Algebra I Lesson \#3 Unit 11 Class Worksheet \#3 For Worksheets \#5 \& \#6

Algebra I Unit 11 The Difference of Two Squares

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)= \\
& (8 x-5)(8 x+5)=
\end{aligned}
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.
$(3 x+2)(3 x-2)=$
$(8 x-5)(8 x+5)=$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.
$\underset{\sim}{(3 x+2)(3 x-2)}=$
$(8 x-5)(8 x+5)=$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.
$\left({ }_{-}(\underset{\sim}{x}+2)(3 x-2)=9 x^{2}\right.$
$(8 x-5)(8 x+5)=$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.
$\underset{\sim}{(3 x+2)(3 x-2)}=9 x^{2}-$
$(8 x-5)(8 x+5)=$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.
$\left(\underset{\sim}{(3 x+2)(3 x-2)}=9 x^{2}-6 x\right.$
$(8 x-5)(8 x+5)=$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+\underset{\sim}{2})(3 x-2)=9 x^{2}-6 x+6 x
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\left(3 x+\underset{\sim}{2)}(3 x-2)=9 x^{2}-6 x+6 x-\right.
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+\underset{\sim}{2})(3 x-\underset{\sim}{2})=9 x^{2}-6 x+6 x-4
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.
$(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-$
$(8 x-5)(8 x+5)=$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$(8 x-5)(8 x+5)=$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=
\end{aligned}
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$(8 x-5)(8 x+5)=$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$(8 x-5)(8 x+5)=64 x^{2}$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$(8 x-5)(8 x+5)=64 x^{2}$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-40 x
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-40 x
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}
\end{aligned}
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
(3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4
$$

$$
(8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

These problems represent a special case in which the product of two binomials is a binomial.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(A+B)(A-B)=$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(A+B)(A-B)=A^{2}$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(A+B)(A-B)=A^{2}$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(A+B)(A-B)=A^{2}-$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(A+B)(A-B)=A^{2}-A B$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(A+B)(A-B)=A^{2}-A B+$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{\mathbf{2}}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{\mathbf{2}}$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=\mathbf{A}^{2}$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$(A+B)(A-B)=A^{2}-A B+A B-B^{2}=A^{2}-$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}+\mathbf{A B}-\mathbf{B}^{2}=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

Consider the following multiplication problems.

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-6 x+6 x-4=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}+40 x-40 x-25=64 x^{2}-25 \\
& (A+B)(A-B)=A^{2}-A B+A B-B^{2}=A^{2}-B^{2}
\end{aligned}
$$

These problems represent a special case in which the product of two binomials is a binomial. What causes this is that the 'outer product' and the 'inner product' add up to zero. This can be represented as a special multiplication pattern.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples. These equations can be written to demonstrate an important factoring pattern known as the difference of two squares.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples. These equations can be written to demonstrate an important factoring pattern known as the difference of two squares.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \longrightarrow 9 x^{2}-4= \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples. These equations can be written to demonstrate an important factoring pattern known as the difference of two squares.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \longrightarrow 9 x^{2}-4=(3 x+2)(3 x-2) \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples. These equations can be written to demonstrate an important factoring pattern known as the difference of two squares.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \longrightarrow 9 x^{2}-4=(3 x+2)(3 x-2) \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \longrightarrow 64 x^{2}-25= \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples. These equations can be written to demonstrate an important factoring pattern known as the difference of two squares.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \longrightarrow 9 x^{2}-4=(3 x+2)(3 x-2) \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \longrightarrow 64 x^{2}-25=(8 x-5)(8 x+5) \\
& (A+B)(A-B)=A^{2}-B^{2}
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples. These equations can be written to demonstrate an important factoring pattern known as the difference of two squares.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \quad \longrightarrow \quad 9 x^{2}-4=(3 x+2)(3 x-2) \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \quad \longrightarrow \quad 64 x^{2}-25=(8 x-5)(8 x+5) \\
& (A+B)(A-B)=A^{2}-B^{2} \longrightarrow \quad A^{2}-B^{2}=
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples. These equations can be written to demonstrate an important factoring pattern known as the difference of two squares.

Algebra I Unit 11 The Difference of Two Squares

$$
\begin{aligned}
& (3 x+2)(3 x-2)=9 x^{2}-4 \quad \longrightarrow \quad 9 x^{2}-4=(3 x+2)(3 x-2) \\
& (8 x-5)(8 x+5)=64 x^{2}-25 \quad \longrightarrow \quad 64 x^{2}-25=(8 x-5)(8 x+5) \\
& (A+B)(A-B)=A^{2}-B^{2} \quad \longrightarrow \quad A^{2}-B^{2}=(A+B)(A-B)
\end{aligned}
$$

It is important to recognize multiplication problems that are similar to these examples. These equations can be written to demonstrate an important factoring pattern known as the difference of two squares.

