
2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2} \rightarrow \mathrm{~A}^{2}=\frac{25}{4}
$$

$$
\text { Square it. } \uparrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x+\frac{25}{4}
$$

$$
\text { Divide by } 2 . \downarrow
$$

$$
2 A=5 \rightarrow A=\frac{5}{2} \rightarrow A^{2}=\frac{25}{4}
$$

$$
\text { Square it. } \uparrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x+\frac{25}{4}=
$$

$$
\text { Divide by } 2 . \downarrow
$$

$$
2 A=5 \rightarrow A=\frac{5}{2} \rightarrow A^{2}=\frac{25}{4}
$$

$$
\text { Square it. } \uparrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}+5 x+\frac{25}{4}=
$$

$$
\text { Divide by } 2 . \Downarrow
$$

$$
2 A=5 \rightarrow A=\frac{5}{2} \rightarrow A^{2}=\frac{25}{4}
$$

$$
\text { Square it. } \uparrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'. $(x+A)^{2}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2} \\
& x^{2}+5 x+\frac{25}{4}=\left(x+\frac{5}{2}\right)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third

$$
\text { Divide by } 2 . \downarrow
$$ term that will make the

$$
2 \mathrm{~A}=5 \rightarrow \mathrm{~A}=\frac{5}{2} \rightarrow \mathrm{~A}^{2}=\frac{25}{4}
$$ expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'. $(x+A)^{2}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2} \\
& x^{2}+5 x+\frac{25}{4}=\left(x+\frac{5}{2}\right)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square' ${ }^{\prime}$)

Step 3: Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
\mathbf{x}^{2}-9 x
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x
$$

$$
2 \mathrm{~A}=9
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
\mathbf{x}^{2}-9 x
$$

$$
2 \mathrm{~A}=9 \rightarrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of \mathbf{x} by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x
$$

Divide by $2 . \downarrow$

$$
2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
\mathbf{x}^{2}-9 x
$$

Divide by $2 . \downarrow$

$$
2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
\mathbf{x}^{2}-9 x
$$

Divide by $2 . \downarrow$

$$
2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
\mathbf{x}^{2}-9 x
$$

Divide by $2 . \downarrow$

$$
2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
\mathbf{x}^{2}-9 x
$$

Divide by $2 . \downarrow$

$$
2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
\mathbf{x}^{2}-9 x
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x
$$

Divide by 2.
$2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
\mathbf{x}^{2}-9 x
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x+\frac{81}{4}
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.)
Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x+\frac{81}{4}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}$ Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x+\frac{81}{4}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3:

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x+\frac{81}{4}
$$

Divide by 2. \downarrow
$2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x+\frac{81}{4}=
$$

Divide by 2.V

$$
2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}
$$

$$
\text { Square it. } \uparrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'.

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x+\frac{81}{4}=
$$

Divide by 2.V

$$
2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}
$$

$$
\text { Square it. } \uparrow
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'. $(x-\mathbf{A})^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2}
\end{aligned}
$$

$$
x^{2}-9 x+\frac{81}{4}=\left(x-\frac{9}{2}\right)^{2}
$$

Divide by $2 . \downarrow$
$2 \mathrm{~A}=9 \rightarrow \mathrm{~A}=\frac{9}{2} \rightarrow \mathrm{~A}^{2}=\frac{81}{4}$
Square it. \uparrow

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square'.)

Step 3: Write the trinomial in 'factored form'. $(x-\mathbf{A})^{\mathbf{2}}$

Complete the Square

Consider the following problems.

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& x^{2}-2 A x+A^{2}=(x-A)^{2} \\
& x^{2}-9 x+\frac{81}{4}=\left(x-\frac{9}{2}\right)^{2}
\end{aligned}
$$

Given the first two terms of any perfect square trinomial, you will have to 'complete the square'. This means you will have to determine the third term that will make the expression a perfect square.

Step 1: Divide the coefficient of x by 2. (This is the value of A.) Step 2: Square A. (This is the term that must be added to 'complete the square' ${ }^{\prime}$)

Step 3: Write the trinomial in 'factored form'. $(x-A)^{2}$

Complete the Square

Complete the Square

Solving Second Degree Equations With 1 Variable $a x^{2}+b x+c=0$ where $a \neq 0$.

Complete the Square

Solving Second Degree Equations With 1 Variable

$$
\mathbf{a} x^{2}+\mathbf{b x}+\mathbf{c}=\mathbf{0} \text { where } \mathbf{a} \neq 0 .
$$

You have solved second degree equations (also called quadratic equations) using the factoring method.

Complete the Square

Solving Second Degree Equations With 1 Variable

$$
a x^{2}+b x+c=0 \quad \text { where } \mathbf{a} \neq 0 .
$$

You have solved second degree equations (also called quadratic equations) using the factoring method. This only works if the trinomial, $\mathbf{a x}^{\mathbf{2}}+\mathbf{b x}+\mathbf{c}$, is 'factorable'.

Complete the Square

Solving Second Degree Equations With 1 Variable

$$
a x^{2}+b x+c=0 \quad \text { where } a \neq 0 .
$$

You have solved second degree equations (also called quadratic equations) using the factoring method. This only works if the trinomial, $\mathbf{a x}^{\mathbf{2}}+\mathbf{b x}+\mathbf{c}$, is 'factorable'. You have also solved second degree equations using the square root property.

Complete the Square

Solving Second Degree Equations With 1 Variable $a x^{2}+b x+c=0 \quad$ where $a \neq 0$.

You have solved second degree equations (also called quadratic equations) using the factoring method. This only works if the trinomial, $\mathbf{a x}^{\mathbf{2}}+\mathbf{b x}+\mathbf{c}$, is 'factorable'. You have also solved second degree equations using the square root property. This method can only be used if $\mathbf{b}=\mathbf{0}$.

Complete the Square

Solving Second Degree Equations With 1 Variable

$$
a x^{2}+b x+c=0 \quad \text { where } a \neq 0 .
$$

You have solved second degree equations (also called quadratic equations) using the factoring method. This only works if the trinomial, $\mathbf{a x}^{\mathbf{2}}+\mathbf{b x}+\mathbf{c}$, is 'factorable'. You have also solved second degree equations using the square root property. This method can only be used if $b=0$. (There is no ' x ' term in the equation.)

Complete the Square

Solving Second Degree Equations With 1 Variable

$$
a x^{2}+b x+c=0 \quad \text { where } a \neq 0 .
$$

You have solved second degree equations (also called quadratic equations) using the factoring method. This only works if the trinomial, $\mathbf{a x}^{\mathbf{2}}+\mathbf{b x}+\mathbf{c}$, is 'factorable'. You have also solved second degree equations using the square root property. This method can only be used if $b=0$. (There is no ' x ' term in the equation.) Clearly, we need a method that can be used to solve any second degree equation.

