Algebra I Lesson \#1 Unit 13 Class Worksheet \#1 For Worksheets \#1- \#3

Square Root

Square Root

Definition:

Square Root

Definition: \underline{a} is a square root of \underline{b}

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if a^{2}

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{\mathbf{2}}=b$.

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $\mathbf{a}^{\mathbf{2}}=\mathbf{b}$.

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $\mathbf{a}^{\mathbf{2}}=b$.

List all square roots of each of the following.

1. 9 \qquad 2. 49

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $\mathbf{a}^{\mathbf{2}}=b$.

List all square roots of each of the following.

1. 9
2. 49

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $\mathbf{a}^{\mathbf{2}}=b$.

List all square roots of each of the following.

1. 93
2. 49

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $\mathbf{a}^{\mathbf{2}}=b$.

List all square roots of each of the following.

1. 93

Since $3^{2}=9$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $\mathbf{a}^{\mathbf{2}}=b$.

List all square roots of each of the following.

1. 9 or -3
2. 49

Since $3^{2}=9$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $\mathbf{a}^{\mathbf{2}}=b$.

List all square roots of each of the following.

1. 9 or -3
2. 49

Since $3^{2}=9$
Since (-3$)^{2}=9$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. 49

Since $3^{2}=9$
Since (-3$)^{2}=9$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3

Since $3^{2}=9$
Since (-3$)^{2}=9$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3

Since $3^{2}=9$
Since (-3$)^{2}=9$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3

Since $3^{2}=9$
Since (-3$)^{2}=9$
2. 497

Since $7^{2}=49$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3

Since $3^{2}=9$
Since (-3$)^{2}=9$
2. $49 \quad 7$ or -7

Since $7^{2}=49$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3

Since $3^{2}=9$
Since (-3$)^{2}=9$
2. $49 \quad 7$ or -7

Since $7^{2}=49$
Since $(-7)^{2}=49$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3

Since $3^{2}=9$
Since (-3$)^{2}=9$
2. $49 \quad 7$ or -7

Since $7^{2}=49$
Since $(-7)^{2}=49$

Every positive real number has $\mathbf{2}$ real number square roots.

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has 2 real number square roots.

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has 2 real number square roots.

The radical symbol

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has 2 real number square roots.

The radical symbol is used to indicate the principal (or non-negative)

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has 2 real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number.

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has 2 real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

$$
\sqrt{9}=
$$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

$$
\sqrt{9}=
$$

'the principal square root of 9 '

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

$$
\sqrt{9}=3
$$

'the principal square root of 9 '

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

$$
\sqrt{9}=3 \quad \text { and }
$$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

$$
\sqrt{9}=3 \quad \text { and } \quad \sqrt{49}=
$$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

$$
\begin{aligned}
\sqrt{9}= & 3 \quad \text { and } \quad \sqrt{49}= \\
& \text { 'the principal square root of } 49
\end{aligned}
$$

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

$$
\sqrt{9}=3 \quad \text { and } \quad \sqrt{49}=7
$$

'the principal square root of 49'

Square Root

Definition: \underline{a} is a square root of \underline{b} if and only if $a^{2}=b$.

List all square roots of each of the following.

1. 9 or -3
2. $49 \quad 7$ or -7

Every positive real number has $\mathbf{2}$ real number square roots.

The radical symbol is used to indicate the principal (or non-negative) square root of a number. Therefore,

$$
\sqrt{9}=3 \quad \text { and } \quad \sqrt{49}=7
$$

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=$
2. $\sqrt{144}=$
3. $\sqrt{400}=$

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=$
2. $\sqrt{144}=$
3. $\sqrt{400}=$
4. $\sqrt{81}=$ \qquad

Evaluate means to find the value of.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=$
2. $\sqrt{144}=$
3. $\sqrt{400}=$

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=$
2. $\sqrt{144}=$
3. $\sqrt{400}=$

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=$ \qquad
2. $\sqrt{81}=$
3. $\sqrt{144}=\quad$ 4. $\sqrt{400}=$

The principal square root of 16.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$
2. $\sqrt{144}=$
3. $\sqrt{400}=$
4. $\sqrt{81}=$

The principal square root of 16.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=\quad$ 4. $\sqrt{400}=$

The principal square root of 16.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $\mathbf{4}^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=\quad$ 4. $\sqrt{400}=$
2. $\sqrt{81}=$ \qquad

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
2. $\sqrt{81}=$
4. $\sqrt{400}=$ \qquad

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
2.
$81=$ \qquad
4. $\sqrt{400}=$ \qquad
3.

