Algebra I Lesson #2 Unit 11 Class Worksheet #2 For Worksheets #3 - #6

Consider the following multiplication problems.

Consider the following multiplication problems.

(2x+5)(3x+4) =

Consider the following multiplication problems.

(2x+5)(3x+4) =

(5x+2)(x+4) =

Consider the following multiplication problems.

(2x+5)(3x+4) =

(5x+2)(x+4) =

Consider the following multiplication problems.

(2x+5)(3x+4) =

(5x+2)(x+4) =

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) =$$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2$

(5x+2)(x+4) =

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 +$$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x$

(5x+2)(x+4) =

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x$$

$$(5x+2)(x+4) =$$

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x +$$

(5x+2)(x+4) =

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x + 15x$$

$$(5x+2)(x+4) =$$

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x + 15x$$

(5x+2)(x+4) =

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x + 15x +$$

(5x+2)(x+4) =

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20$$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x+5)(3x+4) = 6x^2 + 8x + 15x + 20$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 =$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^{2} + 8x + 15x + 20 =$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x+5)(3x+4) = 6x^2 + 8x + 15x + 20 = 6x^2$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^{2} + 8x + 15x + 20 = 6x^{2} + 8x^{2} + 15x + 20 = 6x^{2} + 15x^{2} + 20 = 6x^{2} + 15x^{2} + 15x^{2}$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^{2} + 8x + 15x + 20 = 6x^{2} + 23x$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^{2} + 8x + 15x + 20 = 6x^{2} + 23x + 15x^{2}$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^{2} + 8x + 15x + 20 = 6x^{2} + 23x + 20$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

(5x+2)(x+4) =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) =$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 +$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x +$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x +$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

 $(5x+2)(x+4) = 5x^2 + 20x + 2x + 8$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x + 8 =$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x + 8 =$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x + 8 = 5x^2$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 20x + 2x + 2x + 8 = 5x^2 + 20x + 2x + 2x + 8 = 5x^2 + 20x + 2x + 20x + 20x$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

 $(5x + 2)(x + 4) = 5x^{2} + 20x + 2x + 8 = 5x^{2} + 22x$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

 $(5x + 2)(x + 4) = 5x^{2} + 20x + 2x + 8 = 5x^{2} + 22x + 8$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^2$$

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^2$$

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(\mathbf{ax} + \mathbf{b})(\mathbf{cx} + \mathbf{d}) = \mathbf{acx}^2 +$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

 $(ax + b)(cx + d) = acx^2 + adx$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

 $(ax + b)(cx + d) = acx^2 + adx$

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + adx +$$

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + adx + bcx$$

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^2 + adx + bcx$$

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + adx + bcx +$$

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + adx + bcx + bd$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

(ax + b)(cx + d) = acx² + adx + bcx + bd

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

(ax + b)(cx + d) = acx² + adx + bcx + bd =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

(ax + b)(cx + d) = acx² + adx + bcx + bd =

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

(ax + b)(cx + d) = acx² + adx + bcx + bd = acx²

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + adx + bcx + bd = acx2$$

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + adx + bcx + bd = acx2$$

x is a factor of both terms

A 15 A TACLUT UT DULLI LET 1115.

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + adx + bcx + bd = acx2$$

x is a factor of both terms.
'Factor out' the x.

Consider the following multiplication problems.

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

 $(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

 $(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

(ax + b)(cx + d) = acx² + adx + bcx + bd = acx² + (ad + bc)x

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

$$(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

 $(ax + b)(cx + d) = acx^{2} + adx + bcx + bd = acx^{2} + (ad + bc)x + bd = acx^{2} +$

Consider the following multiplication problems.

 $(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$

 $(5x + 2)(x + 4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$

(ax + b)(cx + d) = acx² + adx + bcx + bd = acx² + (ad + bc)x + bd

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

 $(ax + b)(cx + d) = acx^{2} + adx + bcx + bd = acx^{2} + (ad + bc)x + bd$

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 8x + 15x + 20 = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 20x + 2x + 8 = 5x^2 + 22x + 8$$

 $(ax + b)(cx + d) = acx^{2} + adx + bcx + bd = acx^{2} + (ad + bc)x + bd$

We want to find a connection between the original problems and the final answers.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

We want to find a connection between the original problems and the final answers.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

The problems involve multiplying two binomials

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{ax} + \mathbf{b})(\mathbf{cx} + \mathbf{d}) = \mathbf{acx}^2 + (\mathbf{ad} + \mathbf{bc})\mathbf{x} + \mathbf{bd}$$

The problems involve multiplying two binomials of the form ax + b

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{ax} + \mathbf{b})(\mathbf{cx} + \mathbf{d}) = \mathbf{acx}^2 + (\mathbf{ad} + \mathbf{bc})\mathbf{x} + \mathbf{bd}$$

The problems involve multiplying two binomials of the form ax + b and cx + d.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

The problems involve multiplying two binomials of the form ax + b and cx + d.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = \frac{6x^2}{6x^2} + 23x + 20$$

$$(5x+2)(x+4) = \frac{5x^2}{5x^2} + 22x + 8$$

$$(ax + b)(cx + d) = \frac{acx^2}{acx^2} + (ad + bc)x + bd$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = \frac{6x^2}{6x^2} + 23x + 20$$

$$(5x+2)(x+4) = \frac{5x^2}{5x^2} + 22x + 8$$

$$(ax + b)(cx + d) = \frac{acx^2}{acx^2} + (ad + bc)x + bd$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms.