Algebra I Unit 11 Perfect Square Trinomials

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=
$$

$$
(7 x-4)^{2}=
$$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.
$(5 x+3)^{2}=$
$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(\underbrace{(5 x}+3)(5 x+3)=25 x^{2}
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=\left(\underset{\sim}{7 x-4)(7 x-4)}=49 x^{2}-\right.$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16
\end{aligned}
$$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}
\end{aligned}
$$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x
\end{aligned}
$$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9
$$

$$
(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+
$$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}= \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B) \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)= \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)= \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2} \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(\underbrace{(A+B)(A+B)}=A^{2} \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(\underbrace{(A+B)(A+B)}=A^{2}+ \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(\underbrace{(A+B)(A+B)}=A^{2}+A B \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+ \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=\left(A+\underset{4}{(A)(A+B)}=A^{2}+A B+A B\right. \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+\underset{4}{(A)(A+B)})=A^{2}+A B+A B+ \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+\underbrace{B})(A+B)=A^{2}+A B+A B+B^{2} \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2} \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}= \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}= \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2} \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+ \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+ \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(\underbrace{(A-B}_{-B})(A-B)=A^{2}
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(\underbrace{(A-B}_{-B})(A-B)=A^{2}-
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(\underbrace{(A-B}_{-B})(A-B)=A^{2}-A B
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}=
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}=A^{2}
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}=A^{2}-
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}=A^{2}-2 A B
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}=A^{2}-2 A B+
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
& (A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}=A^{2}-2 A B+B^{2}
\end{aligned}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{gathered}
(5 x+3)^{2}=(5 x+3)(5 x+3)=25 x^{2}+15 x+15 x+9=25 x^{2}+30 x+9 \\
(7 x-4)^{2}=(7 x-4)(7 x-4)=49 x^{2}-28 x-28 x+16=49 x^{2}-56 x+16 \\
(A+B)^{2}=(A+B)(A+B)=A^{2}+A B+A B+B^{2}=A^{2}+2 A B+B^{2} \\
(A-B)^{2}=(A-B)(A-B)=A^{2}-A B-A B+B^{2}=A^{2}-2 A B+B^{2}
\end{gathered}
$$

The square of a binomial is a trinomial. Note that the 'outer product' and the 'inner product' are the same. The answers are 'perfect square trinomials. A pattern can be used to shorten the process.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=49 x^{2}-56 x+16 \\
& (A+B)^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=A^{2}-2 A B+B^{2}
\end{aligned}
$$

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{gathered}
(5 x+3)^{2}=25 x^{2}+30 x+9 \\
(7 x-4)^{2}=49 x^{2}-56 x+16 \\
(A+B)^{2}=A^{2}+2 A B+B^{2} \\
(A-B)^{2}=A^{2}-2 A B+B^{2}
\end{gathered}
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=25 x^{2}+30 x+9 \\
& (7 x-4)^{2}=49 x^{2}-56 x+16 \\
& (A+B)^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=A^{2}-2 A B+B^{2}
\end{aligned}
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
(5 x+3)^{2} & =25 x^{2}+30 x+9 \\
(7 x-4)^{2} & =49 x^{2}-56 x+16 \\
(A+B)^{2} & =A^{2}+2 A B+B^{2} \\
(A-B)^{2} & =A^{2}-2 A B+B^{2}+30 x+9=
\end{aligned}
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=25 x^{2}+30 x+9 \longrightarrow 25 x^{2}+30 x+9=(5 x+3)^{2} \\
& (7 x-4)^{2}=49 x^{2}-56 x+16 \\
& (A+B)^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=A^{2}-2 A B+B^{2}
\end{aligned}
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=25 x^{2}+30 x+9 \longrightarrow 25 x^{2}+30 x+9=(5 x+3)^{2} \\
& (7 x-4)^{2}=49 x^{2}-56 x+16 \longrightarrow 49 x^{2}-56 x+16= \\
& (A+B)^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=A^{2}-2 A B+B^{2}
\end{aligned}
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\begin{aligned}
& (5 x+3)^{2}=25 x^{2}+30 x+9 \longrightarrow 25 x^{2}+30 x+9=(5 x+3)^{2} \\
& (7 x-4)^{2}=49 x^{2}-56 x+16 \longrightarrow 49 x^{2}-56 x+16=(7 x-4)^{2} \\
& (A+B)^{2}=A^{2}+2 A B+B^{2} \\
& (A-B)^{2}=A^{2}-2 A B+B^{2}
\end{aligned}
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\left.\begin{array}{rl}
(5 x+3)^{2}=25 x^{2}+30 x+9 & \longrightarrow
\end{array}\right) 25 x^{2}+30 x+9=(5 x+3)^{2}, ~\left(79 x^{2}-56 x+16=(7 x-4)^{2}\right)
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\left.\begin{array}{rl}
(5 x+3)^{2}=25 x^{2}+30 x+9 & \longrightarrow
\end{array} 2^{25} x^{2}+30 x+9=(5 x+3)^{2}\right)
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\left.\begin{array}{rl}
(5 x+3)^{2}=25 x^{2}+30 x+9 & \longrightarrow
\end{array} 2^{25} x^{2}+30 x+9=(5 x+3)^{2}\right)
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\left.\begin{array}{rl}
(5 x+3)^{2}=25 x^{2}+30 x+9 & \longrightarrow
\end{array} 2^{25} x^{2}+30 x+9=(5 x+3)^{2}\right)
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern.

