Algebra I Lesson \#1 Unit 11 Class Worksheet \#1 For Worksheets \#1 \& \#2

Algebra I Unit 11 Factoring

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers.

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=\quad 35=\quad 91=
$$

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2) \quad 35=\quad 91=
$$

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=\quad 91=
$$

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5) \quad 91=
$$

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=
$$

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)
$$

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)(13)
$$

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)(13)
$$

The last example illustrates an important point.

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)(13)
$$

The last example illustrates an important point. Your ability to factor depends on your understanding of multiplication facts.

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)(13)
$$

The last example illustrates an important point. Your ability to factor depends on your understanding of multiplication facts. The first 2 problems are œ́asyô

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)(13)
$$

The last example illustrates an important point. Your ability to factor depends on your understanding of multiplication facts. The first 2 problems are đ́asyôbecause they involve common multiplications facts.

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)(13)
$$

The last example illustrates an important point. Your ability to factor depends on your understanding of multiplication facts. The first 2 problems are đ́asyôbecause they involve common multiplications facts. Factoring algebraic expressions

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)(13)
$$

The last example illustrates an important point. Your ability to factor depends on your understanding of multiplication facts. The first 2 problems are đ́asyôbecause they involve common multiplications facts. Factoring algebraic expressions is an important algebra skill.

Algebra I Unit 11 Factoring

To factor a whole number means to express the whole number as a product of 2 or more whole numbers. Here are some examples.

$$
6=(2)(3) \quad 35=(5)(7) \quad 91=(7)(13)
$$

The last example illustrates an important point. Your ability to factor depends on your understanding of multiplication facts. The first 2 problems are đ́asyôbecause they involve common multiplications facts. Factoring algebraic expressions is an important algebra skill. Each ớactoring patternôyou will learn will depend on a related ónultiplication patternô

Algebra I Unit 11 Factoring

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)= & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)= & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)= & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)= & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)= & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)= & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)= & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)= & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+ & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)= \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{l|l}
3(x+5)=3 x+15 & x(x+7)=x^{2} \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+ \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)= & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2} & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+ & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
\mathbf{3}(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 x+15=$
$\mathrm{x}^{2}+7 \mathrm{x}=$
$4 x^{2}+24 x=$
$20 x^{2}+45 x=$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 x+15=$
$\mathrm{x}^{2}+7 \mathrm{x}=$
$4 x^{2}+24 x=$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 x+15=$
$4 x^{2}+24 x=$

$$
\begin{aligned}
& x^{2}+7 x= \\
& 20 x^{2}+\mathbf{4 5 x}=
\end{aligned}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 x+15=$
$4 x^{2}+24 x=$

$$
\begin{aligned}
& \mathbf{x}^{2}+7 x= \\
& 20 x^{2}+\mathbf{4 5 x}=
\end{aligned}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 x+15=$
$4 x^{2}+24 x=$

$$
\begin{aligned}
& \mathbf{x}^{2}+7 x= \\
& 20 x^{2}+\mathbf{4 5 x}=
\end{aligned}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 x+15=$
$4 x^{2}+24 x=$

$$
\begin{aligned}
& x^{2}+7 x= \\
& 20 x^{2}+\mathbf{4 5 x}=
\end{aligned}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
\mathbf{3}(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 x+15=$
$4 x^{2}+24 x=\quad 20 x^{2}+45 x=$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 x+15=$
$4 x^{2}+24 x=$

$$
\begin{aligned}
& x^{2}+7 x= \\
& 20 x^{2}+\mathbf{4 5 x}=
\end{aligned}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$\mathbf{3 x}+15=$	$x^{2}+7 x=$
$4 x^{2}+\mathbf{2 4 x}=$	$20 x^{2}+\mathbf{4 5 x}=$
	$A B+A C=A(B+C)$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$\mathbf{3 x}+\mathbf{1 5}=\mathbf{3}($	$\mathbf{x}^{2}+\mathbf{7 x}=$
$\mathbf{4} \mathbf{x}^{2}+\mathbf{2 4}=$	$\mathbf{2 0} \mathbf{x}^{2}+\mathbf{4 5} \mathrm{x}=$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$\mathbf{3 x}+\mathbf{1 5}=\mathbf{3}(\mathrm{x}$	$\mathbf{x}^{2}+\mathbf{7 x}=$
$\mathbf{4} \mathbf{x}^{2}+\mathbf{2 4 x}=$	$\mathbf{2 0} \mathrm{x}^{2}+\mathbf{4 5} \mathrm{x}=$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$\mathbf{3 x}+\mathbf{1 5}=\mathbf{3}(\mathrm{x}+$	$\mathbf{x}^{2}+\mathbf{7 x}=$
$\mathbf{4} \mathbf{x}^{2}+\mathbf{2 4} \mathbf{x}=$	$\mathbf{2 0} \mathrm{x}^{2}+\mathbf{4 5} \mathrm{x}=$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{array}{ll}
3 x+15=3(x+5) & x^{2}+7 x= \\
4 x^{2}+24 x= & 20 x^{2}+45 x=
\end{array}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 \mathrm{x}+15=3(\mathrm{x}+5)$
$\mathbf{x}^{2}+7 \mathrm{x}=$
$4 x^{2}+24 x=$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 \mathrm{x}+15=3(\mathrm{x}+5)$
$4 x^{2}+24 x=$