Complete the Square

Solving Second Degree Equations With 1 Variable

$$
a x^{2}+b x+c=0 \quad \text { where } a \neq 0 .
$$

You have solved second degree equations (also called quadratic equations) using the factoring method. This only works if the trinomial, $\mathbf{a x}^{\mathbf{2}}+\mathbf{b x}+\mathbf{c}$, is 'factorable'. You have also solved second degree equations using the square root property. This method can only be used if $b=0$. (There is no ' x ' term in the equation.) Clearly, we need a method that can be used to solve any second degree equation. The 'complete the square' process can be used.

Complete the Square

Solving Second Degree Equations With 1 Variable

$$
a x^{2}+b x+c=0 \quad \text { where } a \neq 0 .
$$

You have solved second degree equations (also called quadratic equations) using the factoring method. This only works if the trinomial, $\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}$, is 'factorable'. You have also solved second degree equations using the square root property. This method can only be used if $b=0$. (There is no ' x ' term in the equation.) Clearly, we need a method that can be used to solve any second degree equation. The 'complete the square' process can be used. This lesson is designed to illustrate this process.

Algebra I Class Worksheet \#4 Unit 13

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $x^{2}+4 x-12=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $x^{2}+4 x-12=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $x^{2}+4 x-12=0$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $\mathbf{x}^{2}+4 x-12=0 \quad$ Add $\mathbf{1 2}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $\mathbf{x}^{2}+4 x-12=0 \quad$ Add $\mathbf{1 2}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $\mathbf{x}^{2}+4 x-12=0 \quad$ Add $\mathbf{1 2}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $\mathbf{x}^{2}+4 x-12=0 \quad$ Add $\mathbf{1 2}$ to both sides.
$x^{2}+4 x=12$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $\mathbf{x}^{2}+4 x-12=0$

$$
x^{2}+4 x=12
$$

Step 1: Write the equation in the form $x^{\mathbf{2}}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $\mathbf{x}^{2}+4 x-12=0$

$$
x^{2}+4 x=12
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

$$
\mathbf{x}^{2}+2 \mathbf{A x}+\mathrm{A}^{2}=(\mathrm{x}+\mathrm{A})^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

$$
\mathbf{x}^{2}+2 \mathbf{A x}+\mathrm{A}^{2}=(\mathrm{x}+\mathrm{A})^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =\mathbf{4} \\
\mathbf{A} & =\mathbf{2}
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } \quad x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } \quad x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } \quad x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } \quad x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4=
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathbf{A} & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \quad x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \quad x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathbf{A} & =\mathbf{2} \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathrm{~A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathrm{~A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathrm{~A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2 \\
\mathrm{~A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \quad x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \quad x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \quad x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4=12+4 \\
& (x+2)^{2}=16 \\
& x+2
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2=
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 1. } \begin{gathered}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 1. } \begin{gathered}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 1. } \begin{gathered}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 1. } \begin{gathered}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \begin{array}{c}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2
\end{array} \\
x
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4=12+4 \\
& (x+2)^{2}=16 \\
& x+2= \pm \sqrt{16} \\
& x=-2 \pm
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 1. } \begin{gathered}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 1. } \begin{gathered}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 1. } \begin{gathered}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $x^{2}+4 x-12=0$

$$
x^{2}+4 x=12
$$

$$
x^{2}+4 x+4=12+4
$$

$$
(x+2)^{2}=16
$$

$$
x+2= \pm \sqrt{16}
$$

$$
x=-2 \pm \sqrt{16}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

1. $\mathbf{x}^{2}+4 x-12=0$

$$
x^{2}+4 x=12
$$

$$
x^{2}+4 x+4=12+4
$$

$$
(x+2)^{2}=16
$$

$$
x+2= \pm \sqrt{16}
$$

$$
x=-2 \pm \sqrt{16}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \begin{array}{c}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=
\end{array}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } \begin{array}{c}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2
\end{array} \\
& x
\end{aligned}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \begin{array}{c}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+
\end{array} \\
x+
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or }
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4=12+4 \\
& (x+2)^{2}=16 \\
& x+2= \pm \sqrt{16} \\
& x=-2 \pm \sqrt{16} \\
& x=-2+4 \text { or } x=-2
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $\mathbf{x}^{\mathbf{2}}+\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \begin{array}{c}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2
\end{array} \\
\text { x }
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4=12+4 \\
& (x+2)^{2}=16 \\
& x+2= \pm \sqrt{16} \\
& x=-2 \pm \sqrt{16} \\
& x=-2+4 \text { or } x=-2-4 \\
& \mathbf{x}=2 \text { or }
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4=12+4 \\
& (x+2)^{2}=16 \\
& x+2= \pm \sqrt{16} \\
& x=-2 \pm \sqrt{16} \\
& x=-2+4 \text { or } x=-2-4 \\
& x=2 \text { or } x=
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \begin{array}{c}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{array}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 1. } x^{2}+4 x-12=0 \\
& x^{2}+4 x=12 \\
& x^{2}+4 x+4=12+4 \\
& (x+2)^{2}=16 \\
& x+2= \pm \sqrt{16} \\
& x=-2 \pm \sqrt{16} \\
& x=-2+4 \text { or } x=-2-4 \\
& x=2 \text { or } x=-6
\end{aligned}
$$

This problem could have been solved using the factoring method.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{gathered}
$$

This problem could have been solved using the factoring method. Let's compare.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{gathered}
$$

This problem could have been solved using the factoring method. Let's compare.

$$
x^{2}+4 x-12=0
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{gathered}
$$

This problem could have been solved using the factoring method. Let's compare.

$$
\begin{gathered}
x^{2}+4 x-12=0 \\
(x-2)(x+6)=0
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{gathered}
$$

This problem could have been solved using the factoring method. Let's compare.

$$
\begin{gathered}
x^{2}+4 x-12=0 \\
(x-2)(x+6)=0 \\
x-2=0 \text { or } x+6=0
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } \begin{array}{c}
x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{array}
\end{gathered}
$$

This problem could have been solved using the factoring method. Let's compare.

$$
\begin{gathered}
x^{2}+4 x-12=0 \\
(x-2)(x+6)=0 \\
x-2=0 \text { or } x+6=0 \\
x=2 \text { or } x=-6
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{gathered}
$$

This problem could have been solved using the factoring method. Let's compare.

$$
\begin{gathered}
x^{2}+4 x-12=0 \\
(x-2)(x+6)=0 \\
x-2=0 \text { or } x+6=0 \\
x=2 \text { or } x=-6
\end{gathered}
$$

You can draw your own conclusions.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 1. } x^{2}+4 x-12=0 \\
x^{2}+4 x=12 \\
x^{2}+4 x+4=12+4 \\
(x+2)^{2}=16 \\
x+2= \pm \sqrt{16} \\
x=-2 \pm \sqrt{16} \\
x=-2+4 \text { or } x=-2-4 \\
x=2 \text { or } x=-6
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
2. $x^{2}+8 x-4=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
2. $x^{2}+8 x-4=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
2. $x^{2}+8 x-4=0$