The principal square root of 81.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
2. $\sqrt{81}=9$
4. $\sqrt{400}=$ \qquad
3.

The principal square root of 81.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=$
4. $\sqrt{400}=$
2. $\sqrt{81}=9$

Since $\mathbf{9 2}^{\mathbf{2}} \mathbf{= 8 1}$
\qquad

The principal square root of 81.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=$
4. $\sqrt{400}=$

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=$
4. $\sqrt{400}=$

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $\mathbf{4}^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=$
2. $\sqrt{81}=9$

Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$
4. $\sqrt{400}=$

The principal square root of 144.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$
Since $4^{\mathbf{2}}=\mathbf{1 6}$
2. $\sqrt{144}=12$
3.
4. $\sqrt{400}=$
Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$

The principal square root of 144.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $\mathbf{4}^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=12$

Since $\mathbf{1 2}^{\mathbf{2}}=144$
2. $\sqrt{81}=9$

Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$
4. $\sqrt{400}=$ \qquad

The principal square root of 144.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=12$

Since $\mathbf{1 2}^{\mathbf{2}}=\mathbf{1 4 4}$
2. $\sqrt{81}=\underline{9}$

Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$
4. $\sqrt{400}=$

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=12$

Since $\mathbf{1 2}^{\mathbf{2}}=144$
2. $\sqrt{81}=\underline{9}$

Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$
4. $\sqrt{400}=$ \qquad

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=12$

Since $\mathbf{1 2}^{\mathbf{2}}=144$
2. $\sqrt{81}=\underline{9}$

Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$
4. $\sqrt{400}=$ \qquad

The principal square root of 400.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=12$

Since $\mathbf{1 2}^{\mathbf{2}}=144$
2. $\sqrt{81}=\underline{9}$

Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$
4. $\sqrt{400}=\underline{20}$

The principal square root of 400.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=\underline{12}$
Since $12^{2}=144$
2. $\sqrt{81}=\underline{9}$

Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$
4. $\sqrt{400}=\underline{20}$

Since $\mathbf{2 0}^{\mathbf{2}}=400$

The principal square root of 400.

Algebra I Class Worksheet \#1 Unit 13

Evaluate each of the following square roots.

1. $\sqrt{16}=\underline{4}$

Since $4^{\mathbf{2}}=\mathbf{1 6}$
3. $\sqrt{144}=12$

Since $\mathbf{1 2}^{\mathbf{2}}=\mathbf{1 4 4}$
2. $\sqrt{81}=\underline{9}$

Since $\mathbf{9 2}^{\mathbf{2}}=\mathbf{8 1}$
4. $\sqrt{400}=\underline{20}$

Since $\mathbf{2 0}^{\mathbf{2}}=400$

Square Root

Square Root

Standard Radical Form

Square Root

Standard Radical Form

The principal square root of N :

Square Root

Standard Radical Form

The principal square root of N :
$\sqrt{\mathbf{N}}$

Square Root

Standard Radical Form

The principal square root of N :

The number \mathbf{N} is called the radicand.

Square Root

Standard Radical Form

The principal square root of N : $\sqrt{\mathbf{N}}$

The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number.

Square Root

Standard Radical Form

The principal square root of N : $\sqrt{\mathrm{N}}$

The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1),

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1), then the expression is said to be in 'standard radical form'.

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1), then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1), then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.
$\sqrt{5}$

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1), then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\sqrt{5} \quad \sqrt{6}
$$

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1), then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lll}
\sqrt{5} & \sqrt{6} & \sqrt{15}
\end{array}
$$

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1), then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{llll}
\sqrt{5} & \sqrt{6} & \sqrt{15} & \sqrt{42}
\end{array}
$$

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1), then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & \sqrt{15} & \sqrt{42} & \sqrt{61}
\end{array}
$$

Square Root

Standard Radical Form

The principal square root of N :
The number \mathbf{N} is called the radicand.
We will consider problems in which the radicand is a whole number. If the radicand is not a perfect square and does not have any perfect square factors (greater than 1), then the expression is said to be in 'standard radical form'. These expressions are in standard radical form.

$$
\begin{array}{lllll}
\sqrt{5} & \sqrt{6} & \sqrt{15} & \sqrt{42} & \sqrt{61}
\end{array}
$$

In each case, the radicand is a whole number that is not a perfect square and does not have any perfect square factors greater than 1.