Algebra I Unit 11 Perfect Square Trinomials

Consider the following problems.

$$
\left.\begin{array}{rl}
(5 x+3)^{2}=25 x^{2}+30 x+9 & \longrightarrow
\end{array} 2^{25} x^{2}+30 x+9=(5 x+3)^{2}\right)
$$

As with other multiplication patterns, this pattern can also be helpful as a factoring pattern. Good luck.

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)= \\
& \text { 2. }(x-6)(x+6)= \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

1. $(x+2)(x-2)=$
2. $(x-6)(x+6)=$
3. $(2 x+3)(2 x-3)=$
4. $(5 x-7)(5 x+7)=$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2} \\
& \text { 2. }(x-6)(x+6)= \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\text { 1. }(x+2)(x-2)=x^{2}-
$$

2. $(x-6)(x+6)=$
3. $(2 x+3)(2 x-3)=$
4. $(5 x-7)(5 x+7)=$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\text { 1. }(x+2)(x-2)=x^{2}-2^{2}
$$

2. $(x-6)(x+6)=$
3. $(2 x+3)(2 x-3)=$
4. $(5 x-7)(5 x+7)=$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\text { 1. }(x+2)(x-2)=x^{2}-2^{2}=
$$

2. $(x-6)(x+6)=$
3. $(2 x+3)(2 x-3)=$
4. $(5 x-7)(5 x+7)=$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}= \\
& \text { 2. }(x-6)(x+6)= \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-}{} \\
& \text { 2. }(x-6)(x+6)= \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\quad x^{2}-4
$$

2. $(x-6)(x+6)=$
3. $(2 x+3)(2 x-3)=$
4. $(5 x-7)(5 x+7)=$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)= \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)= \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{\text { 2. }(x-6)(x+6)=x^{2}} \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{\text { 2. }(x-6)(x+6)=x^{2}-} \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\quad x^{2}-4
$$

2. $(x-6)(x+6)=x^{2}-6^{2}$
3. $(2 x+3)(2 x-3)=$
4. $(5 x-7)(5 x+7)=$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{\text { 2. }(x-6)(x+6)=x^{2}-6^{2}=} \\
& \text { 3. }(2 x+3)(2 x-3)= \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{\text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}}{}} \begin{array}{l}
\text { 3. }(2 x+3)(2 x-3)= \\
\text { 4. }(5 x-7)(5 x+7)=
\end{array} \text { (}(x)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{\text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-}{\text { 2. }}(2 x+3)(2 x-3)=} \\
& \text { 3. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{4 x^{2}}{}} \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{4 x^{2}-}{}} \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{\text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{4 x^{2}-9}{}} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{4} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{4 x^{2}-9}{} \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\underline{x^{2}-4} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\underline{x^{2}-36} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=4 x^{2}-9 \\
& \text { 4. }(5 x-7)(5 x+7)=
\end{aligned}
$$