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = \frac{6x^2}{6x^2} + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{ax} + \mathbf{b})(\mathbf{cx} + \mathbf{d}) = \mathbf{acx^2} + (\mathbf{ad} + \mathbf{bc})\mathbf{x} + \mathbf{bd}$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms. In each case the last term is a constant.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms. In each case the last term is a constant.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms. In each case the last term is a constant. This is simply the product of the two constants.

Consider the following multiplication problems.

$$(2x + 5)(3x + 4) = 6x^2 + 23x + 20$$

$$(5x + 2)(x + 4) = 5x^2 + 22x + 8$$

$$(\mathbf{ax} + \mathbf{b})(\mathbf{cx} + \mathbf{d}) = \mathbf{acx}^2 + (\mathbf{ad} + \mathbf{bc})\mathbf{x} + \mathbf{bd}$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms. In each case the last term is a constant. This is simply the product of the two constants.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms. In each case the last term is a constant. This is simply the product of the two constants.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms. In each case the last term is a constant. This is simply the product of the two constants. The 'middle term' is more complex.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms. In each case the last term is a constant. This is simply the product of the two constants. The 'middle term' is more complex.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

The problems involve multiplying two binomials of the form ax + b and cx + d. The answers are all trinomials. In each case the first term of the answer is an x^2 -term. This term is simply the product of the two x-terms. In each case the last term is a constant. This is simply the product of the two constants. The 'middle term' is more complex.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

Consider the following multiplication problems.

$$8x$$

$$(2x + 5)(3x + 4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{ax} + \mathbf{b})(\mathbf{cx} + \mathbf{d}) = \mathbf{acx}^2 + (\mathbf{ad} + \mathbf{bc})\mathbf{x} + \mathbf{bd}$$

Consider the following multiplication problems.

$$8x$$

$$(2x + 5)(3x + 4) = 6x^{2} + 23x + 20$$

$$20x$$

$$(5x + 2)(x + 4) = 5x^{2} + 22x + 8$$

$$(\mathbf{ax} + \mathbf{b})(\mathbf{cx} + \mathbf{d}) = \mathbf{acx}^2 + (\mathbf{ad} + \mathbf{bc})\mathbf{x} + \mathbf{bd}$$

Consider the following multiplication problems.

$$8x$$

(2x + 5)(3x + 4) = 6x² + 23x + 20
$$20x$$

(5x + 2)(x + 4) = 5x² + 22x + 8
adx
(ax + b)(cx + d) = acx² + (ad + bc)x + bd

Consider the following multiplication problems.

$$8x$$

(2x + 5)(3x + 4) = 6x² + 23x + 20
$$20x$$

(5x + 2)(x + 4) = 5x² + 22x + 8
adx
(ax + b)(cx + d) = acx² + (ad + bc)x + bd

Consider the following multiplication problems.

$$8x$$

$$(2x + 5)(3x + 4) = 6x^{2} + 23x + 20$$

$$15x$$

$$20x$$

$$(5x + 2)(x + 4) = 5x^{2} + 22x + 8$$
adx

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

Consider the following multiplication problems.

Consider the following multiplication problems.

Consider the following multiplication problems.

$$(2x+5)(3x+4) = 6x^2 + 23x + 20$$

$$(5x+2)(x+4) = 5x^2 + 22x + 8$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

Perform the indicated operations.

1.
$$(x+2)(3x+4) =$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

 $(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

Algebra I Class Worksheet #2 Unit 11

Perform the indicated operations.

1.
$$(x+2)(3x+4) =$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

 $(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

Algebra I Class Worksheet #2 Unit 11

Perform the indicated operations.

1.
$$(x+2)(3x+4) =$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Algebra I Class Worksheet #2 Unit 11

Perform the indicated operations.

1.
$$(x + 2)(3x + 4) =$$

2.
$$(7x+1)(x-5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x+2)(3x+4) = 3x^2$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x+2)(3x+4) = 3x^2$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

1.
$$(x+2)(3x+4) = 3x^2$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$4x$$
1. $(x+2)(3x+4) = 3x^2$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$4x = \frac{4x}{1. (x+2)(3x+4)} = \frac{3x^2}{6x}$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = 1. (x + 2)(3x + 4) = 3x^2 + 6x$$

2.
$$(7x+1)(x-5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = 1. (x + 2)(3x + 4) = 3x^2 + 10x$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x+2)(3x+4) = 3x^2 + 10x$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

1.
$$(x+2)(3x+4) = 3x^2 + 10x$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x$$

2.
$$(7x+1)(x-5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x +$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = 1. (x + 2)(3x + 4) = 3x^2 + 10x + 8$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

2.
$$(7x + 1)(x - 5) =$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

2. $(7x + 1)(x - 5) =$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

2. $(7x + 1)(x - 5) =$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = -3x^{2} + 10x + 8$$
1. $(x + 2)(3x + 4) = -3x^{2} + 10x + 8$
2. $(7x + 1)(x - 5) = -3x^{2} + 10x + 8$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = 1. (x + 2)(3x + 4) = 3x^{2} + 10x + 8$$

$$2. (7x + 1)(x - 5) = 7x^{2}$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