Square Root

Standard Radical Form

The principal square root of N :
$\sqrt{\mathbf{N}}$

Square Root

Standard Radical Form

The principal square root of N :
$\sqrt{\mathbf{N}}$
If the radicand is not a perfect square

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1),

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'.

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots.

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.
$\sqrt{4 \cdot 9}$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{4 \cdot 9}=
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9}
$$

$\sqrt{36}$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
& \sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9} \\
& \sqrt{36}=\sqrt{4} \cdot \sqrt{9}
\end{aligned}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
& \sqrt{4 \cdot 9}=\sqrt{4} \cdot \sqrt{9} \\
& \sqrt{36}=\sqrt{4} \cdot \sqrt{9}
\end{aligned}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =
\end{aligned}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2
\end{aligned}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot
\end{aligned}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{aligned}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \quad \begin{array}{l}
\text { In general, if a and } b \text { represent } \\
\text { whole numbers, then }
\end{array} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{aligned}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\left.\begin{array}{rlc}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} & \text { In general, if a and } b \text { represent } \\
\text { whole numbers, then }
\end{array}\right] \begin{array}{rc}
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{array}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\left.\begin{array}{rlc}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} & \text { In general, if a and } b \text { represent } \\
\text { whole numbers, then }
\end{array}\right] \begin{array}{rc}
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{array}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{aligned}
$$

In general, if a and b represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{aligned}
$$

In general, if a and b represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{aligned}
$$

In general, if a and b represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{aligned}
$$

In general, if a and b represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

Square Root

Standard Radical Form

The principal square root of N :
If the radicand is not a perfect square and does have perfect square factor(s) (greater than 1), then the expression is not in 'standard radical form'. The process of writing the expression in standard radical form relies on the multiplication property of square roots. Consider this example.

$$
\begin{aligned}
\sqrt{4 \cdot 9} & =\sqrt{4} \cdot \sqrt{9} \\
\sqrt{36} & =\sqrt{4} \cdot \sqrt{9} \\
6 & =2 \cdot 3
\end{aligned}
$$

In general, if a and b represent whole numbers, then

$$
\sqrt{\mathbf{a} \cdot \mathbf{b}}=\sqrt{\mathbf{a}} \cdot \sqrt{\mathbf{b}}
$$

Notice that this property is written so that it can be used to factor a square root expression.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
7.

$$
\sqrt{75}=
$$

8. $\sqrt{125}=$
9. $\sqrt{98}=$
\qquad

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6. $\sqrt{98}=$
7.

8. $\sqrt{125}=$ \qquad

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6. $\sqrt{98}=$
7. $\sqrt{75}=$
8. $\sqrt{125}=$

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\frac{\sqrt{50}}{25 \cdot 2}=$
6. $\sqrt{98}=$
7. $\sqrt{75}=$
8. $\sqrt{125}=$

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6. $\sqrt{98}=$
7.

8. $\sqrt{125}=$ \qquad

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6.

7. $\sqrt{75}=$
8. $\sqrt{125}=$

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6.

7. $\sqrt{75}=$
8. $\sqrt{125}=$

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6. $\sqrt{98}=$
7.

8. $\sqrt{125}=$ \qquad

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6. $\sqrt{98}=$
7. $\underset{25 \cdot 3}{\sqrt{75}}=$
8. $\sqrt{125}=$

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6. $\sqrt{98}=$
7.