$$
(A+B)(A-B)=A^{2}-B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{4 x^{2}-9}{} \\
& \text { 4. }(5 x-7)(5 x+7)=(5 x)^{2}
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{4 x^{2}-9}{} \\
& \text { 4. }(5 x-7)(5 x+7)=(5 x)^{2}-
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{4 x^{2}-9}{} \\
& \text { 4. }(5 x-7)(5 x+7)=(5 x)^{2}-7^{2}
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{4 x^{2}-9}{} \\
& \text { 4. }(5 x-7)(5 x+7)=(5 x)^{2}-7^{2}=
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\underline{4 x^{2}-9} \\
& \text { 4. }(5 x-7)(5 x+7)=(5 x)^{2}-7^{2}=\underline{25 x^{2}}
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\underline{4 x^{2}-9} \\
& \text { 4. }(5 x-7)(5 x+7)=(5 x)^{2}-7^{2}=25 x^{2}-
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{4 x^{2}-9} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{25 x^{2}-49}{\text { 4. }(5 x-7)(5 x+7)=(5 x)^{2}-7^{2}=}
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 1. }(x+2)(x-2)=x^{2}-2^{2}=\frac{x^{2}-4}{} \\
& \text { 2. }(x-6)(x+6)=x^{2}-6^{2}=\frac{x^{2}-36}{4 x^{2}-9} \\
& \text { 3. }(2 x+3)(2 x-3)=(2 x)^{2}-3^{2}=\frac{45 x^{2}-49}{\text { 4. }(5 x-7)(5 x+7)=(5 x)^{2}-7^{2}=\underline{2}}
\end{aligned}
$$

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)($
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 \mathbf{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\text { 5. } x^{2}-64=x^{2}-8^{2}=(x+8)(x-
$$

6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $\mathrm{x}^{2}-100=$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $\mathrm{x}^{2}-100=\mathrm{x}^{2}$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $\mathrm{x}^{2}-100=\mathrm{x}^{2}-$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\text { 5. } x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)
$$

6. $\mathrm{x}^{2}-100=\mathrm{x}^{2}-10^{2}$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $\mathrm{x}^{2}-100=\mathrm{x}^{2}-10^{2}=$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)($
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 \mathrm{x}^{2}-16=(7 x)^{2}$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 \mathrm{x}^{2}-16=(7 x)^{2}-4^{2}=$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)($
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 \mathrm{x}^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}=$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}=(3 x$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}=(3 x+$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}=(3 x+1)($

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}=(3 x+1)(3 x$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}=(3 x+1)(3 x-$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}=(3 x+1)(3 x-1)$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
5. $x^{2}-64=x^{2}-8^{2}=(x+8)(x-8)$
6. $x^{2}-100=x^{2}-10^{2}=(x+10)(x-10)$
7. $49 x^{2}-16=(7 x)^{2}-4^{2}=(7 x+4)(7 x-4)$
8. $9 x^{2}-1=(3 x)^{2}-1^{2}=(3 x+1)(3 x-1)$

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\text { 9. }(x+3)^{2}=
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\text { 9. }(x+3)^{2}=
$$

10. $(x+5)^{2}=$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}= \\
& x^{2}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}= \\
& x^{2}+
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}= \\
& x^{2}+(2)(x)(3)
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}= \\
& x^{2}+(2)(x)(3)+
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}= \\
& x^{2}+(2)(x)(3)+3^{2}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}}{3^{2}} \\
& x^{2}+(2)(x)(3)+3^{2}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+}{3^{2}} \\
& x^{2}+(2)(x)(3)+3^{2}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x}{x^{2}+(2)(x)(3)+3^{2}}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+}{x^{2}+(2)(x)(3)+3^{2}}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}} \\
& x^{2}(2)(x)(3)+3^{2}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}}
\end{aligned}
$$

10. $(x+5)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}= \\
& x^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}= \\
& x^{2}+
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}= \\
& x^{2}+(2)(x)(5)
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}= \\
& x^{2}+(2)(x)(5)+
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}= \\
& x^{2}+(2)(x)(5)+5^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}=x^{2} \\
& x^{2}+(2)(x)(5)+5^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}=x^{2}+ \\
& x^{2}+(2)(x)(5)+5^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}=\frac{x^{2}+10 x}{x^{2}} \\
& x^{2}+(2)(x)(5)+5^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}=x^{2}+10 x+ \\
& x^{2}+(2)(x)(5)+5^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}=x^{2}+10 x+25 \\
& x^{2}+(2)(x)(5)+5^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 9. }(x+3)^{2}=\frac{x^{2}+6 x+9}{x^{2}+(2)(x)(3)+3^{2}} \\
& \text { 10. }(x+5)^{2}=\frac{x^{2}+10 x+25}{x^{2}} \\
& x^{2}+(2)(x)(5)+5^{2}
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.
11. $(x-2)^{2}=$
12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.
11. $(x-2)^{2}=$
12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}= \\
& x^{2}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}= \\
& x^{2}-
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}= \\
& x^{2}-(2)(x)(2)
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}= \\
& x^{2}-(2)(x)(2)+
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}= \\
& x^{2}-(2)(x)(2)+2^{2}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}}{x^{2}-(2)(x)(2)+2^{2}}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-}{x^{2}} \\
& x^{2}(2)(x)(2)+2^{2}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x}{x^{2}-(2)(x)(2)+2^{2}}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=x^{2}-4 x+ \\
& x^{2}-(2)(x)(2)+2^{2}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=x^{2}-4 x+4 \\
& x^{2}-(2)(x)(2)+2^{2}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}}
\end{aligned}
$$