$$
\mathbf{x}^{2}+7 x=
$$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 \mathrm{x}+15=3(\mathrm{x}+5)$
$4 x^{2}+24 x=$

$$
x^{2}+7 x=x(
$$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 \mathrm{x}+15=3(\mathrm{x}+5)$
$4 x^{2}+24 x=$

$$
x^{2}+7 x=x(x
$$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 \mathrm{x}+15=3(\mathrm{x}+5)$
$4 x^{2}+24 x=$

$$
x^{2}+7 x=x(x+
$$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 \mathrm{x}+15=3(\mathrm{x}+5)$
$4 x^{2}+24 x=$

$$
x^{2}+7 x=x(x+7)
$$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{array}{ll}
\mathbf{3 x}+\mathbf{1 5}=\mathbf{3}(x+5) & \mathbf{x}^{2}+7 x=x(x+7) \\
\mathbf{4} x^{2}+24 x= & 20 x^{2}+\mathbf{4 5 x}=
\end{array}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.
$3 \mathrm{x}+15=3(\mathrm{x}+5)$
$4 x^{2}+24 x=$

$$
x^{2}+7 x=x(x+7)
$$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
3 x+15=3(x+5)
$$

$$
\mathbf{x}^{2}+7 x=x(x+7)
$$

$4 x^{2}+24 x=4 x($

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
3 x+15=3(x+5)
$$

$$
\mathbf{x}^{2}+7 x=x(x+7)
$$

$4 x^{2}+24 x=4 x(x$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
3 x+15=3(x+5)
$$

$$
x^{2}+7 x=x(x+7)
$$

$$
4 x^{2}+24 x=4 x\left(x+\quad 20 x^{2}+45 x=\right.
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
3 x+15=3(x+5)
$$

$$
x^{2}+7 x=x(x+7)
$$

$$
4 x^{2}+24 x=4 x(x+6)
$$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{array}{ll}
3 x+15=3(x+5) & x^{2}+7 x=x(x+7) \\
4 x^{2}+24 x=4 x(x+6) & 20 x^{2}+45 x=
\end{array}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{aligned}
& 3 x+15=3(x+5) \\
& 4 x^{2}+24 x=4 x(x+6)
\end{aligned}
$$

$$
x^{2}+7 x=x(x+7)
$$

$$
20 x^{2}+45 x=
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{aligned}
& 3 x+15=3(x+5) \\
& 4 x^{2}+24 x=4 x(x+6)
\end{aligned}
$$

$$
x^{2}+7 x=x(x+7)
$$

$$
20 x^{2}+45 x=5 x(
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{aligned}
& 3 x+15=3(x+5) \\
& 4 x^{2}+24 x=4 x(x+6)
\end{aligned}
$$

$$
x^{2}+7 x=x(x+7)
$$

$$
20 x^{2}+45 x=5 x(4 x
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{aligned}
& 3 x+15=3(x+5) \\
& 4 x^{2}+24 x=4 x(x+6)
\end{aligned}
$$

$$
\mathbf{x}^{2}+7 \mathbf{x}=\mathbf{x}(x+7)
$$

$$
20 x^{2}+45 x=5 x(4 x+
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{array}{ll}
3 x+15=3(x+5) & x^{2}+7 x=x(x+7) \\
4 x^{2}+24 x=4 x(x+6) & 20 x^{2}+45 x=5 x(4 x+9)
\end{array}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Unit 11 Factoring

Consider the following multiplication problems.

$$
\begin{array}{ll}
3(x+5)=3 x+15 & x(x+7)=x^{2}+7 x \\
4 x(x+6)=4 x^{2}+24 x & 5 x(4 x+9)=20 x^{2}+45 x
\end{array}
$$

The multiplication pattern used here is the distributive property for multiplication over addition. This is stated below.