8. $\sqrt{125}=$ \qquad

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
6. $\sqrt{98}=$
7. $\sqrt{75}=$
8. $\frac{\sqrt{125}}{25 \cdot 5}=$

Notice that the radicand in each problem is a whole number that has a perfect square factor greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
7.

$$
\sqrt{75}=
$$

8. $\sqrt{125}=$
9. $\sqrt{98}=$
\qquad

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$ \qquad 6. $\sqrt{98}=$
7.

$$
\sqrt{75}=
$$

8. $\sqrt{125}=$ \qquad

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$ \qquad 6. $\sqrt{98}=$
7.

$$
\sqrt{75}=
$$

8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$ \qquad 6. $\sqrt{98}=$
7.

$$
\sqrt{75}=
$$

8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$
$\sqrt{25}$
6. $\sqrt{98}=$
7. $\sqrt{75}=$ __

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$ \qquad
$\sqrt{25}$.
7. $\sqrt{75}=$ -
6. $\sqrt{98}=$ \qquad
8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\begin{array}{r}\sqrt{50}= \\ \sqrt{25} \cdot \sqrt{2}\end{array}$
7. $\sqrt{75}=$ -

$$
\sqrt{25} \cdot \sqrt{2}
$$

\qquad
6. $\sqrt{98}=$ \qquad
6. $\sqrt{98}=$
8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$

$$
\sqrt{25} \cdot \sqrt{2}
$$

7. $\sqrt{75}=$ -
8. $\sqrt{98}=$ \qquad

- $\sqrt{98}=$

\qquad

8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=$

$$
\sqrt{25} \cdot \sqrt{2}
$$

7. $\sqrt{75}=$ —
8. $\sqrt{98}=$ \qquad
9. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\text { 5. } \quad \sqrt{50}=5
$$

7. $\sqrt{75}=$ _
8. $\sqrt{98}=$
\qquad
9. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
7. $\sqrt{75}=$ _
6. $\sqrt{98}=$ \qquad

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
7. $\sqrt{75}=$

8. $\sqrt{125}=$
6. $\sqrt{98}=$
8. $\sqrt{125}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
7. $\sqrt{75}=$
7. $\sqrt{75}=$
6. $\sqrt{98}=$ \qquad

$$
\sqrt{25} \cdot \sqrt{2}
$$

8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
7.

6. $\sqrt{98}=$ \qquad
8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
7. $\sqrt{75}=$ -
6. $\sqrt{98}=$ \qquad $\sqrt{49}$
8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
7. $\sqrt{75}=$ -
6. $\sqrt{98}=$

$$
\sqrt{49}
$$

8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
6. $\sqrt{98}=$
$\sqrt{49} \cdot \sqrt{2}$

7

8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
7. $\sqrt{75}=$

8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
6. $\sqrt{98}=$
$\sqrt{49} \cdot \sqrt{2}$
7. $\sqrt{75}=$ -

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
6. $\sqrt{98}=7$
$\sqrt{49} \cdot \sqrt{2}$
7. $\sqrt{75}=$ _

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
7. $\sqrt{75}=$ -

$$
\begin{aligned}
& \text { 6. } \sqrt{98}=7 \sqrt{2} \\
& \sqrt{49} \cdot \sqrt{2}
\end{aligned}
$$

8. $\sqrt{125}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
$\sqrt{49} \cdot \sqrt{2}$
7. $\sqrt{75}=$ -
8. $\sqrt{125}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
7. $\sqrt{75}=$ -

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
$\sqrt{49} \cdot \sqrt{2}$
7. $\sqrt{75}=$ _
8. $\sqrt{125}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
$\sqrt{49} \cdot \sqrt{2}$
7. $\sqrt{75}=$ _
8. $\sqrt{125}=$ $\sqrt{\mathbf{2 5}}$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$
$\sqrt{49} \cdot \sqrt{2}$
7. $\sqrt{75}=$ _
8. $\sqrt{125}=$ $\sqrt{25}$.

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=$ -
8. $\sqrt{125}=$

$$
\sqrt{25} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=$ -
8. $\sqrt{125}=$

$$
\sqrt{25} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=$ -
8. $\sqrt{125}=$

$$
\sqrt{25} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=\underline{5}$
8. $\sqrt{125}=$

$$
\sqrt{25} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{array}{lll}
\text { 5. } \sqrt{50}=5 \sqrt{2} & \text { 6. } \quad \sqrt{98}=7 \sqrt{2} \\
\sqrt{25} \cdot \sqrt{2} & & \sqrt{49} \cdot \sqrt{2} \\
\text { 7. } \sqrt{75}=5 \sqrt{3} & \text { 8. } & \sqrt{125}= \\
\sqrt{25} \cdot \sqrt{3} &
\end{array}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$
8. $\sqrt{125}=$
$\sqrt{49} \cdot \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 5. } \sqrt{50}=5 \sqrt{2} \\
& \sqrt{25} \cdot \sqrt{2}
\end{aligned}
$$