Step 1: Write the equation in the form $\mathbf{x}^{\mathbf{2}}+\mathbf{d x}=\mathbf{f}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 2. } x^{2}+8 x-4=0
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
2. $x^{2}+8 x-4=0$
$x^{2}+8 x$
Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 2. } \quad \begin{gathered}
x^{2}+8 x-4=0 \\
x^{2}+8 x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{array}{r}
\text { 2. } \quad x^{2}+8 x-4=0 \\
x^{2}+8 x=4
\end{array}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 2. } \quad \begin{gathered}
x^{2}+8 x-4=0 \\
x^{2}+8 x=4
\end{gathered}
$$

Step 1: Write the equation in the form $x^{\mathbf{2}}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 2. } \quad \begin{gathered}
x^{2}+8 x-4=0 \\
x^{2}+8 x=4
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

$$
x^{2}+2 A x+A^{2}=(x+A)^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =8
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =8 \\
\mathbf{A} & =4 \\
\mathbf{A}^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } \quad x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+2 A x+A^{2}=(x+A)^{2} \\
& 2 A=8 \\
& A=4 \\
& A^{2}=16 \\
& \text { Add } 16 \text { to both sides. }
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } \quad x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Add 16 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } \quad x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Add 16 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Add 16 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16=4+16 \\
& (x+4)^{2}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16=4+16 \\
& (x+4)^{2}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16=4+16 \\
& (x+4)^{2}=
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =8 \\
A & =4 \\
A^{2} & =16
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4=
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20}
\end{gathered}
$$

Add -4 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } \begin{array}{c}
x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=\mathbf{2 0} \\
x+4= \pm \sqrt{20} \\
x=
\end{array}
\end{gathered}
$$

Add -4 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } \begin{array}{c}
x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4
\end{array} \\
\text { x }
\end{gathered}
$$

Add -4 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16=4+16 \\
& (x+4)^{2}=20 \\
& x+4= \pm \sqrt{20} \\
& x=-4 \pm
\end{aligned}
$$

Add -4 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=\mathbf{2 0} \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20}
\end{gathered}
$$

Add -4 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } \begin{array}{c}
x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20} \\
x=
\end{array} \\
x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16=4+16 \\
& (x+4)^{2}=20 \\
& x+4= \pm \sqrt{20} \\
& x=-4 \pm \sqrt{20} \\
& x=-4
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16=4+16 \\
& (x+4)^{2}=20 \\
& x+4= \pm \sqrt{20} \\
& x=-4 \pm \sqrt{20} \\
& x=-4 \pm
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20} \\
x=-4 \pm
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16=4+16 \\
& (x+4)^{2}=20 \\
& x+4= \pm \sqrt{20} \\
& x=-4 \pm \sqrt{20} \\
& x=-4 \pm
\end{aligned}
$$

$$
\begin{aligned}
& \text { If the radicand is a perfect square, } \\
& \text { then evaluate the square root. } \\
& \text { If the radicand is not a perfect } \\
& \text { square, then express the solutions } \\
& \text { in standard radical form. } \\
& \qquad \sqrt{20}=\sqrt{4} \sqrt{5}
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 2. } x^{2}+8 x-4=0 \\
& x^{2}+8 x=4 \\
& x^{2}+8 x+16=4+16 \\
& (x+4)^{2}=20 \\
& x+4= \pm \sqrt{20} \\
& x=-4 \pm \sqrt{20} \\
& x=-4 \pm 2
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20} \\
x=-4 \pm 2 \sqrt{5}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{20}=\sqrt{4} \sqrt{5}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20} \\
x=-4 \pm 2 \sqrt{5}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 2. } x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20} \\
x=-4 \pm 2 \sqrt{5}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}+\mathbf{d x}=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 2. } \begin{gathered}
x^{2}+8 x-4=0 \\
x^{2}+8 x=4 \\
x^{2}+8 x+16=4+16 \\
(x+4)^{2}=20 \\
x+4= \pm \sqrt{20} \\
x=-4 \pm \sqrt{20} \\
x=-4 \pm 2 \sqrt{5}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
3. $3 x^{2}+4 x-3=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } 3 x^{2}+4 x-3=0
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
3. $3 x^{2}+4 x-3=0$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
3. $3 x^{2}+4 x-3=0 \quad$ Add 3 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
3. $3 x^{2}+4 x-3=0 \quad$ Add 3 to both sides.
$3 x^{2}+4 x$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
3. $3 x^{2}+4 x-3=0 \quad$ Add 3 to both sides.
$3 x^{2}+4 x=$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
3. $3 x^{2}+4 x-3=0 \quad$ Add 3 to both sides.
$3 x^{2}+4 x=3$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
3. $3 x^{2}+4 x-3=0$

Add 3 to both sides.
$3 x^{2}+4 x=3$ Divide both sides by 3 .

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

3. $\mathbf{3} \mathbf{x}^{2}+4 \mathrm{x}-\mathbf{3}=\mathbf{0}$	Add 3 to both sides.
$3 \mathbf{x}^{2}+\mathbf{4 x}=\mathbf{3}$	Divide both sides by 3.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

3.	$\mathbf{3} \mathbf{x}^{2}+\mathbf{4 x}-\mathbf{3}=\mathbf{0}$
$3 \mathbf{x}^{2}+\mathbf{4 x}=\mathbf{3}$	Add 3 to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x
\end{gathered}
$$

Add 3 to both sides.
Divide both sides by 3 .

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1
\end{gathered}
$$

Step 1: Write the equation in the form $x^{\mathbf{2}}+\mathbf{d x}=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
3. $3 x^{2}+4 x-3=0$
$3 x^{2}+4 x=3$
$x^{2}+\frac{4}{3} x=1$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 3. } 3 x^{2}+4 x-3=0 \\
& 3 x^{2}+4 x=3 \\
& x^{2}+\frac{4}{3} x=1 \\
& x^{2}+\frac{4}{3} x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 3. } 3 x^{2}+4 x-3=0 \\
& 3 x^{2}+4 x=3 \\
& x^{2}+\frac{4}{3} x=1 \\
& x^{2}+\frac{4}{3} x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x
\end{gathered}
$$

$$
\mathbf{x}^{2}+2 \mathbf{A x}+\mathbf{A}^{2}=(\mathbf{x}+\mathbf{A})^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x
\end{gathered}
$$

$$
\mathbf{x}^{2}+2 A x+A^{2}=(x+A)^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =\frac{4}{3}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by $\mathbf{2}$. (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 3. } 3 x^{2}+4 x-3=0 \\
& 3 x^{2}+4 x=3 \\
& x^{2}+\frac{4}{3} x=1 \\
& x^{2}+\frac{4}{3} x
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =\frac{4}{3} \\
\mathrm{~A} & =\frac{2}{3}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 3. } 3 x^{2}+4 x-3=0 \\
& 3 x^{2}+4 x=3 \\
& x^{2}+\frac{4}{3} x=1 \\
& x^{2}+\frac{4}{3} x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =\frac{4}{3} \\
\mathrm{~A} & =\frac{2}{3}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 3. } 3 x^{2}+4 x-3=0 \\
& 3 x^{2}+4 x=3 \\
& x^{2}+\frac{4}{3} x=1 \\
& x^{2}+\frac{4}{3} x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =\frac{4}{3} \\
\mathrm{~A} & =\frac{2}{3}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Add $\frac{4}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Add $\frac{4}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{array}{r}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1
\end{array}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Add $\frac{4}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Add $\frac{4}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Add $\frac{4}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Add $\frac{4}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =\frac{4}{3} \\
A & =\frac{2}{3} \\
A^{2} & =\frac{4}{9}
\end{aligned}
$$