2. $(7x + 1)(x - 5) = 7x^2$

3.
$$(4x-5)(x+3) =$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

1.
$$(x+2)(3x+4) = 3x^2 + 10x + 8$$

2. $(7x+1)(x-5) = 7x^2$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^{2} + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^{2}$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^{2} + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^{2}$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^{2} + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^{2} - 1x$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

-35x
2. $(7x + 1)(x - 5) = 7x^2 - 34x$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = -\frac{4x}{3x^2 + 10x + 8}$$
1. $(x + 2)(3x + 4) = -\frac{3x^2 + 10x + 8}{5x}$
2. $(7x + 1)(x - 5) = -\frac{7x^2 - 34x}{5x}$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = -\frac{4x}{3x^2 + 10x + 8}$$
1. $(x + 2)(3x + 4) = -\frac{3x^2 + 10x + 8}{6x}$
2. $(7x + 1)(x - 5) = -\frac{7x^2 - 34x}{5x}$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

2. $(7x + 1)(x - 5) = 7x^2 - 34x$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = 1. (x + 2)(3x + 4) = 3x^{2} + 10x + 8$$

$$2. (7x + 1)(x - 5) = 7x^{2} - 34x - 5$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = (x + 2)(3x + 4) = 3x^{2} + 10x + 8$$

$$(7x + 1)(x - 5) = 7x^{2} - 34x - 5$$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^{2} + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^{2} - 34x - 5$

3.
$$(4x-5)(x+3) =$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^{2} + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^{2} - 34x - 5$

3.
$$(4x-5)(x+3) =$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^2 + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) = 4x^2$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) = 4x^2$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^2 + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) = 4x^2$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x = 3x^{2} + 10x + 8$$
1. $(x + 2)(3x + 4) = 3x^{2} + 10x + 8$

$$-35x = 7x^{2} - 34x - 5$$
2. $(7x + 1)(x - 5) = 7x^{2} - 34x - 5$

$$12x = 12x$$
3. $(4x - 5)(x + 3) = 4x^{2}$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$
 $1x$
3. $(4x - 5)(x + 3) = 4x^2$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$
 $1x$
3. $(4x - 5)(x + 3) = 4x^2 + 5x$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$
 $1x$
3. $(4x - 5)(x + 3) = 4x^2 + 7x$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) = 4x^2 + 7x$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^{2} + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^{2} - 34x - 5$

3.
$$(4x-5)(x+3) = 4x^2 + 7x$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) = 4x^2 + 7x$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^2 + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) = 4x^2 + 7x - 4x^2 + 7x^2 + 7x - 4x^2 + 7x^2 + 7x^2 - 4x^2 + 7x^2 - 4x^2 + 7x^2 - 4x^2 + 7x^2 + 7x^2 - 4x^2 + 7x^2 + 7x^2 - 4x^2 + 7x^2 + 7$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$4x$$
1. $(x + 2)(3x + 4) = 3x^2 + 10x + 8$

$$-35x$$
2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$

3.
$$(4x-5)(x+3) = 4x^2 + 7x - 15$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

1.
$$(x + 2)(3x + 4) = 3x^{2} + 10x + 8$$

 $-35x$
2. $(7x + 1)(x - 5) = 7x^{2} - 34x - 5$
 $12x$
3. $(4x - 5)(x + 3) = 4x^{2} + 7x - 15$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

1.
$$(x + 2)(3x + 4) = 3x^2 + 10x + 8$$

2. $(7x + 1)(x - 5) = 7x^2 - 34x - 5$
1. $(4x - 5)(x + 3) = 4x^2 + 7x - 15$

1.
$$(x+2)(3x+4) = 3x^2 + 10x + 8$$

2.
$$(7x + 1)(x - 5) = \underline{7x^2 - 34x - 5}$$

3.
$$(4x-5)(x+3) = 4x^2 + 7x - 15$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) =$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

Perform the indicated operations.

4.
$$(x-6)(2x-5) =$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

Perform the indicated operations.

4.
$$(x-6)(2x-5) =$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Perform the indicated operations.

4.
$$(x-6)(2x-5) =$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Perform the indicated operations.

4.
$$(x-6)(2x-5) = 2x^2$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

4.
$$(x-6)(2x-5) = 2x^2$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$-5x = 2x^2$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - \frac{-5x}{-12x}$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x +$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

5.
$$(3x+4)(2x+5) =$$

6.
$$(5x-3)(3x+1) =$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) =$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) =$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) =$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

5. $(3x+4)(2x+5) = 6x^2$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) = 6x^2$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) = 6x^2$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $15x$
5. $(3x+4)(2x+5) = 6x^2$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = \underline{2x^2 - 17x + 30}$$

-12x
5. $(3x+4)(2x+5) = \underline{6x^2}$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
5. $(3x+4)(2x+5) = 6x^2 + 8x$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
5. $(3x+4)(2x+5) = 6x^2 + 23x$
 $8x$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) = 6x^2 + 23x$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) = 6x^2 + 23x$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

5. $(3x+4)(2x+5) = 6x^2 + 23x$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) = 6x^2 + 23x +$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

-12x
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = \underline{2x^2 - 17x + 30}$$

 $-12x$
5. $(3x+4)(2x+5) = \underline{6x^2 + 23x + 20}$

6.
$$(5x-3)(3x+1) =$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) =$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$
 $8x$
6. $(5x-3)(3x+1) =$