6. $\sqrt{98}=7 \sqrt{2}$
$\sqrt{49} \cdot \sqrt{2}$
7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=$
$\sqrt{25}$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$
$\begin{array}{rr}\text { 8. } & \sqrt{125} \\ & \sqrt{25}\end{array}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$
8. $\sqrt{125}=$
$\sqrt{25} \cdot \sqrt{5}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=$
$\sqrt{25} \cdot \sqrt{5}$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=$
$\sqrt{25} \cdot \sqrt{5}$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

$$
\begin{aligned}
& \text { 8. } \quad \sqrt{125}= \\
& \sqrt{25} \cdot \sqrt{5}
\end{aligned}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=5 \sqrt{5}$

$$
\sqrt{25} \cdot \sqrt{5}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=\underline{5} \sqrt{5}$
$\sqrt{25} \cdot \sqrt{5}$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$
8. $\sqrt{125}=5 \sqrt{5}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

$$
\sqrt{25} \cdot \sqrt{5}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$
8. $\sqrt{125}=\underline{5} \sqrt{5}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

$$
\sqrt{25} \cdot \sqrt{5}
$$

Notice that each of the answers is a number multiplied by the square root of a whole number.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$
8. $\sqrt{125}=\underline{5} \sqrt{5}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

$$
\sqrt{25} \cdot \sqrt{5}
$$

Notice that each of the answers is a number multiplied by the square root of a whole number. In each case, the radicand is

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=\underline{5} \sqrt{5}$
$\sqrt{25} \cdot \sqrt{5}$

Notice that each of the answers is a number multiplied by the square root of a whole number. In each case, the radicand is a whole number

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=\underline{5} \sqrt{5}$
$\sqrt{25} \cdot \sqrt{5}$

Notice that each of the answers is a number multiplied by the square root of a whole number. In each case, the radicand is a whole number

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

6. $\sqrt{98}=7 \sqrt{2}$
7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8.

$\sqrt{125}=5 \sqrt{5}$

$$
\sqrt{49} \cdot \sqrt{2}
$$

$\sqrt{25} \cdot \sqrt{5}$

Notice that each of the answers is a number multiplied by the square root of a whole number. In each case, the radicand is a whole number which has no perfect square factors (greater than 1).

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=\underline{5} \sqrt{5}$
$\sqrt{25} \cdot \sqrt{5}$

Notice that each of the answers is a number multiplied by the square root of a whole number. In each case, the radicand is a whole number which has no perfect square factors (greater than 1).

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$

$$
\sqrt{25} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

8. $\sqrt{125}=\underline{5} \sqrt{5}$
$\sqrt{25} \cdot \sqrt{5}$

Notice that each of the answers is a number multiplied by the square root of a whole number. In each case, the radicand is a whole number which has no perfect square factors (greater than 1). Each answer is expressed in standard radical form.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
5. $\sqrt{50}=5 \sqrt{2}$
6. $\sqrt{98}=7 \sqrt{2}$
$\sqrt{25} \cdot \sqrt{2}$

$$
\sqrt{49} \cdot \sqrt{2}
$$

7. $\sqrt{75}=5 \sqrt{3}$
8. $\sqrt{125}=5 \sqrt{5}$

$$
\sqrt{25} \cdot \sqrt{3}
$$

$$
\sqrt{25} \cdot \sqrt{5}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=$
10. $\sqrt{18}=$
11. $\sqrt{128}=$
12. $\sqrt{54}=$
\qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

10. $\sqrt{18}=$
11. $\sqrt{128}=$
12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=$
11. $\sqrt{128}=$
\qquad 12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=$
10. $\sqrt{18}=$ \qquad
11. $\sqrt{128}=$
12. $\sqrt{54}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=$
$\sqrt{4}$.
10. $\sqrt{18}=$ \qquad
11. $\sqrt{128}=$
12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}= \\
& \sqrt{4} \cdot \sqrt{7}
\end{aligned}
$$

10. $\sqrt{18}=$ \qquad
11. $\sqrt{128}=$
12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}= \\
& \sqrt{4} \cdot \sqrt{7}
\end{aligned}
$$