Add $\frac{4}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{\mathbf{2}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}=
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 3. } \begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Add $\frac{-2}{3}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=
\end{gathered}
$$

Add $\frac{-2}{3}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& 3 . \\
& 3 x^{2}+4 x-3=0 \\
& 3 x^{2}+4 x=3 \\
& x^{2}+\frac{4}{3} x=1 \\
& x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
& \left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
& x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
& x=\frac{-2}{3} \pm
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 . \\
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3.3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 . \\
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3.3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 . \\
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 . \\
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 . \\
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 . \\
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3} \\
x=
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3} \\
x=\frac{3}{3}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3} \\
x=\frac{-2}{3}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3} \\
x=\frac{-2 \pm}{3}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3} \\
x=\frac{-2 \pm \sqrt{13}}{3}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{13}{9}}=\frac{\sqrt{13}}{\sqrt{9}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 . \\
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3} \\
x=\frac{-2 \pm \sqrt{13}}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 . \\
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3} \\
x=\frac{-2 \pm \sqrt{13}}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}+4 x-3=0 \\
3 x^{2}+4 x=3 \\
x^{2}+\frac{4}{3} x=1 \\
x^{2}+\frac{4}{3} x+\frac{4}{9}=1+\frac{4}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{13}{9} \\
x+\frac{2}{3}= \pm \sqrt{\frac{13}{9}} \\
x=\frac{-2}{3} \pm \sqrt{\frac{13}{9}}=\frac{-2}{3} \pm \frac{\sqrt{13}}{3} \\
x=\frac{-2 \pm \sqrt{13}}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
4. $x^{2}+3 x+1=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 4. } x^{2}+3 x+1=0
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 4. } x^{2}+3 x+1=0
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
4. $x^{2}+3 x+1=0$ Subtract 1 from each side.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
4. $x^{2}+3 x+1=0$
$\mathbf{x}^{2}+3 \mathrm{x}$

$$
\text { Subtract } 1 \text { from each side. }
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
4. $x^{2}+3 x+1=0$
$\mathbf{x}^{2}+3 \mathrm{x}=$ Subtract 1 from each side.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
4. $x^{2}+3 x+1=0$

$$
x^{2}+3 x=-1
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 4. } \quad \begin{aligned}
& x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1
\end{aligned}
$$

Step 1: Write the equation in the form $x^{\mathbf{2}}+\mathbf{d x}=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
4. $x^{2}+3 x+1=0$
$x^{2}+3 x=-1$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

$$
\mathbf{x}^{2}+2 \mathbf{A x}+\mathbf{A}^{2}=(\mathrm{x}+\mathbf{A})^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

$$
\mathbf{x}^{2}+2 \mathbf{A x}+\mathbf{A}^{2}=(\mathrm{x}+\mathbf{A})^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =3 \\
A & =\frac{3}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathrm{~A} & =\frac{3}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =3 \\
A & =\frac{3}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathbf{A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \quad x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathbf{A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathbf{A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathbf{A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \quad x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathbf{A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \quad x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathrm{~A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathrm{~A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \quad x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathrm{~A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
& \left(x+\frac{3}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathrm{~A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
& \left(x+\frac{3}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathbf{A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(\mathbf{x}+\mathbf{A})^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathbf{A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(\mathbf{x}+\mathbf{A})^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =3 \\
\mathbf{A} & =\frac{3}{2} \\
\mathbf{A}^{2} & =\frac{9}{4}
\end{aligned}
$$

Add $\frac{9}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by $\mathbf{2}$. (This is the value of A .)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(\mathbf{x}+\mathbf{A})^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 4. } \begin{gathered}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 4. } \begin{gathered}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4}
\end{array}
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}
\end{array}
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}=
\end{array}
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm
\end{array}
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 4. } \begin{gathered}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 4. } \begin{gathered}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}}
\end{array}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}}
\end{array}
\end{aligned}
$$

Add $\frac{-3}{2}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=
\end{array} \\
& x=
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2}
\end{array} \\
& \text { (}
\end{aligned}
$$

Add $\frac{-3}{2}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm
\end{array}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}
\end{array} .
\end{aligned}
$$

Add $\frac{-3}{2}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}
\end{array} .
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
& \left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
& x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
& x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
& \left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
& x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
& x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=
\end{array} .
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2}
\end{array}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm
\end{array}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm
\end{array}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm
\end{array}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2} \\
x=
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{2}{2}
\end{array}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{-3}{2}
\end{array}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } \begin{array}{c}
x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{-3 \pm}{2}
\end{array}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
& \left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
& x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
& x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2} \\
& x=\frac{-3 \pm \sqrt{5}}{2}
\end{aligned}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 4. } x^{2}+3 x+1=0 \\
& x^{2}+3 x=-1 \\
& x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
& \left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
& x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
& x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2} \\
& x=\frac{-3 \pm \sqrt{5}}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{-3 \pm \sqrt{5}}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 4. } x^{2}+3 x+1=0 \\
x^{2}+3 x=-1 \\
x^{2}+3 x+\frac{9}{4}=-1+\frac{9}{4} \\
\left(x+\frac{3}{2}\right)^{2}=\frac{5}{4} \\
x+\frac{3}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{-3}{2} \pm \sqrt{\frac{5}{4}}=\frac{-3}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{-3 \pm \sqrt{5}}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $\mathbf{x}^{2}-\mathrm{x}-1=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $x^{2}-x-1=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $x^{2}-x-1=0$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $\mathbf{x}^{2}-\mathrm{x}-1=0$ Add 1 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $x^{2}-x-1=0$
\mathbf{x}^{2}
Add 1 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $x^{2}-x-1=0$
$x^{2}-1 x$ Add 1 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $x^{2}-x-1=0$
$\mathrm{x}^{2}-1 x=1$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $x^{2}-x-1=0$
$\mathbf{x}^{2}-1 x=1$