12. $(x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}} \\
& \text { 12. }(x-7)^{2}= \\
& x^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}} \\
& \text { 12. }(x-7)^{2}= \\
& x^{2}-
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{2^{2}} \\
& x^{2}-(2)(x)(2)+2^{2} \\
& \text { 12. }(x-7)^{2}= \\
& x^{2}-(2)(x)(7)
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}} \\
& \text { 12. }(x-7)^{2}= \\
& x^{2}-(2)(x)(7)+
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}} \\
& \text { 12. }(x-7)^{2}= \\
& x^{2}-(2)(x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=x^{2}-4 x+4 \\
& x^{2}-(2)(x)(2)+2^{2} \\
& \text { 12. }(x-7)^{2}=\frac{x}{}^{2} \\
& x^{2}-(2)(x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=x^{2}-4 x+4 \\
& x^{2}-(2)(x)(2)+2^{2} \\
& \text { 12. }(x-7)^{2}=\frac{x^{2}-}{2} \\
& x^{2}-(2)(x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=x^{2}-4 x+4 \\
& x^{2}-(2)(x)(2)+2^{2} \\
& \text { 12. }(x-7)^{2}=\frac{x^{2}-14 x}{2} \\
& x^{2}-(2)(x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}} \\
& \text { 12. }(x-7)^{2}=\frac{x^{2}-14 x+}{x^{2}-(2)(x)(7)+7^{2}}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}} \\
& \text { 12. }(x-7)^{2}=\frac{x^{2}-14 x+49}{2} \\
& x^{2}-(2)(x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x-2)^{2}=\frac{x^{2}-4 x+4}{x^{2}-(2)(x)(2)+2^{2}} \\
& \text { 12. }(x-7)^{2}=\frac{x^{2}-14 x+49}{x^{2}}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.
13. $(3 x+2)^{2}=$
14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.
13. $(3 x+2)^{2}=$
14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.
13. $(3 x+2)^{2}=$
$(3 x)^{2}$
14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.
13. $(3 x+2)^{2}=$
$(3 \mathrm{x})^{2}+$
14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

> 13. $(3 x+2)^{2}=$
> $(3 x)^{2}+(2)(3 x)(2)$
14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}= \\
& (3 x)^{2}+(2)(3 x)(2)+
\end{aligned}
$$

14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}= \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2} \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+ \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+ \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+4 \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

> 13. $(3 x+2)^{2}=9 x^{2}+12 x+4$
> $(3 x)^{2}+(2)(3 x)(2)+2^{2}$
14. $(4 x+1)^{2}=$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+4 \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

> 13. $(3 x+2)^{2}=9 x^{2}+12 x+4$
> $(3 x)^{2}+(2)(3 x)(2)+2^{2}$
14. $(4 x+1)^{2}=$
$(4 x)^{2}$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

> 13. $(3 x+2)^{2}=9 x^{2}+12 x+4$
> $(3 x)^{2}+(2)(3 x)(2)+2^{2}$
14. $(4 x+1)^{2}=$
$(4 x)^{2}+$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

> 13. $(3 x+2)^{2}=9 x^{2}+12 x+4$
> $(3 x)^{2}+(2)(3 x)(2)+2^{2}$

$$
\begin{aligned}
& \text { 14. }(4 x+1)^{2}= \\
& (4 x)^{2}+(2)(4 x)(1)
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

> 13. $(3 x+2)^{2}=9 x^{2}+12 x+4$
> $(3 x)^{2}+(2)(3 x)(2)+2^{2}$

$$
\begin{aligned}
& \text { 14. }(4 x+1)^{2}= \\
& (4 x)^{2}+(2)(4 x)(1)+
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

> 13. $(3 x+2)^{2}=9 x^{2}+12 x+4$
> $(3 x)^{2}+(2)(3 x)(2)+2^{2}$

$$
\begin{aligned}
& \text { 14. }(4 x+1)^{2}= \\
& (4 x)^{2}+(2)(4 x)(1)+1^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+4 \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

$$
\text { 14. }(4 x+1)^{2}=16 x^{2}
$$

$$
(4 x)^{2}+(2)(4 x)(1)+1^{2}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+4 \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 14. }(4 x+1)^{2}=16 x^{2}+ \\
& (4 x)^{2}+(2)(4 x)(1)+1^{2}
\end{aligned}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+4 \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=16 x^{2}+8 x$
$(4 x)^{2}+(2)(4 x)(1)+1^{2}$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+4 \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=16 x^{2}+8 x+$
$(4 x)^{2}+(2)(4 x)(1)+1^{2}$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+4 \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

$$
\text { 14. }(4 x+1)^{2}=16 x^{2}+8 x+1
$$

$$
(4 x)^{2}+(2)(4 x)(1)+1^{2}
$$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 13. }(3 x+2)^{2}=9 x^{2}+12 x+4 \\
& (3 x)^{2}+(2)(3 x)(2)+2^{2}
\end{aligned}
$$