11. $\sqrt{128}=$
12. $\sqrt{54}=$
13. $\sqrt{18}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\text { 9. } \quad \sqrt{28}=
$$

11. $\sqrt{128}=$
12. $\sqrt{54}=$
13. $\sqrt{18}=$ \qquad
14. $\sqrt{54}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \\
& \sqrt{4} \cdot \sqrt{7}
\end{aligned}
$$

11. $\sqrt{128}=$
12. $\sqrt{54}=$
13. $\sqrt{18}=$ \qquad
14. $\sqrt{54}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7}
\end{aligned}
$$

11. $\sqrt{128}=$
12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

11. $\sqrt{128}=$
12. $\sqrt{54}=$
13. $\sqrt{18}=$ \qquad
\qquad
\qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

11. $\sqrt{128}=$
12. $\sqrt{18}=$ \qquad
13. $\sqrt{54}=$ -

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

11. $\sqrt{128}=$

12. $\sqrt{18}=$ \qquad
13.

$$
\sqrt{54}=
$$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
$\sqrt{4} \cdot \sqrt{7}$
10. $\sqrt{18}=$ \qquad
$\sqrt{9}$
11. $\sqrt{128}=$
12. $\sqrt{54}=$ -

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
$\sqrt{4} \cdot \sqrt{7}$
11. $\sqrt{128}=$
10. $\sqrt{18}=$

$$
\sqrt{9}
$$

12. $\sqrt{54}=$ $\underline{ }$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
$\sqrt{4} \cdot \sqrt{7}$

$$
\begin{array}{r}
10 . \\
\sqrt{18}= \\
\sqrt{9} \cdot \sqrt{2}
\end{array}
$$

\qquad
11. $\sqrt{128}=$
12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
$\sqrt{4} \cdot \sqrt{7}$
11. $\sqrt{128}=$
10. $\sqrt{18}=$

$$
\sqrt{9} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
$\sqrt{4} \cdot \sqrt{7}$

$$
\begin{array}{r}
10 . \\
\sqrt{18}= \\
\sqrt{9} \cdot \sqrt{2}
\end{array}
$$

11. $\sqrt{128}=$
12. $\sqrt{54}=$
\qquad
13. $\sqrt{54}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

11. $\sqrt{128}=$
12. $\sqrt{18}=3$

$$
\sqrt{9} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=\underline{2 \sqrt{7}}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

11. $\sqrt{128}=$
12. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
$\sqrt{4} \cdot \sqrt{7}$
10. $\sqrt{18}=3 \sqrt{2}$
11. $\sqrt{128}=$
12. $\sqrt{54}=$

$$
\sqrt{9} \cdot \sqrt{2}
$$

\qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$
$\sqrt{9} \cdot \sqrt{2}$
11. $\sqrt{128}=$
12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
10. $\sqrt{18}=3 \sqrt{2}$
$\sqrt{4} \cdot \sqrt{7}$
$\sqrt{9} \cdot \sqrt{2}$
11. $\sqrt{128}=$
12. $\sqrt{54}=$

Step 1: Use the multiplication property of square roots to factor the expression. Factor out the perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
10. $\sqrt{18}=3 \sqrt{2}$
$\sqrt{4} \cdot \sqrt{7}$
$\sqrt{9} \cdot \sqrt{2}$
11. $\sqrt{128}=$
12. $\sqrt{54}=$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
10. $\sqrt{18}=3 \sqrt{2}$
$\sqrt{4} \cdot \sqrt{7}$
$\sqrt{9} \cdot \sqrt{2}$
11. $\sqrt{128}=$
12. $\sqrt{54}=$ $\sqrt{64}$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
10. $\sqrt{18}=3 \sqrt{2}$
$\sqrt{4} \cdot \sqrt{7}$
$\sqrt{9} \cdot \sqrt{2}$
11. $\sqrt{128} \begin{aligned} & 64\end{aligned}$
12. $\sqrt{54}=$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=-\sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2} \\
\text { 11. } \sqrt{128}= \\
\sqrt{64} \cdot \sqrt{2} & \text { 12. } \sqrt{54}=
\end{array}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=-\sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2} \\
\text { 11. } \sqrt{128}=8 \\
\sqrt{64} \cdot \sqrt{2} & \text { 12. } \sqrt{54}=
\end{array}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2} \\
\text { 11. } \sqrt{128}=8 \sqrt{2} & \text { 12. } \sqrt{54}= \\
\sqrt{64} \cdot \sqrt{2} &
\end{array}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.

Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
$\sqrt{4} \cdot \sqrt{7}$
11. $\sqrt{128}=\underline{8} \sqrt{2}$
$\sqrt{64} \cdot \sqrt{2}$
10. $\sqrt{18}=3 \sqrt{2}$
$\sqrt{9} \cdot \sqrt{2}$
12. $\sqrt{54}=$ -

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=\underline{3 \sqrt{2}} \begin{aligned}
& \\
& \sqrt{6}
\end{aligned}
$$

Why the largest perfect square factor?

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=\underline{3 \sqrt{2}} \begin{aligned}
& \text { 10. }
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$
$\sqrt{4} \cdot \sqrt{7}$
10. $\sqrt{18}=3 \sqrt{2}$
$\sqrt{9} \cdot \sqrt{2}$
11. $\sqrt{128}=\underline{8} \sqrt{2}$
12. $\sqrt{54}=$
$\sqrt{64} \cdot \sqrt{2}$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=\underline{3 \sqrt{2}} \begin{aligned}
& \text { 10. }
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4}$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=\underline{3 \sqrt{2}} \begin{aligned}
& \text { 10. }
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=8 \sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=-
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}$
This is not in standard radical form.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=8 \sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=-
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}$
This is not in standard radical form. 32 has perfect square factors greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\left.\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2}
\end{array}\right\} \begin{aligned}
& \text { 11. } \sqrt{128}=\underline{8 \sqrt{2}} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}=$
This is not in standard radical form. 32 has perfect square factors greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\left.\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2}
\end{array}\right\} \begin{aligned}
& \text { 11. } \sqrt{128}=\underline{8 \sqrt{2}} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}=2$
This is not in standard radical form. 32 has perfect square factors greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\left.\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2}
\end{array}\right\}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}=2 \cdot \sqrt{16}$
This is not in standard radical form. 32 has perfect square factors greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\left.\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2}
\end{array}\right\}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.
$\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}=2 \cdot \sqrt{16} \cdot \sqrt{2}$
This is not in standard radical form. 32 has perfect square factors greater than 1.

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=\underline{3 \sqrt{2}} \begin{aligned}
& \text { 10. }
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}=2 \cdot \sqrt{16} \cdot \sqrt{2}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=\underline{2 \sqrt{7}} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=\underline{8} \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=\underline{3 \sqrt{2}} \begin{aligned}
& \text { 10. }
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}=2 \cdot \sqrt{16} \cdot \sqrt{2}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=8 \sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\begin{aligned}
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32} & =2 \cdot \sqrt{16} \cdot \sqrt{2} \\
& =2
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=8 \sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\begin{aligned}
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32} & =2 \cdot \sqrt{16} \cdot \sqrt{2} \\
& =2 \cdot 4
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=8 \sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \text { 12. } \sqrt{54}=
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\begin{aligned}
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32} & =2 \cdot \sqrt{16} \cdot \sqrt{2} \\
& =2 \cdot 4 \cdot \sqrt{2}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=8 \sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \begin{aligned}
& \text { 12. } \sqrt{54}=
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\begin{aligned}
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32} & =2 \cdot \sqrt{16} \cdot \sqrt{2} \\
& =2 \cdot 4 \cdot \sqrt{2}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=8 \sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \begin{aligned}
& \text { 12. } \sqrt{54}=
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\begin{aligned}
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32} & =2 \cdot \sqrt{16} \cdot \sqrt{2} \\
& =2 \cdot 4 \cdot \sqrt{2}=8
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2} \\
\text { 11. } \sqrt{128}=\underline{8} \sqrt{2} & \text { 12. } \sqrt{54}= \\
\sqrt{64} \cdot \sqrt{2} &
\end{array}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\begin{aligned}
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32} & =2 \cdot \sqrt{16} \cdot \sqrt{2} \\
& =2 \cdot 4 \cdot \sqrt{2}=8 \sqrt{2}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{aligned}
& \text { 9. } \sqrt{28}=2 \sqrt{7} \\
& \sqrt{4} \cdot \sqrt{7} \\
& \sqrt{9} \cdot \sqrt{2} \\
& \text { 11. } \sqrt{128}=8 \sqrt{18}=3 \sqrt{2} \\
& \sqrt{64} \cdot \sqrt{2}
\end{aligned} \begin{aligned}
& \text { 12. } \sqrt{54}=
\end{aligned}
$$