 $(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) = 15x^2$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) = 15x^2$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) = 15x^2$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$
 $8x$
6. $(5x-3)(3x+1) = 15x^2$

 $(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$
 $8x$
6. $(5x-3)(3x+1) = 15x^2$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$
 $8x$
6. $(5x-3)(3x+1) = 15x^2 - 25x^2$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$
 $8x$
6. $(5x-3)(3x+1) = 15x^2 - 4x$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) = 15x^2 - 4x$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) = 15x^2 - 4x$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) = 15x^2 - 4x$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) = 15x^2 - 4x - 10x^2 - 10x^2$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$

6.
$$(5x-3)(3x+1) = 15x^2 - 4x - 3$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

 $-12x$
 $15x$
5. $(3x+4)(2x+5) = 6x^2 + 23x + 20$
 $8x$
6. $(5x-3)(3x+1) = 15x^2 - 4x - 3$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

4.
$$(x-6)(2x-5) = \underline{2x^2 - 17x + 30}$$

-12x
15x
5. $(3x+4)(2x+5) = \underline{6x^2 + 23x + 20}$
8x
5x
6. $(5x-3)(3x+1) = \underline{15x^2 - 4x - 3}$

 $(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

4.
$$(x-6)(2x-5) = 2x^2 - 17x + 30$$

5.
$$(3x+4)(2x+5) = 6x^2 + 23x + 20$$

6.
$$(5x-3)(3x+1) = 15x^2 - 4x - 3$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

Perform the indicated operations.

7.
$$(6x+1)(3x-4) =$$

8.
$$(3x-5)(5x-6) =$$

 $(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

7.
$$(6x + 1)(3x - 4) =$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

Perform the indicated operations.

7.
$$(6x + 1)(3x - 4) =$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Perform the indicated operations.

7.
$$(6x + 1)(3x - 4) =$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Perform the indicated operations.

7.
$$(6x + 1)(3x - 4) = 18x^2$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$-24x = -24x =$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

$$-24x = -24x =$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$-24x = -24x =$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x$$

8.
$$(3x-5)(5x-6) =$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

$$-24x = -24x =$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8.
$$(3x-5)(5x-6) =$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$
8. $(3x - 5)(5x - 6) =$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$
8. $(3x - 5)(5x - 6) =$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$
8. $(3x - 5)(5x - 6) =$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8. $(3x - 5)(5x - 6) = 15x^2$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8.
$$(3x-5)(5x-6) = 15x^2$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8. $(3x - 5)(5x - 6) = 15x^2$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

$$-24x = -24x =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$

$$-18x$$
8. $(3x - 5)(5x - 6) = 15x^2$

$$-25x$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$

$$-18x$$
8. $(3x - 5)(5x - 6) = 15x^2 - \frac{15x^2 - 15x^2}{-25x}$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$

$$-18x$$
8. $(3x - 5)(5x - 6) = 15x^2 - 43x$

$$-25x$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8.
$$(3x-5)(5x-6) = 15x^2 - 43x$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8.
$$(3x-5)(5x-6) = 15x^2 - 43x$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$
8. $(3x - 5)(5x - 6) = 15x^2 - 43x$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$
8. $(3x - 5)(5x - 6) = 15x^2 - 43x + 15x^2 - 1$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

$$-24x$$
7. $(6x + 1)(3x - 4) = 18x^2 - 21x - 4$
8. $(3x - 5)(5x - 6) = 15x^2 - 43x + 30$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

-18x
8. $(3x - 5)(5x - 6) = 15x^2 - 43x + 30$
-25x

$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

 $3x - 18x$
8. $(3x - 5)(5x - 6) = 15x^2 - 43x + 30$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

7.
$$(6x + 1)(3x - 4) = 18x^2 - 21x - 4$$

8.
$$(3x-5)(5x-6) = 15x^2 - 43x + 30$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Perform the indicated operations.

9. (x + 10)(3x - 2) =

10. (7x+3)(x+5) =

 $(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

9.
$$(x + 10)(3x - 2) =$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Perform the indicated operations.

9.
$$(x + 10)(3x - 2) =$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) =$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Algebra I Class Worksheet #2 Unit 11

Perform the indicated operations.

$$-2x = -2x = 3x^2$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

Algebra I Class Worksheet #2 Unit 11

9.
$$(x + 10)(3x - 2) = 3x^2$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 30x^2$$

10.
$$(7x + 3)(x + 5) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x$$

10.
$$(7x+3)(x+5) =$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 10x^2$$

10.
$$(7x + 3)(x + 5) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

$$\begin{array}{r} -2x \\ 9. \quad (x+10)(3x-2) = \underline{3x^2 + 28x - 20} \\ 30x \end{array}$$

10.
$$(7x+3)(x+5) =$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10.
$$(7x+3)(x+5) =$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

 $30x^2 = 10. (7x + 3)(x + 5) = 10.$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10. $(7x + 3)(x + 5) =$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$\begin{array}{r} -2x \\ 9. \quad (x+10)(3x-2) = \underline{3x^2 + 28x - 20} \\ 30x \end{array}$$

$$10. \quad (7x+3)(x+5) = \underline{\qquad}$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10. $(7x + 3)(x + 5) = 7x^2$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

 $30x^2 = 7x^2$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10. $(7x + 3)(x + 5) = 7x^2$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

 $30x^{35x}$
10. $(7x + 3)(x + 5) = 7x^2$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