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

These equations can be written as factoring problems.

$$
\begin{array}{ll}
3 x+15=3(x+5) & x^{2}+7 x=x(x+7) \\
4 x^{2}+24 x=4 x(x+6) & 20 x^{2}+45 x=5 x(4 x+9)
\end{array}
$$

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Notice that \mathbf{A} is the greatest common factor of the given expression. Also notice that the second factor is found when each term of the original expression is divided by \mathbf{A}.

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=$
2. $5(3 x-2)=$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=$
2. $5(3 x-2)=$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=$
2. $5(3 x-2)=$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=$ \square
2. $5(3 x-2)=$
3. $7(x-1)=$
\qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=6 x$ \downarrow
2. $5(3 x-2)=$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=6 x$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\quad 3(2 x+5)=6 x+$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=\mathbf{6 x + 1 5}$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3 (2 x}+5)=\underline{6 x+15}$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $5(3 x-2)=$ \qquad
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3 (2 x}+5)=\underline{6 x+15}$
2. $5(3 x-2)=$ \downarrow
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x$

3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $5(3 x-2)=15 x-$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$

3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3 (2 x}+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=$ \qquad
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=$

4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3.

$$
7(x-1)=7 x
$$

4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3.

$$
7(x-1)=7 x
$$

4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $5(3 x-2)=15 x-10$
3.

$$
7(x-1)=\quad 7 x-
$$

4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $5(3 x-2)=15 x-10$
3. $\quad 7(x-1)=\quad 7 x-7$
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3 (2 x}+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3 (2 x}+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $-3(3 x+5)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(\mathbf{2 x}+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $-3(3 x+5)=$

-

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\quad 3(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $\quad-3(3 x+5)=-9 x$

- \uparrow

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $\quad-3(3 x+5)=-9 x$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $3(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $-3(3 x+5)=-9 x+$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\quad 3(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $\quad-3(3 x+5)=-9 x+-15$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\quad 3(2 x+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$

Don't leave 'double signs'.
4. $-3(3 x+5)=-9 x+-15$

$$
\begin{aligned}
& \text { The Distributive Properties } \\
& \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3 (2 x}+5)=\underline{6 x+15}$
2. $\quad 5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$

Don't leave 'double signs'.
4. $-3(3 x+5)=-9 x-15$

$$
\begin{aligned}
& \text { The Distributive Properties } \\
& \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

1. $\mathbf{3}(2 x+5)=\underline{6 x+15}$
2. $5(3 x-2)=15 x-10$
3. $7(x-1)=\quad 7 x-7$
4. $-3(3 x+5)=-9 x-15$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $\quad x(x+3)=$
6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=$
6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } x(x+3)=
$$

\qquad
6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 5. } \quad x(x+3)= \\
& \bigsqcup
\end{aligned}
$$

6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}$
6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+$
6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $\quad x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=$ \qquad
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=$ 4
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $\quad x(x-5)=\quad x^{2}$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=x^{2}$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $\quad x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=x^{2}-$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=x^{2}-5 x$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=$ \qquad
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}$
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}$
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+$
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
5. $\quad x(x+3)=\quad x^{2}+3 x$
6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $5 x(7 x-3)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $\quad 5 x(7 x-3)=35 x^{2}$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $\quad 5 x(7 x-3)=35 x^{2}$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $\quad 5 x(7 x-3)=35 x^{2}-$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $5 x(7 x-3)=35 x^{2}-15 x$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 5. } \quad x(x+3)=\quad x^{2}+3 x
$$

6. $x(x-5)=\quad x^{2}-5 x$
7. $2 x(3 x+5)=6 x^{2}+10 x$
8. $5 x(7 x-3)=35 x^{2}-15 x$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
\qquad
10. $-3 x(2 x-1)=$ \qquad

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
9. $6 x(x+1)=$

$$
\text { 10. }-3 x(2 x-1)=
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
9. $6 x(x+1)=$

$$
\text { 10. }-3 x(2 x-1)=
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
9. $6 x(x+1)=$

$$
\underset{4}{6 x(x+1)}=
$$

10. $-3 x(2 x-1)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } \quad 6 x(x+1)=6 x^{2}
$$

10. $-3 x(2 x-1)=$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
9. $6 x(x+1)=6 x^{2}$

$$
\text { 10. }-3 x(2 x-1)=
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } \quad 6 x(x+1)=6 x^{2}+
$$

$$
\text { 10. }-3 x(2 x-1)=
$$

\qquad

$$
\begin{aligned}
& \text { The Distributive Properties } \\
& \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

$$
\text { 10. }-3 x(2 x-1)=
$$

\qquad

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

$$
\text { 10. }-3 x(2 x-1)=
$$

\qquad

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

$$
\text { 10. }-3 x(2 x-1)=
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

$$
\text { 10. }-3 x(2 x-1)=
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

$$
\text { 10. } \quad-3 x(2 x-1)=
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