Why the largest perfect square factor? Let's use 4 instead of 64.

$$
\begin{aligned}
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32} & =2 \cdot \sqrt{16} \cdot \sqrt{2} \\
& =2 \cdot 4 \cdot \sqrt{2}=8 \sqrt{2}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{9} \cdot \sqrt{7} & \sqrt{2} \\
\text { 11. } \sqrt{128}=8 \sqrt{2} & \text { 12. } \sqrt{54}= \\
\sqrt{64} \cdot \sqrt{2} &
\end{array}
$$

Why the largest perfect square factor? Let's use $\mathbf{4}$ instead of 64.

$$
\begin{aligned}
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32} & =2 \cdot \sqrt{16} \cdot \sqrt{2} \\
& =2 \cdot 4 \cdot \sqrt{2}=8 \sqrt{2}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{array}{ll}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{9} \cdot \sqrt{7} & \sqrt{2} \\
\text { 11. } \sqrt{128}=8 \sqrt{2} & \text { 12. } \sqrt{54}= \\
\sqrt{64} \cdot \sqrt{2} &
\end{array}
$$

Why the largest perfect square factor? Let's use $\mathbf{4}$ instead of 64.

$$
\sqrt{128}=\sqrt{4} \cdot \sqrt{32}=2 \sqrt{32}=2 \cdot \sqrt{16} \cdot \sqrt{2}
$$

It saves time !!

$$
=2 \cdot 4 \cdot \sqrt{2}=8 \sqrt{2}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

11. $\sqrt{128}=\underline{8} \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

11. $\sqrt{128}=8 \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$ -

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

11. $\sqrt{128}=\underline{8} \sqrt{2}$
$\sqrt{64} \cdot \sqrt{2}$
12. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$ \qquad

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

11. $\sqrt{128}=8 \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$
$\sqrt{9}$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

11. $\sqrt{128}=8 \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$

$$
\sqrt{9}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

11. $\sqrt{128}=8 \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$

$$
\sqrt{9} \cdot \sqrt{6}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

11. $\sqrt{128}=8 \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$

$$
\sqrt{9} \cdot \sqrt{6}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

11. $\sqrt{128}=\underline{8} \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

12. $\sqrt{54}=$

$$
\sqrt{9} \cdot \sqrt{6}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

11. $\sqrt{128}=8 \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

12. $\sqrt{54}=3$

$$
\sqrt{9} \cdot \sqrt{6}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

11. $\sqrt{128}=8 \sqrt{2}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

$$
\begin{aligned}
& \text { 12. } \sqrt{54}=3 \sqrt{6} \\
& \sqrt{9} \cdot \sqrt{6}
\end{aligned}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.
9. $\sqrt{28}=2 \sqrt{7}$

$$
\sqrt{4} \cdot \sqrt{7}
$$

10. $\sqrt{18}=3 \sqrt{2}$

$$
\sqrt{9} \cdot \sqrt{2}
$$

11. $\sqrt{128}=\underline{8} \sqrt{2}$
12. $\sqrt{54}=\underline{3} \sqrt{6}$

$$
\sqrt{64} \cdot \sqrt{2}
$$

$$
\sqrt{9} \cdot \sqrt{6}
$$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor.
Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

Algebra I Class Worksheet \#1 Unit 13

Express each of the following square roots using standard radical form.

$$
\begin{array}{lc}
\text { 9. } \sqrt{28}=2 \sqrt{7} & \text { 10. } \sqrt{18}=3 \sqrt{2} \\
\sqrt{4} \cdot \sqrt{7} & \sqrt{9} \cdot \sqrt{2}
\end{array}
$$

Good luck on your homework !!
 $\sqrt{64} \cdot \sqrt{2}$
 $\sqrt{9} \cdot \sqrt{6}$

Step 1: Use the multiplication property of square roots to factor the expression. Use the largest perfect square factor. Step 2: Evaluate the square root of the perfect square factor.

$$
\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}
$$