 $30x$
 $35x$
10. $(7x + 3)(x + 5) = 7x^2$
 $3x$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$\begin{array}{r} -2x \\ 9. \quad (x+10)(3x-2) = \underline{3x^2 + 28x - 20} \\ 30x \\ 35x \\ 10. \quad (7x+3)(x+5) = \underline{7x^2 + 3x} \\ 3x \end{array}$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$\begin{array}{r} -2x \\ 9. \quad (x+10)(3x-2) = \underline{3x^2 + 28x - 20} \\ 30x \\ 30x \\ 10. \quad (7x+3)(x+5) = \underline{7x^2 + 38x} \\ 3x \end{array}$$

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10.
$$(7x+3)(x+5) = 7x^2 + 38x$$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

 $30x$
10. $(7x + 3)(x + 5) = 7x^2 + 38x$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10. $(7x + 3)(x + 5) = 7x^2 + 38x$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10. $(7x + 3)(x + 5) = 7x^2 + 38x + 10$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10. $(7x + 3)(x + 5) = 7x^2 + 38x + 15$

$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

 $30x^{35x}$
10. $(7x + 3)(x + 5) = 7x^2 + 38x + 15$

$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

 $30x$
 $35x$
10. $(7x + 3)(x + 5) = 7x^2 + 38x + 15$

$$(\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d}) = \mathbf{a}\mathbf{c}\mathbf{x}^2 + (\mathbf{a}\mathbf{d} + \mathbf{b}\mathbf{c})\mathbf{x} + \mathbf{b}\mathbf{d}$$

9.
$$(x + 10)(3x - 2) = 3x^2 + 28x - 20$$

10.
$$(7x+3)(x+5) = 7x^2 + 38x + 15$$

$$(ax + b)(cx + d) = acx2 + (ad + bc)x + bd$$

Algebra I Unit 11 Factoring Trinomials - Type 2

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

$$8x^{2} - 26x - 45 = (2x - 9)(4x + 5)$$

 $\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

 $\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor $\exists ype 2$ ptrinomials.

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \exists ype 2¢ trinomials. These are trinomials where the leading coefficient is not 1.

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

$$8x^{2} - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \exists ype 2 ϕ trinomials. These are trinomials where the leading coefficient is not 1.

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \exists ype 2¢ trinomials. These are trinomials where the leading coefficient is not 1.

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

$$8x^{2} - 26x - 45 = (2x - 9)(4x + 5)$$

$$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$$

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

$$6x^2 - 25x + 14 = (3x - 2)(2x - 7)$$

$$8x^2 - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

$$8x^{2} - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

$$8x^{2} - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^2 - 25x + 14 = (3x - 2)(2x - 7)$$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

$$8x^2 - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$8x^{2} - 26x - 45 = (2x - 9)(4x + 5)$$

$$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$$

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

$$8x^{2} - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm type 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work.

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !!

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product

$$\frac{14x}{6x^2 + 29x + 35} = (2x + 5)(3x + 7)$$

$$\frac{25x}{20x^2 + 21x - 5} = (5x - 1)(4x + 5)$$

$$\frac{14x}{6x^2 - 25x + 14} = (3x - 2)(2x - 7)$$

$$\frac{10x}{8x^2 - 26x - 45} = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product

$$\frac{14x}{6x^2 + 29x + 35} = (2x + 5)(3x + 7)$$

$$\frac{25x}{20x^2 + 21x - 5} = (5x - 1)(4x + 5)$$

$$\frac{14x}{6x^2 - 25x + 14} = (3x - 2)(2x - 7)$$

$$\frac{10x}{8x^2 - 26x - 45} = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2øtrinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product

$$\frac{14x}{6x^2 + 29x + 35} = (2x + 5)(3x + 7)$$

$$\frac{6x^2 - 25x + 14}{5x} = (3x - 2)(2x - 7)$$

$$\frac{25x}{-4x}$$

$$\frac{25x}{-4x} = (5x - 1)(4x + 5)$$

$$\frac{8x^2 - 26x - 45}{-36x} = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product and make sure they add up to the middle term.)

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^2 - 25x + 14 = (3x - 2)(2x - 7)$$

$$20x^2 + 21x - 5 = (5x - 1)(4x + 5)$$

$$8x^2 - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product and make sure they add up to the middle term.)

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

$$8x^2 - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2øtrinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product and make sure they add up to the middle term.)

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

$$-21x = -25x + 14 = (3x - 2)(2x - 7)$$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

$$8x^2 - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2øtrinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product and make sure they add up to the middle term.)

$$6x^{2} + 29x + 35 = (2x + 5)(3x + 7)$$

$$6x^{2} - 25x + 14 = (3x - 2)(2x - 7)$$

$$20x^{2} + 21x - 5 = (5x - 1)(4x + 5)$$

$$8x^{2} - 26x - 45 = (2x - 9)(4x + 5)$$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product and make sure they add up to the middle term.)