14. $(4 x+1)^{2}=16 x^{2}+8 x+1$
$(4 x)^{2}+(2)(4 x)(1)+1^{2}$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.
15. $(3 x-5)^{2}=$
16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.
15. $(3 x-5)^{2}=$
16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}= \\
& (3 x)^{2}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}= \\
& (3 x)^{2}-
\end{aligned}
$$

$$
\text { 16. }(2 x-7)^{2}=
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}= \\
& (3 x)^{2}-(2)(3 x)(5)
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}= \\
& (3 x)^{2}-(2)(3 x)(5)+
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}= \\
& (3 x)^{2}-(2)(3 x)(5)+5^{2}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=9 x^{2} \\
& (3 x)^{2}-(2)(3 x)(5)+5^{2}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=9 x^{2}- \\
& (3 x)^{2}-(2)(3 x)(5)+5^{2}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=9 x^{2}-30 x \\
& (3 x)^{2}-(2)(3 x)(5)+5^{2}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=9 x^{2}-30 x+ \\
& (3 x)^{2}-(2)(3 x)(5)+5^{2}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=9 x^{2}-30 x+25 \\
& (3 x)^{2}-(2)(3 x)(5)+5^{2}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=9 x^{2}-30 x+25 \\
& (3 x)^{2}-(2)(3 x)(5)+5^{2}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

16. $(2 x-7)^{2}=$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

16. $(2 x-7)^{2}=$
$(2 x)^{2}$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

16. $(2 x-7)^{2}=$
$(2 x)^{2}-$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. }(2 x-7)^{2}= \\
& (2 x)^{2}-(2)(2 x)(7)
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. }(2 x-7)^{2}= \\
& (2 x)^{2}-(2)(2 x)(7)+
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. }(2 x-7)^{2}= \\
& (2 x)^{2}-(2)(2 x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. }(2 x-7)^{2}=4 x^{2} \\
& (2 x)^{2}-(2)(2 x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. }(2 x-7)^{2}=4 x^{2}- \\
& (2 x)^{2}-(2)(2 x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. }(2 x-7)^{2}=4 x^{2}-28 x \\
& (2 x)^{2}-(2)(2 x)(7)+7^{2}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. }(2 x-7)^{2}=\frac{4 x^{2}-28 x+}{(2 x)^{2}-(2)(2 x)(7)+7^{2}}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=\frac{9 x^{2}-30 x+25}{(3 x)^{2}-(2)(3 x)(5)+5^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. }(2 x-7)^{2}=\frac{4 x^{2}-28 x+49}{(2 x)^{2}-(2)(2 x)(7)+7^{2}}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 15. }(3 x-5)^{2}=9 x^{2}-30 x+25 \\
& (3 x)^{2}-(2)(3 x)(5)+5^{2} \\
& \text { 16. }(2 x-7)^{2}=\frac{4 x^{2}-28 x+49}{(2 x)^{2}-(2)(2 x)(7)+7^{2}}
\end{aligned}
$$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
17. $x^{2}+2 x+1=$
18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
17. $x^{2}+2 x+1=$
18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1= \\
& x^{2}
\end{aligned}
$$

$$
\text { 18. } x^{2}+12 x+36=
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1= \\
& x^{2}+
\end{aligned}
$$

$$
\text { 18. } x^{2}+12 x+36=
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1= \\
& x^{2}+(2)(x)(1)
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1= \\
& x^{2}+(2)(x)(1)+
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1= \\
& x^{2}+(2)(x)(1)+1^{2}
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x}{} \\
& x^{2}+(2)(x)(1)+1^{2}
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+}{x^{2}+(2)(x)(1)+1^{2}}
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=(x+1) \\
& x^{2}+(2)(x)(1)+1^{2}
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{} \\
& x^{2}+(2)(x)(1)+1^{2}
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{x^{2}+(2)(x)(1)+1^{2}}
\end{aligned}
$$

$$
\text { 18. } x^{2}+12 x+36=
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{x^{2}+(2)(x)(1)+1^{2}}
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{x^{2}+(2)(x)(1)+1^{2}}
\end{aligned}
$$