Step 1: Write the equation in the form $x^{\mathbf{2}}-\mathbf{d x}=\mathbf{f}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
5. $x^{2}-x-1=0$
$x^{2}-1 x=1$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

$$
x^{2}-2 A x+A^{2}=(x-A)^{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

$$
x^{2}-2 A x+A^{2}=(x-A)^{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathrm{~A} & =1 \\
\mathbf{A} & =\frac{1}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathbf{A} & =1 \\
\mathbf{A} & =\frac{1}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathbf{A} & =1 \\
\mathbf{A} & =\frac{1}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } \quad x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathbf{A} & =1 \\
\mathbf{A} & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } \quad x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1 \\
A & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } \quad x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1 \\
A & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } \quad x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1 \\
A & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } \quad x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1 \\
A & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathbf{A} & =1 \\
\mathbf{A} & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } \quad x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =1 \\
\mathbf{A} & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathbf{A} & =1 \\
\mathbf{A} & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1 \\
A & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1 \\
A & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{\mathbf{2}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } \begin{array}{c}
x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=
\end{array} \text { (x)}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1 \\
A & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{\mathbf{2}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =1 \\
A & =\frac{1}{2} \\
\mathbf{A}^{2} & =\frac{1}{4}
\end{aligned}
$$

Add $\frac{1}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{\mathbf{2}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 5. } \begin{gathered}
x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& x-\frac{1}{2}
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}=
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } \begin{array}{c}
x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm
\end{array}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}}
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}}
\end{aligned}
$$

Add $\frac{1}{2}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Add $\frac{1}{2}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
x=
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{2}{2}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& \mathrm{x}^{2}-1 \mathrm{x}=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& \mathrm{x}-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
& x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
& \mathrm{x}=\frac{1}{2}
\end{aligned}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& \mathrm{x}^{2}-1 \mathrm{x}=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& \mathrm{x}-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
& x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
& \mathrm{x}=\frac{1 \pm}{2}
\end{aligned}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& x^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
& x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
& x=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{5}{4}}=\frac{\sqrt{5}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{1 \pm \sqrt{5}}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 5. } x^{2}-x-1=0 \\
& \mathbf{x}^{2}-1 x=1 \\
& x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
& \left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
& x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
& x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
& \mathrm{x}=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 5. } x^{2}-x-1=0 \\
x^{2}-1 x=1 \\
x^{2}-1 x+\frac{1}{4}=1+\frac{1}{4} \\
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4} \\
x-\frac{1}{2}= \pm \sqrt{\frac{5}{4}} \\
x=\frac{1}{2} \pm \sqrt{\frac{5}{4}}=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{1 \pm \sqrt{5}}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

Step 1: Write the equation in the form $\mathrm{x}^{2}-\mathrm{dx}=\mathrm{f}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\text { Add } 3 \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
2 x^{2}-8 x
$$

$$
\text { Add } 3 \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
2 x^{2}-8 x=
$$

$$
\text { Add } 3 \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
Add 3 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$

Add 3 to both sides.
Divide both sides by 2.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
\mathbf{x}^{2}

Add 3 to both sides.
Divide both sides by 2.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x$

Add 3 to both sides.
Divide both sides by 2 .

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=$

Add 3 to both sides.
Divide both sides by 2 .

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$

Add 3 to both sides.
Divide both sides by 2.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$

$$
x^{2}-4 x=\frac{3}{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$

$$
x^{2}-4 x=\frac{3}{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
2 x^{2}-8 x=3
$$

$$
\mathbf{x}^{2}-2 A x+A^{2}=(x-A)^{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
2 x^{2}-8 x=3
$$

$$
\mathbf{x}^{2}-2 A x+A^{2}=(x-A)^{2}
$$

$$
x^{2}-4 x=\frac{3}{2}
$$

$$
x^{2}-4 x
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$\mathrm{x}^{2}-4 \mathrm{x}$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$\mathrm{x}^{2}-4 \mathrm{x}$

$$
\begin{aligned}
\mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$\mathrm{x}^{2}-4 \mathrm{x}$

$$
\begin{aligned}
\mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x$

$$
\begin{aligned}
\mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =4 \\
\mathrm{~A} & =2
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$\mathrm{x}^{2}-4 \mathrm{x}$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x+4$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x+4$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x+4$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$x^{2}-4 x+4=$

$$
\begin{array}{r}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=
\end{array}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 x^{2}-8 x=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x+4=\frac{3}{2}$

$$
x^{2}-2 A x+A^{2}=(x-A)^{2}
$$

$$
2 A=4
$$

$$
\mathbf{A}=\mathbf{2}
$$

$$
A^{2}=4
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
2 x^{2}-8 x=3
$$

$$
x^{2}-4 x=\frac{3}{2}
$$

$$
x^{2}-4 x+4=\frac{3}{2}+4
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
2 x^{2}-8 x=3
$$

$$
x^{2}-4 x=\frac{3}{2}
$$

$$
x^{2}-4 x+4=\frac{3}{2}+4
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 \mathrm{x}^{2}-8 \mathrm{x}=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x+4=\frac{3}{2}+4$

$$
(x-2)^{2}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 \mathrm{x}^{2}-8 \mathrm{x}=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x+4=\frac{3}{2}+4$

$$
(x-2)^{2}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$
$2 \mathrm{x}^{2}-8 \mathrm{x}=3$
$x^{2}-4 x=\frac{3}{2}$
$x^{2}-4 x+4=\frac{3}{2}+4$

$$
(x-2)^{2}=
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
A^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
2 x^{2}-8 x=3
$$

$$
x^{2}-4 x=\frac{3}{2}
$$

$$
x^{2}-4 x+4=\frac{3}{2}+4
$$

$$
(x-2)^{2}=\frac{11}{2}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =4 \\
A & =2 \\
\mathbf{A}^{2} & =4
\end{aligned}
$$

Add 4 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
2 x^{2}-8 x=3
$$

$$
x^{2}-4 x=\frac{3}{2}
$$

$$
x^{2}-4 x+4=\frac{3}{2}+4
$$

$$
(x-2)^{2}=\frac{11}{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\begin{gathered}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\begin{gathered}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\begin{gathered}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2
\end{gathered}
$$

The Square Root Property

$$
\text { If } \mathbf{N}^{2}=k \text { and } k>0,
$$

$$
\text { then } \mathbf{N}= \pm \sqrt{\mathbf{k}} \text {. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\begin{gathered}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2=
\end{gathered}
$$

The Square Root Property

$$
\text { If } \mathbf{N}^{2}=k \text { and } k>0,
$$

$$
\text { then } \mathbf{N}= \pm \sqrt{\mathbf{k}} \text {. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\begin{gathered}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm
\end{gathered}
$$