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product and make sure they add up to the middle term.)

$$6x^2 + 29x + 35 = (2x + 5)(3x + 7)$$

 $6x^2 - 25x + 14 = (3x - 2)(2x - 7)$

 $20x^2 + 21x - 5 = (5x - 1)(4x + 5)$

 $8x^2 - 26x - 45 = (2x - 9)(4x + 5)$

$\mathbf{E}\mathbf{x}^2 + \mathbf{F}\mathbf{x} + \mathbf{G} = (\mathbf{a}\mathbf{x} + \mathbf{b})(\mathbf{c}\mathbf{x} + \mathbf{d})$

The purpose of this part of this lesson is to demonstrate how to factor \pm ype 2¢trinomials. These are trinomials where the leading coefficient is not 1. In the last equation above, there are two important relationships that must be understood: (1) **ac** = **E** and (2) **bd** = **G**. In many problems, there will be several values of a, b, c, and d that may work. The correct combination is the one in which **ad** + **bc** = **F** !! (You find the outer product and the inner product and make sure they add up to the middle term.) Good luck.

Algebra I Class Worksheet #2 Unit 11 Factor each of the following.

11. $2x^2 + 7x + 5 =$

12. $4x^2 + 23x + 15 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

Algebra I Class Worksheet #2 Unit 11

Factor each of the following.

11. $2x^2 + 7x + 5 =$

12. $4x^2 + 23x + 15 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Algebra I Class Worksheet #2 Unit 11

Factor each of the following.

11.
$$2x^2 + 7x + 5 = (2x)(x)$$

12. $4x^2 + 23x + 15 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Algebra I Class Worksheet #2 Unit 11 Factor each of the following.

11.
$$2x^2 + 7x + 5 = (2x + 5)(x + 1)$$

12.
$$4x^2 + 23x + 15 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Algebra I Class Worksheet #2 Unit 11

Factor each of the following.

11.
$$2x^2 + 7x + 5 = (2x + 5)(x + 1)$$

12. $4x^2 + 23x + 15 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

11.
$$2x^2 + 7x + 5 = \frac{2x}{(2x+5)(x+1)}$$

12. $4x^2 + 23x + 15 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

11.
$$2x^2 + 7x + 5 = (2x + 5)(x + 1)$$

 $5x^{5x}$

12. $4x^2 + 23x + 15 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

11. $2x^2 + 7x + 5 = (2x + 5)(x + 1)$

12. $4x^2 + 23x + 15 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

11. $2x^2 + 7x + 5 = (2x + 5)(x + 1)$

12. $4x^2 + 23x + 15 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

> 11. $2x^2 + 7x + 5 = (2x + 5)(x + 1)$ 12. $4x^2 + 23x + 15 = (4x)(x)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

> 11. $2x^2 + 7x + 5 = (2x + 5)(x + 1)$ 12. $4x^2 + 23x + 15 = (4x + 3)(x + 5)$

13. $3x^2 + 7x + 2 =$ _____

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

11. $2x^2 + 7x + 5 = (2x + 5)(x + 1)$

12.
$$4x^2 + 23x + 15 = (4x + 3)(x + 5)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

> 11. $2x^2 + 7x + 5 = (2x + 5)(x + 1)$ 12. $4x^2 + 23x + 15 = (4x + 3)(x + 5)$ 3x

13. $3x^2 + 7x + 2 =$ ____

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

11. $2x^2 + 7x + 5 = (2x + 5)(x + 1)$

12.
$$4x^2 + 23x + 15 = (4x + 3)(x + 5))$$

3x

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

11. $2x^2 + 7x + 5 = (2x + 5)(x + 1)$

12.
$$4x^2 + 23x + 15 = (4x + 3)(x + 5)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

11.
$$2x^{2} + 7x + 5 = (2x + 5)(x + 1)$$

12. $4x^{2} + 23x + 15 = (4x + 3)(x + 5)$
13. $3x^{2} + 7x + 2 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

11.
$$2x^{2} + 7x + 5 = (2x + 5)(x + 1)$$

12. $4x^{2} + 23x + 15 = (4x + 3)(x + 5)$
13. $3x^{2} + 7x + 2 = (3x)(x)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

11.
$$2x^{2} + 7x + 5 = (2x + 5)(x + 1)$$

12. $4x^{2} + 23x + 15 = (4x + 3)(x + 5)$
13. $3x^{2} + 7x + 2 = (3x + 1)(x + 2)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

11.
$$2x^{2} + 7x + 5 = (2x + 5)(x + 1)$$

12. $4x^{2} + 23x + 15 = (4x + 3)(x + 5)$
13. $3x^{2} + 7x + 2 = (3x + 1)(x + 2)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

11.
$$2x^{2} + 7x + 5 = (2x + 5)(x + 1)$$

12. $4x^{2} + 23x + 15 = (4x + 3)(x + 5)$
13. $3x^{2} + 7x + 2 = (3x + 1)(x + 2)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

1x

11.
$$2x^2 + 7x + 5 = (2x + 5)(x + 1)$$

12.
$$4x^2 + 23x + 15 = (4x + 3)(x + 5)$$

13.
$$3x^2 + 7x + 2 = (3x + 1)(x + 2)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

11.
$$2x^{2} + 7x + 5 = (2x + 5)(x + 1)$$

12. $4x^{2} + 23x + 15 = (4x + 3)(x + 5)$
13. $3x^{2} + 7x + 2 = (3x + 1)(x + 2)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14. $4x^2 + 16x + 15 =$

15. $2x^2 - 5x + 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

14. $4x^2 + 16x + 15 =$

$$15. \quad 2x^2 - 5x + 3 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

14.
$$4x^2 + 16x + 15 = (2x)(2x)$$

$$15. \quad 2x^2 - 5x + 3 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14.
$$4x^2 + 16x + 15 = (2x + 5)(2x + 3)$$

$$15. \quad 2x^2 - 5x + 3 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

14.
$$4x^2 + 16x + 15 = (2x + 5)(2x + 3)$$

$$15. \quad 2x^2 - 5x + 3 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

Factor each of the following.