18. $x^{2}+12 x+36=$
\mathbf{x}^{2}

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{x^{2}+(2)(x)(1)+1^{2}}
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
\mathbf{x}^{2}+
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{x^{2}+(2)(x)(1)+1^{2}}
\end{aligned}
$$

18. $x^{2}+12 x+36=$

$$
x^{2}+(2)(x)(6)
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{x^{2}+(2)(x)(1)+1^{2}}
\end{aligned}
$$

$$
\text { 18. } x^{2}+12 x+36=
$$

$$
x^{2}+(2)(x)(6)+
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{x^{2}+(2)(x)(1)+1^{2}}
\end{aligned}
$$

$$
\text { 18. } x^{2}+12 x+36=
$$

$$
x^{2}+(2)(x)(6)+6^{2}
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{} \\
& x^{2}+(2)(x)(1)+1^{2} \\
& \text { 18. } x^{2}+12 x+36=\quad(x \\
& x^{2}+(2)(x)(6)+6^{2}
\end{aligned}
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\underline{(x+1)^{2}} \\
& x^{2}+(2)(x)(1)+1^{2} \\
& \text { 18. } x^{2}+12 x+36=\quad(x+ \\
& x^{2}+(2)(x)(6)+6^{2}
\end{aligned}
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{} \\
& x^{2}+(2)(x)(1)+1^{2} \\
& \text { 18. } x^{2}+12 x+36=\quad(x+6) \\
& x^{2}+(2)(x)(6)+6^{2}
\end{aligned}
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{} \\
& x^{2}+(2)(x)(1)+1^{2} \\
& \text { 18. } x^{2}+12 x+36=-(x+6)^{2} \\
& x^{2}+(2)(x)(6)+6^{2}
\end{aligned}
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 17. } x^{2}+2 x+1=\frac{(x+1)^{2}}{x^{2}+(2)(x)(1)+1^{2}} \\
& \text { 18. } x^{2}+12 x+36=-(x+6)^{2} \\
& x^{2}+(2)(x)(6)+6^{2}
\end{aligned}
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
19. $x^{2}-8 x+16=$
20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\text { 19. } x^{2}-8 x+16=
$$

$$
\text { 20. } x^{2}-20 x+100=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16= \\
& x^{2}
\end{aligned}
$$

$$
\text { 20. } x^{2}-20 x+100=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16= \\
& x^{2}-
\end{aligned}
$$

$$
\text { 20. } x^{2}-20 x+100=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16= \\
& x^{2}-(2)(x)(4)
\end{aligned}
$$

20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{gathered}
\text { 19. } x^{2}-8 x+16= \\
x^{2}-(2)(x)(4)+
\end{gathered}
$$

20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16= \\
& x^{2}-(2)(x)(4)+4^{2}
\end{aligned}
$$

20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x \\
& x^{2}-(2)(x)(4)+4^{2}
\end{aligned}
$$

20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x- \\
& x^{2}-(2)(x)(4)+4^{2}
\end{aligned}
$$

20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4) \\
& x^{2}-(2)(x)(4)+4^{2}
\end{aligned}
$$

20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2}
\end{aligned}
$$

20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100=
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2}
\end{aligned}
$$

20. $x^{2}-20 x+100=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100= \\
& x^{2}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100= \\
& x^{2}-
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100= \\
& x^{2}-(2)(x)(10)
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100= \\
& x^{2}-(2)(x)(10)+
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100= \\
& x^{2}-(2)(x)(10)+10^{2}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100=(x \\
& x^{2}-(2)(x)(10)+10^{2}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100=(x- \\
& x^{2}-(2)(x)(10)+10^{2}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100=(x-10) \\
& x^{2}-(2)(x)(10)+10^{2}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100=(x-10)^{2} \\
& x^{2}-(2)(x)(10)+10^{2}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 19. } x^{2}-8 x+16=(x-4)^{2} \\
& x^{2}-(2)(x)(4)+4^{2} \\
& \text { 20. } x^{2}-20 x+100=(x-10)^{2} \\
& x^{2}-(2)(x)(10)+10^{2}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
21. $4 x^{2}+20 x+25=$
22. $9 x^{2}+30 x+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\text { 21. } 4 x^{2}+20 x+25=
$$

22. $9 \mathrm{x}^{2}+30 \mathrm{x}+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

21. $4 x^{2}+20 x+25=$

$(2 x)^{2}$
22. $9 x^{2}+30 x+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25= \\
& (2 x)^{2}+
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25= \\
& (2 x)^{2}+(2)(2 x)(5)
\end{aligned}
$$

22. $9 \mathrm{x}^{2}+30 \mathrm{x}+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25= \\
& (2 x)^{2}+(2)(2 x)(5)+
\end{aligned}
$$