The Square Root Property

$$
\text { If } \mathbf{N}^{2}=k \text { and } k>0,
$$

$$
\text { then } \mathbf{N}= \pm \sqrt{\mathbf{k}} \text {. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\begin{gathered}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\begin{gathered}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
6. $2 x^{2}-8 x-3=0$

$$
\begin{gathered}
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

Add 2 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

$$
\text { Add } 2 \text { to both sides. }
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 6. } 2 x^{2}-8 x-3=0 \\
& 2 x^{2}-8 x=3 \\
& x^{2}-4 x=\frac{3}{2} \\
& x^{2}-4 x+4=\frac{3}{2}+4 \\
& (x-2)^{2}=\frac{11}{2} \\
& x-2= \pm \sqrt{\frac{11}{2}} \\
& \mathrm{x}=\mathbf{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { Add } 2 \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

$$
\begin{aligned}
& \text { 6. } 2 x^{2}-8 x-3=0 \\
& 2 x^{2}-8 x=3 \\
& x^{2}-4 x=\frac{3}{2} \\
& x^{2}-4 x+4=\frac{3}{2}+4 \\
& (x-2)^{2}=\frac{11}{2} \\
& x-2= \pm \sqrt{\frac{11}{2}} \\
& \mathbf{x}=2 \pm
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

Add 2 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm
\end{gathered}
$$

$$
\begin{aligned}
& \text { If the radicand is a perfect square, } \\
& \text { then evaluate the square root. } \\
& \text { If the radicand is not a perfect } \\
& \text { square, then express the solutions } \\
& \text { in standard radical form. } \\
& \qquad \sqrt{\frac{11}{2}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm
\end{gathered}
$$

$$
\begin{aligned}
& \text { If the radicand is a perfect square, } \\
& \text { then evaluate the square root. } \\
& \text { If the radicand is not a perfect } \\
& \text { square, then express the solutions } \\
& \text { in standard radical form. } \\
& \qquad \sqrt{\frac{11}{2}}=
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm
\end{gathered}
$$

$$
\begin{aligned}
& \text { If the radicand is a perfect square, } \\
& \text { then evaluate the square root. } \\
& \text { If the radicand is not a perfect } \\
& \text { square, then express the solutions } \\
& \text { in standard radical form. } \\
& \qquad \sqrt{\frac{11}{2}}=\sqrt{\frac{22}{4}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm
\end{gathered}
$$

$$
\begin{aligned}
& \text { If the radicand is a perfect square, } \\
& \text { then evaluate the square root. } \\
& \text { If the radicand is not a perfect } \\
& \text { square, then express the solutions } \\
& \text { in standard radical form. } \\
& \qquad \sqrt{\frac{11}{2}}=\sqrt{\frac{22}{4}}=
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{11}{2}}=\sqrt{\frac{22}{4}}=\frac{\sqrt{22}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \underline{\sqrt{22}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { If the radicand is a perfect square, } \\
& \text { then evaluate the square root. } \\
& \text { If the radicand is not a perfect } \\
& \text { square, then express the solutions } \\
& \text { in standard radical form. } \\
& \qquad \sqrt{\frac{11}{2}}=\sqrt{\frac{22}{4}}=\frac{\sqrt{22}}{\sqrt{4}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{11}{2}}=\sqrt{\frac{22}{4}}=\frac{\sqrt{22}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2}
\end{gathered}
$$

$$
\mathbf{x}=
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 6. } 2 x^{2}-8 x-3=0 \\
& 2 x^{2}-8 x=3 \\
& x^{2}-4 x=\frac{3}{2} \\
& x^{2}-4 x+4=\frac{3}{2}+4 \\
& (x-2)^{2}=\frac{11}{2} \\
& x-2= \pm \sqrt{\frac{11}{2}} \\
& x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2} \\
& x=\frac{2}{2}
\end{aligned}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{11}{2}}=\sqrt{\frac{22}{4}}=\frac{\sqrt{22}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2} \\
x=\frac{4}{2}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{11}{2}}=\sqrt{\frac{22}{4}}=\frac{\sqrt{22}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2} \\
x=\frac{4 \pm}{2}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

$$
\sqrt{\frac{11}{2}}=\sqrt{\frac{22}{4}}=\frac{\sqrt{22}}{\sqrt{4}}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2} \\
x=\frac{4 \pm \sqrt{22}}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2} \\
x=\frac{4 \pm \sqrt{22}}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$ Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2} \\
x=\frac{4 \pm \sqrt{22}}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$ Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 6. } \begin{gathered}
2 x^{2}-8 x-3=0 \\
2 x^{2}-8 x=3 \\
x^{2}-4 x=\frac{3}{2} \\
x^{2}-4 x+4=\frac{3}{2}+4 \\
(x-2)^{2}=\frac{11}{2} \\
x-2= \pm \sqrt{\frac{11}{2}} \\
x=2 \pm \sqrt{\frac{11}{2}}=2 \pm \frac{\sqrt{22}}{2} \\
x=\frac{4 \pm \sqrt{22}}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
7. $x^{2}-6 x+3=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
7. $x^{2}-6 x+3=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
7. $x^{2}-6 x+3=0$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
7. $x^{2}-6 x+3=0$

Subtract 3 from both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
7. $x^{2}-6 x+3=0$

$$
x^{2}-6 x
$$

Subtract 3 from both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
7. $x^{2}-6 x+3=0$

$$
x^{2}-6 x=
$$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 7. } \quad \begin{gathered}
x^{2}-6 x+3=0 \\
x^{2}-6 x=-3
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 7. } \begin{gathered}
x^{2}-6 x+3=0 \\
x^{2}-6 x=-3
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{\mathbf{2}}-\mathrm{dx}=\mathrm{f}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
7. $x^{2}-6 x+3=0$

$$
x^{2}-6 x=-3
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

$$
\mathbf{x}^{2}-2 A x+A^{2}=(x-A)^{2}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

$$
\mathbf{x}^{2}-2 A x+A^{2}=(x-A)^{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =6
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =6 \\
A & =3
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =6 \\
\mathrm{~A} & =3
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =6 \\
\mathrm{~A} & =3
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =6 \\
A & =3 \\
A^{2} & =9
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x+9
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathbf{A} & =6 \\
\mathbf{A} & =3 \\
\mathbf{A}^{2} & =9
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x+9
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =6 \\
A & =3 \\
A^{2} & =9
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x+9
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathrm{~A} & =6 \\
\mathbf{A} & =3 \\
\mathbf{A}^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathrm{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } \quad x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x+9=
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =6 \\
A & =3 \\
\mathbf{A}^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathrm{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } \quad x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathrm{~A} & =6 \\
\mathbf{A} & =3 \\
\mathbf{A}^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } \quad x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9
\end{gathered}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =6 \\
A & =3 \\
A^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } \quad x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9
\end{gathered}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =6 \\
A & =3 \\
A^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x+9=-3+9 \\
& (x-3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathrm{~A} & =6 \\
\mathbf{A} & =3 \\
\mathbf{A}^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 7. } x^{2}-6 x+3=0 \\
& x^{2}-6 x=-3 \\
& x^{2}-6 x+9=-3+9 \\
& (x-3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =6 \\
\mathbf{A} & =3 \\
\mathbf{A}^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =6 \\
\mathbf{A} & =3 \\
\mathbf{A}^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}-\mathrm{A})^{2} \\
2 \mathrm{~A} & =6 \\
\mathbf{A} & =3 \\
\mathbf{A}^{2} & =9
\end{aligned}
$$