14.
$$4x^2 + 16x + 15 = (2x + 5)(2x + 3)$$

15. $2x^2 - 5x + 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

14.
$$4x^2 + 16x + 15 = (2x + 5)(2x + 3)$$

15. $2x^2 - 5x + 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14.
$$4x^2 + 16x + 15 = (2x + 5)(2x + 3)$$

$$15. \quad 2x^2 - 5x + 3 = _$$

16. $3x^2 - 10x + 3 =$ ____

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15. $2x^2 - 5x + 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15.
$$2x^2 - 5x + 3 = (2x)(x)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

14.
$$4x^2 + 16x + 15 = (2x + 5)(2x + 3)$$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

14.
$$4x^2 + 16x + 15 = (2x + 5)(2x + 3)$$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14.
$$4x^{2} + 16x + 15 = (2x + 5)(2x + 3)$$

15. $2x^{2} - 5x + 3 = (2x - 3)(x - 1)$
16. $3x^{2} - 10x + 3 = (3x)(x)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14.
$$4x^{2} + 16x + 15 = (2x + 5)(2x + 3)$$

15. $2x^{2} - 5x + 3 = (2x - 3)(x - 1)$
16. $3x^{2} - 10x + 3 = (3x - 1)(x - 3)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

16.
$$3x^2 - 10x + 3 = (3x - 1)(x - 3)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

16.
$$3x^2 - 10x + 3 = \underbrace{(3x - 1)(x - 3)}_{-1x}$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14. $4x^2 + 16x + 15 = (2x + 5)(2x + 3)$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

16.
$$3x^2 - 10x + 3 = (3x - 1)(x - 3)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

14.
$$4x^2 + 16x + 15 = (2x + 5)(2x + 3)$$

15.
$$2x^2 - 5x + 3 = (2x - 3)(x - 1)$$

16.
$$3x^2 - 10x + 3 = (3x - 1)(x - 3)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17. $5x^2 - 11x + 2 =$

$$18. \quad 5x^2 - 32x + 12 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

Algebra I Class Worksheet #2 Unit 11

Factor each of the following.

17. $5x^2 - 11x + 2 =$

18. $5x^2 - 32x + 12 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Algebra I Class Worksheet #2 Unit 11

Factor each of the following.

17.
$$5x^2 - 11x + 2 = (5x)(x)$$

$$18. \quad 5x^2 - 32x + 12 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

$$18. \quad 5x^2 - 32x + 12 = _$$

$$19. \quad 2x^2 + 3x - 5 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Algebra I Class Worksheet #2 Unit 11

Factor each of the following.

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

$$18. \quad 5x^2 - 32x + 12 = _$$

$$19. \quad 2x^2 + 3x - 5 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

$$18. \quad 5x^2 - 32x + 12 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

$$18. \quad 5x^2 - 32x + 12 = _$$

$$19. \quad 2x^2 + 3x - 5 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

$$18. \quad 5x^2 - 32x + 12 = _$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17. $5x^2 - 11x + 2 = (5x - 1)(x - 2)$

18. $5x^2 - 32x + 12 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

> 17. $5x^2 - 11x + 2 = (5x - 1)(x - 2)$ 18. $5x^2 - 32x + 12 = (5x)(x)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18. $5x^2 - 32x + 12 = (5x - 2)(x - 6)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18. $5x^2 - 32x + 12 = (5x - 2)(x - 6)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18. $5x^2 - 32x + 12 = (5x - 2)(x - 6)$
-2x

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

18.
$$5x^2 - 32x + 12 = (5x - 2)(x - 6)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18.
$$5x^2 - 32x + 12 = (5x - 2)(x - 6)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18. $5x^2 - 32x + 12 = (5x - 2)(x - 6)$
19. $2x^2 + 3x - 5 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18. $5x^2 - 32x + 12 = (5x - 2)(x - 6)$
19. $2x^2 + 3x - 5 = (2x)(x)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18. $5x^2 - 32x + 12 = (5x - 2)(x - 6)$
19. $2x^2 + 3x - 5 = (2x + 5)(x - 1)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18. $5x^2 - 32x + 12 = (5x - 2)(x - 6)$
19. $2x^2 + 3x - 5 = (2x + 5)(x - 1)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18.
$$5x^2 - 32x + 12 = (5x - 2)(x - 6)$$

19.
$$2x^2 + 3x - 5 = (2x + 5)(x - 1)$$

5x

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18.
$$5x^2 - 32x + 12 = (5x - 2)(x - 6)$$

19.
$$2x^2 + 3x - 5 = (2x + 5)(x - 1)$$

5x

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

17.
$$5x^2 - 11x + 2 = (5x - 1)(x - 2)$$

18. $5x^2 - 32x + 12 = (5x - 2)(x - 6)$

19.
$$2x^2 + 3x - 5 = (2x + 5)(x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

$$20. \quad 7x^2 + 19x - 6 = _$$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Algebra I Class Worksheet #2 Unit 11

Factor each of the following.

$$20. \quad 7x^2 + 19x - 6 =$$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^2 + 19x - 6 = (7x)(x)$$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^2 + 19x - 6 = (7x - 2)(x + 3)$$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Algebra I Class Worksheet #2 Unit 11

Factor each of the following.