22. $9 \mathrm{x}^{2}+30 \mathrm{x}+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25= \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+ \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5) \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 \mathrm{x}^{2}+30 \mathrm{x}+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 \mathrm{x}^{2}+30 \mathrm{x}+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 \mathrm{x}^{2}+30 \mathrm{x}+25=$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$
$(3 x)^{2}$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$
$(3 x)^{2}+$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$
$(3 x)^{2}+(2)(3 x)(5)$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$
$(3 x)^{2}+(2)(3 x)(5)+$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=$
$(3 x)^{2}+(2)(3 x)(5)+5^{2}$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 \mathrm{x}^{2}+30 \mathrm{x}+25=\mathbf{(3 x}$ $(3 x)^{2}+(2)(3 x)(5)+5^{2}$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=(3 x+$ $(3 x)^{2}+(2)(3 x)(5)+5^{2}$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

22. $9 x^{2}+30 x+25=(3 x+5)$
$(3 x)^{2}+(2)(3 x)(5)+5^{2}$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=(2 x+5)^{2} \\
& (2 x)^{2}+(2)(2 x)(5)+5^{2}
\end{aligned}
$$

$$
\text { 22. } 9 x^{2}+30 x+25=(3 x+5)^{2}
$$

$$
(3 x)^{2}+(2)(3 x)(5)+5^{2}
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 21. } 4 x^{2}+20 x+25=\frac{(2 x+5)^{2}}{(2 x)^{2}+(2)(2 x)(5)+5^{2}} \\
& \text { 22. } 9 x^{2}+30 x+25=(3 x+5)^{2} \\
& (3 x)^{2}+(2)(3 x)(5)+5^{2}
\end{aligned}
$$

$$
A^{2}+2 A B+B^{2}=(A+B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
23. $16 x^{2}-24 x+9=$
24. $9 x^{2}-6 x+1=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.
23. $16 x^{2}-24 x+9=$
24. $9 x^{2}-6 x+1=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\text { 23. } 16 x^{2}-24 x+9=
$$

$(4 x)^{2}$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9= \\
& (4 x)^{2}-
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9= \\
& (4 x)^{2}-(2)(4 x)(3)
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9= \\
& (4 x)^{2}-(2)(4 x)(3)+
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9= \\
& (4 x)^{2}-(2)(4 x)(3)+3^{2}
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x}{} \\
& (4 x)^{2}-(2)(4 x)(3)+3^{2}
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=(4 x- \\
& (4 x)^{2}-(2)(4 x)(3)+3^{2}
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=(4 x-3) \\
& (4 x)^{2}-(2)(4 x)(3)+3^{2}
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

24. $9 x^{2}-6 x+1=$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

$$
\text { 24. } 9 x^{2}-6 x+1=
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

24. $9 x^{2}-6 x+1=$
$(3 x)^{2}$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

24. $9 x^{2}-6 x+1=$
$(3 x)^{2}-$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

24. $9 x^{2}-6 x+1=$

$$
(3 x)^{2}-(2)(3 x)(1)
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

24. $9 x^{2}-6 x+1=$
$(3 x)^{2}-(2)(3 x)(1)+$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=(4 x-3)^{2} \\
& (4 x)^{2}-(2)(4 x)(3)+3^{2}
\end{aligned}
$$

24. $9 x^{2}-6 x+1=$

$$
(3 x)^{2}-(2)(3 x)(1)+1^{2}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24. } 9 x^{2}-6 x+1=\frac{(3 x}{(3 x)^{2}-(2)(3 x)(1)+1^{2}}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24. } 9 x^{2}-6 x+1=\frac{(3 x-}{(3 x)^{2}-(2)(3 x)(1)+1^{2}}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24. } 9 x^{2}-6 x+1=\frac{(3 x-1)}{(3 x)^{2}-(2)(3 x)(1)+1^{2}}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24. } 9 x^{2}-6 x+1=\frac{(3 x-1)^{2}}{(3 x)^{2}-(2)(3 x)(1)+1^{2}}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 24. } 9 x^{2}-6 x+1=\frac{(3 x-1)^{2}}{(3 x)^{2}-(2)(3 x)(1)+1^{2}}
\end{aligned}
$$

$$
A^{2}-2 A B+B^{2}=(A-B)^{2}
$$

Algebra I Class Worksheet \#3 Unit 11

Factor each of the following.

$$
\begin{aligned}
& \text { 23. } 16 x^{2}-24 x+9=\frac{(4 x-3)^{2}}{(4 x)^{2}-(2)(4 x)(3)+3^{2}}
\end{aligned}
$$

Good luck on your homework !!

$$
(3 x)^{2}-(2)(3 x)(1)+1^{2}
$$

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{aligned}
$$