Add 9 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6
\end{gathered}
$$

The Square Root Property If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3
\end{gathered}
$$

The Square Root Property If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3=
\end{gathered}
$$

The Square Root Property If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm
\end{gathered}
$$

The Square Root Property If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6}
\end{gathered}
$$

The Square Root Property If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6}
\end{gathered}
$$

Add 3 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=
\end{gathered}
$$

Add 3 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3
\end{gathered}
$$

Add 3 to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

Add 3 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

The solution is already in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 7. } x^{2}-6 x+3=0 \\
x^{2}-6 x=-3 \\
x^{2}-6 x+9=-3+9 \\
(x-3)^{2}=6 \\
x-3= \pm \sqrt{6} \\
x=3 \pm \sqrt{6}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
8. $x^{2}+5 x+6=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
8. $x^{2}+5 x+6=0$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
8. $x^{2}+5 x+6=0$

Step 1: Write the equation in the form $x^{\mathbf{2}}+\mathbf{d x}=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
8. $x^{2}+5 x+6=0$ Subtract 6 from both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
8. $x^{2}+5 x+6=0$

$$
x^{2}+5 x
$$

$$
\text { Subtract } 6 \text { from both sides. }
$$

Step 1: Write the equation in the form $x^{\mathbf{2}}+\mathbf{d x}=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
8. $x^{2}+5 x+6=0$

$$
x^{2}+5 x=
$$

$$
\text { Subtract } 6 \text { from both sides. }
$$

Step 1: Write the equation in the form $x^{2}+d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6
\end{aligned}
$$

Step 1: Write the equation in the form $x^{\mathbf{2}}+\mathbf{d x}=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
8. $x^{2}+5 x+6=0$

$$
x^{2}+5 x=-6
$$

Step 1: Write the equation in the form $x^{\mathbf{2}}+\mathbf{d x}=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
8. $x^{2}+5 x+6=0$

$$
x^{2}+5 x=-6
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

$$
\mathbf{x}^{2}+2 \mathbf{A x}+\mathbf{A}^{2}=(\mathrm{x}+\mathbf{A})^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

$$
\mathbf{x}^{2}+2 \mathbf{A x}+\mathrm{A}^{2}=(\mathrm{x}+\mathbf{A})^{2}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =5
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =\mathbf{5} \\
\mathrm{A} & =\frac{\mathbf{5}}{\mathbf{2}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by $\mathbf{2}$. (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =5 \\
\mathrm{~A} & =\frac{\mathbf{5}}{\mathbf{2}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by $\mathbf{2}$. (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =5 \\
\mathrm{~A} & =\frac{\mathbf{5}}{\mathbf{2}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =5 \\
A & =\frac{5}{2} \\
A^{2} & =\frac{25}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =5 \\
A & =\frac{5}{2} \\
A^{2} & =\frac{25}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =5 \\
\mathrm{~A} & =\frac{5}{2} \\
\mathrm{~A}^{2} & =\frac{25}{4}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A .)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \quad x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =5 \\
\mathrm{~A} & =\frac{5}{2} \\
\mathbf{A}^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } \quad x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =5 \\
\mathbf{A} & =\frac{5}{2} \\
\mathbf{A}^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } \quad x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =5 \\
\mathbf{A} & =\frac{5}{2} \\
\mathbf{A}^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =5 \\
A & =\frac{5}{2} \\
A^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of \mathbf{x} by 2 . (This is the value of A .)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =5 \\
A & =\frac{5}{2} \\
\mathbf{A}^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 \mathrm{Ax}+\mathrm{A}^{2} & =(\mathrm{x}+\mathrm{A})^{2} \\
2 \mathrm{~A} & =5 \\
\mathrm{~A} & =\frac{5}{2} \\
\mathbf{A}^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =5 \\
A & =\frac{5}{2} \\
\mathbf{A}^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =5 \\
A & =\frac{5}{2} \\
\mathbf{A}^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}+2 A x+A^{2} & =(x+A)^{2} \\
2 A & =5 \\
A & =\frac{5}{2} \\
A^{2} & =\frac{25}{4}
\end{aligned}
$$

Add $\frac{25}{4}$ to both sides.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x+A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } \begin{array}{c}
x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}
\end{array} \text { (}
\end{aligned}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}=
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathbf{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm
\end{gathered}
$$

> The Square Root Property
> If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}}
\end{gathered}
$$

$$
\text { Add } \frac{-5}{2} \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2}
\end{aligned}
$$

$$
\text { Add } \frac{-5}{2} \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2} \pm
\end{aligned}
$$

$$
\text { Add } \frac{-5}{2} \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2}
\end{aligned}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or }
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2} \\
x=
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+6=0 \\
& x^{2}+5 x=-6 \\
& x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
& x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
& x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2} \\
& x=-2
\end{aligned}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2} \\
x=-2 \text { or }
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2} \\
x=-2 \text { or } x=
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2} \\
x=-2 \text { or } x=-3
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for x. Write the equation in the form $x=-\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2} \\
x=-2 \text { or } x=-3
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2} \\
x=-2 \text { or } x=-3
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for x. Write the equation in the form $x=-A \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 8. } x^{2}+5 x+6=0 \\
x^{2}+5 x=-6 \\
x^{2}+5 x+\frac{25}{4}=-6+\frac{25}{4} \\
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4} \\
x+\frac{5}{2}= \pm \sqrt{\frac{1}{4}} \\
x=\frac{-5}{2} \pm \sqrt{\frac{1}{4}}=\frac{-5}{2} \pm \frac{1}{2} \\
x=\frac{-5}{2}+\frac{1}{2} \text { or } x=\frac{-5}{2}-\frac{1}{2} \\
x=-2 \text { or } x=-3
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}+d x=f$
Step 2 : Complete the square. Write the equation in the form $(x+A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}+\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=-\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } 3 x^{2}-2 x-1=0
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } 3 x^{2}-2 x-1=0
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
9. $3 \mathrm{x}^{2}-\mathbf{2 x}-1=0$

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } 3 x^{2}-2 x-1=0
$$

```
Add 1 to both sides.
```

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } \quad 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x
\end{gathered}
$$

Add 1 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } \quad 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=
\end{gathered}
$$

Add 1 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
9. $3 x^{2}-2 x-1=0$

$$
3 x^{2}-2 x=1
$$

Add 1 to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.
9. $3 x^{2}-2 x-1=0$

$$
3 x^{2}-2 x=1
$$

Add 1 to both sides.
Divide both sides by 3 .