20.
$$7x^2 + 19x - 6 = (7x - 2)(x + 3)$$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

20.
$$7x^2 + 19x - 6 = (7x - 2)(x + 3)$$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

20.
$$7x^2 + 19x - 6 = (7x - 2)(x + 3)$$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^2 + 19x - 6 = (7x - 2)(x + 3)$$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20. $7x^2 + 19x - 6 = (7x - 2)(x + 3)$

21.
$$3x^2 + x - 4 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

> 20. $7x^2 + 19x - 6 = (7x - 2)(x + 3)$ 21. $3x^2 + x - 4 = (3x)(x)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

> 20. $7x^2 + 19x - 6 = (7x - 2)(x + 3)$ 21. $3x^2 + x - 4 = (3x + 4)(x - 1)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

> 20. $7x^{2} + 19x - 6 = (7x - 2)(x + 3)$ -3x 21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

> 20. $7x^{2} + 19x - 6 = (7x - 2)(x + 3)$ -3x 21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$ 4x

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

20.
$$7x^{2} + 19x - 6 = (7x - 2)(x + 3)$$

-3x
21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$
4x

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^2 + 19x - 6 = (7x - 2)(x + 3)$$

21.
$$3x^2 + x - 4 = (3x + 4)(x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad ad_{x} + bc_{x} = Fx$$

20.
$$7x^{2} + 19x - 6 = (7x - 2)(x + 3)$$

21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$
22. $6x^{2} + 7x - 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^{2} + 19x - 6 = (7x - 2)(x + 3)$$

21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$
22. $6x^{2} + 7x - 3 = (2x)(3x)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^{2} + 19x - 6 = (7x - 2)(x + 3)$$

21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$
22. $6x^{2} + 7x - 3 = (2x + 3)(3x - 1)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^{2} + 19x - 6 = (7x - 2)(x + 3)$$

21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$
22. $6x^{2} + 7x - 3 = (2x + 3)(3x - 1)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^{2} + 19x - 6 = (7x - 2)(x + 3)$$

21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$
22. $6x^{2} + 7x - 3 = (2x + 3)(3x - 1)$
 $9x$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^{2} + 19x - 6 = (7x - 2)(x + 3)$$

21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$
22. $6x^{2} + 7x - 3 = (2x + 3)(3x - 1)$
9x

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

20.
$$7x^{2} + 19x - 6 = (7x - 2)(x + 3)$$

21. $3x^{2} + x - 4 = (3x + 4)(x - 1)$

22.
$$6x^2 + 7x - 3 = (2x + 3)(3x - 1)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

$$23. \quad 2x^2 - 5x - 25 =$$

24.
$$4x^2 - 4x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

 $23. \quad 2x^2 - 5x - 25 =$

$$24. \quad 4x^2 - 4x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x)(x)$$

$$24. \quad 4x^2 - 4x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

$$24. \quad 4x^2 - 4x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

$$24. \quad 4x^2 - 4x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

23.
$$2x^2 - 5x - 25 = \frac{-10x}{(2x + 5)(x - 5)}$$

24. $4x^2 - 4x - 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5))$$

24. $4x^2 - 4x - 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

24.
$$4x^2 - 4x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

24.
$$4x^2 - 4x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

24. $4x^2 - 4x - 3 = (2x - 3)(2x - 5)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

24.
$$4x^2 - 4x - 3 = (2x + 1)(2x - 3)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

24. $4x^2 - 4x - 3 = (2x + 1)(2x - 3)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

24. $4x^2 - 4x - 3 = (2x + 1)(2x - 3)$
24. $4x^2 - 4x - 3 = (2x + 1)(2x - 3)$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

24. $4x^2 - 4x - 3 = (2x + 1)(2x - 3)$
 $2x$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

23.
$$2x^2 - 5x - 25 = (2x + 5)(x - 5)$$

24.
$$4x^2 - 4x - 3 = (2x + 1)(2x - 3)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25. $10x^2 - 11x - 6 =$

26. $4x^2 - 11x - 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25. $10x^2 - 11x - 6 =$

$$26. \quad 4x^2 - 11x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x)(2x)$$

26.
$$4x^2 - 11x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

25.
$$10x^2 - 11x - 6 = \frac{(5x + 2)(2x - 3)}{4x}$$

26. $4x^2 - 11x - 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

Factor each of the following.

25.
$$10x^2 - 11x - 6 = \frac{(5x + 2)(2x - 3)}{4x}$$

26. $4x^2 - 11x - 3 =$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 =$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 = (4x)(x)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 = (4x + 1)(x - 3)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 = (4x + 1)(x - 3)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 = \frac{(4x + 1)(x - 3)}{1x}$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 = \frac{-12x}{(4x + 1)(x - 3)}$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26.
$$4x^2 - 11x - 3 = (4x + 1)(x - 3)$$

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$

25.
$$10x^2 - 11x - 6 = (5x + 2)(2x - 3)$$

26. $4x^2 - 11x - 3 = (4x + 1)(x - 3)$ Good luck on your homework !!

$$Ex^{2} + Fx + G = (ax + b)(cx + d)$$
$$E = ac \quad G = bd \qquad adx + bcx = Fx$$