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}
\end{gathered}
$$

Add 1 to both sides.
Divide both sides by 3 .

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

Add 1 to both sides.
Divide both sides by 3 .

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x
\end{gathered}
$$

Add 1 to both sides.
Divide both sides by 3 .

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=
\end{gathered}
$$

Add 1 to both sides.
Divide both sides by 3 .

Step 1: Write the equation in the form $x^{2}-d x=f$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3}
\end{gathered}
$$

$$
\text { Add } 1 \text { to both sides. }
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathrm{dx}=\mathrm{f}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } 3 x^{2}-2 x-1=0 \\
& 3 x^{2}-2 x=1 \\
& x^{2}-\frac{2}{3} x=\frac{1}{3} \\
& x^{2}-\frac{2}{3} x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } 3 x^{2}-2 x-1=0 \\
& 3 x^{2}-2 x=1 \\
& x^{2}-\frac{2}{3} x=\frac{1}{3} \\
& x^{2}-\frac{2}{3} x
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } \begin{array}{c}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x
\end{array}
\end{aligned}
$$

$$
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2}=(\mathbf{x}-\mathbf{A})^{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } 3 x^{2}-2 x-1=0 \\
& 3 x^{2}-2 x=1 \\
& x^{2}-\frac{2}{3} x=\frac{1}{3} \\
& x^{2}-\frac{2}{3} x
\end{aligned}
$$

$$
x^{2}-2 A x+A^{2}=(x-A)^{2}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } \begin{array}{c}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =\frac{2}{3}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } \begin{array}{c}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } \begin{array}{c}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$. Divide the coefficient of x by 2 . (This is the value of A .)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } \begin{array}{c}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathrm{~A} & =\frac{2}{3} \\
\mathbf{A} & =\frac{1}{3}
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } \begin{array}{c}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathbf{A} & =\frac{2}{3} \\
\mathbf{A} & =\frac{1}{3} \\
\mathbf{A}^{2} & =\frac{1}{9}
\end{aligned}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{array}{r}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}
\end{array}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+A^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3} \\
A^{2} & =\frac{1}{9}
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+A^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3} \\
A^{2} & =\frac{1}{9}
\end{aligned}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2 . (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathrm{~A} & =\frac{2}{3} \\
\mathbf{A} & =\frac{1}{3} \\
\mathbf{A}^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathbf{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathrm{~A} & =\frac{2}{3} \\
\mathbf{A} & =\frac{1}{3} \\
\mathbf{A}^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{array}{r}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}
\end{array}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathrm{~A} & =\frac{2}{3} \\
\mathbf{A} & =\frac{1}{3} \\
\mathbf{A}^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+A^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3} \\
A^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 \mathbf{A x}+\mathrm{A}^{2} & =(\mathbf{x}-\mathbf{A})^{2} \\
2 \mathbf{A} & =\frac{2}{3} \\
\mathbf{A} & =\frac{1}{3} \\
\mathbf{A}^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3} \\
A^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
x^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3} \\
A^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3} \\
A^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3} \\
A^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}^{2}-2 A x+A^{2} & =(x-A)^{2} \\
2 A & =\frac{2}{3} \\
A & =\frac{1}{3} \\
A^{2} & =\frac{1}{9}
\end{aligned}
$$

Add $\frac{1}{9}$ to both sides.

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Divide the coefficient of x by 2. (This is the value of A.)
Square A. (This is the term that must be added to 'complete the square'.)
Write the trinomial in 'factored form'. $(x-A)^{2}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{\mathbf{2}}=\mathbf{k}$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{aligned}
& 3 x^{2}-2 x-1=0 \\
& 3 x^{2}-2 x=1 \\
& x^{2}-\frac{2}{3} x=\frac{1}{3} \\
& x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
&\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
& x-\frac{1}{3}
\end{aligned}
$$

> The Square Root Property If $\mathbf{N}^{2}=k$ and $k>0$, then $\mathbf{N}= \pm \sqrt{k}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

The Square Root Property
If $\mathbf{N}^{\mathbf{2}}=\mathrm{k}$ and $\mathrm{k}>\mathbf{0}$, then $\mathbf{N}= \pm \sqrt{\mathbf{k}}$.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$. Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$. Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

$$
\text { Add } \frac{1}{3} \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$. Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=
\end{gathered}
$$

$$
\text { Add } \frac{1}{3} \text { to both sides. }
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$. Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$. Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$. Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$. Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root. If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3}
\end{gathered}
$$

> If the radicand is a perfect square, then evaluate the square root.
> If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or }
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } 3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
x=
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } \begin{array}{c}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
x=1
\end{array}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{aligned}
& \text { 9. } 3 x^{2}-2 x-1=0 \\
& 3 x^{2}-2 x=1 \\
& x^{2}-\frac{2}{3} x=\frac{1}{3} \\
& x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
& \left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
& x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
& x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
& x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
& \mathrm{x}=1 \text { or }
\end{aligned}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
\text { 9. } \begin{array}{c}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
x=1 \text { or } x=
\end{array}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{k}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
x=1 \text { or } x=\frac{-1}{3}
\end{gathered}
$$

If the radicand is a perfect square, then evaluate the square root.
If the radicand is not a perfect square, then express the solutions in standard radical form.

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
x=1 \text { or } x=\frac{-1}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
x=1 \text { or } x=\frac{-1}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4 : Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9} \\
x-\frac{1}{3}= \pm \sqrt{\frac{4}{9}} \\
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
x=1 \text { or } x=\frac{-1}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $\mathbf{x}^{2}-\mathbf{d x}=\mathbf{f}$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

Algebra I Class Worksheet \#4 Unit 13

Solve each of the following using the complete the square method.

$$
\text { 9. } \begin{gathered}
3 x^{2}-2 x-1=0 \\
3 x^{2}-2 x=1 \\
x^{2}-\frac{2}{3} x=\frac{1}{3} \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
\end{gathered}
$$

Good luck on your homework !!

$$
\begin{gathered}
x=\frac{1}{3} \pm \sqrt{\frac{4}{9}}=\frac{1}{3} \pm \frac{2}{3} \\
x=\frac{1}{3}+\frac{2}{3} \text { or } x=\frac{1}{3}-\frac{2}{3} \\
x=1 \text { or } x=\frac{-1}{3}
\end{gathered}
$$

Step 1: Write the equation in the form $x^{2}-d x=f$
Step 2 : Complete the square. Write the equation in the form $(x-A)^{2}=k$.
Step 3 : Apply the square root property. Write the equation in the form

$$
\mathbf{x}-\mathbf{A}= \pm \sqrt{\mathbf{k}}
$$

Step 4: Solve for \mathbf{x}. Write the equation in the form $\mathbf{x}=\mathbf{A} \pm \sqrt{\mathbf{k}}$
Step 5 : Express the solutions in 'best from'.