10. $-3 x(2 x-1)=-6 x^{2}$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

10. $-3 x(2 x-1)=-6 x^{2}$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

$$
\text { 10. }-3 x(2 x-1)=-6 x^{2}-
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

10. $-3 x(2 x-1)=-6 x^{2}--3 x$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 9. } 6 x(x+1)=6 x^{2}+6 x
$$

$$
\text { 10. }-3 x(2 x-1)=-6 x^{2}+3 x
$$

The Distributive Properties

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \quad \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=$ \qquad
22. $5 x-20=$ \qquad
23. $18 x-24=$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=$ \qquad
22. $5 x-20=$ \qquad
23. $18 x-24=$

The Distributive Properties

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=$ \qquad
22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=$ \qquad
22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=$
22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=$
22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad

The Distributive Properties
 $$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=$
22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=\underline{2(}$
22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=\underline{2(}$
22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21.

22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21.

22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21.

22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=$ \qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

$$
5 x-20=
$$

\qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

$$
5 x-20=
$$

\qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

$$
5 x-20=
$$

\qquad
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

$$
5 x-20=5(
$$

23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

$$
5 x-20=5(
$$

23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22.

23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\mathbf{5 (x - 4)}$
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\mathbf{5 (x - 4)}$
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\mathbf{5 (x - 4)}$
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\mathbf{5 (x - 4)}$
23. $18 x-24=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\mathbf{5 (x - 4)}$
23.

$$
18 x-24=6(
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\mathbf{5 (x - 4)}$
23.

$$
18 x-24=6(
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\mathbf{5 (x - 4)}$
23.

$$
18 x-24=\frac{6(}{\uparrow}
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\mathbf{5 (x - 4)}$
23.

$$
18 x-24=\frac{6(3 x}{\uparrow}
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 21. } 8 x+6=2(4 x+3)
$$

22. $5 x-20=\underline{5(x-4)}$
23.

$$
18 x-24=\frac{6(3 x}{\uparrow}
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 21. } 8 x+6=2(4 x+3)
$$

22. $5 x-20=\underline{5(x-4)}$
23.

$$
18 x-24=\frac{6(3 x-}{\uparrow}
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\underline{5(x-4)}$
23.

$$
18 x-24=\frac{6(3 x-4)}{\uparrow}
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
21. $8 x+6=2(4 x+3)$
22. $5 x-20=\underline{5(x-4)}$
23. $18 x-24=\underline{6(3 x-4)}$
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=$ \qquad
25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=$ \qquad
25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=$ \qquad
25. $x^{2}+8 x=$ \qquad
26. $\quad x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=$ \qquad
25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=-9($
25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=\underline{-9(}$

When the leading coefficient is negative,

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=-9($

When the leading coefficient is negative,

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=-9($

When the leading coefficient is negative, it is customary to factor out a negative number.
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=-9($

When the leading coefficient is negative, it is customary to factor out a negative number.
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=-9($
25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=-9($
25. $x^{2}+8 x=$ \qquad
26. $\quad x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=\underline{-9(x-3)}$
25. $x^{2}+8 x=$ \qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

$$
x^{2}+8 x=
$$

\qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

$$
x^{2}+8 x=
$$

\qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

$$
x^{2}+8 x=
$$

\qquad
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

$$
x^{2}+8 x=
$$

26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

$$
x^{2}+8 x=
$$

26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

26.

$$
x^{2}-3 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

26.

$$
x^{2}-3 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

$$
x^{2}+8 x=\frac{x(x}{\uparrow}
$$

26.

$$
x^{2}-3 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=-9(x-3)$
25.

26.

$$
x^{2}-3 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25.

$$
x^{2}+8 x=\frac{x(x+8)}{\uparrow}
$$

26.

$$
x^{2}-3 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=-9(x-3)$
25. $x^{2}+8 x=\underline{x}(x+8)$
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\quad x(x+8)$
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\underline{x(x+8)}$
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\quad x(x+8)$
26. $x^{2}-3 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\quad x(x+8)$
26.

$$
x^{2}-3 x=\quad x(
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\quad x(x+8)$
26.

$$
x^{2}-3 x=\quad x(
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\quad x(x+8)$
26.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\quad x(x+8)$
26.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\quad x(x+8)$
26.

$$
x^{2}-3 x=\frac{\mathbf{x}(x}{\uparrow}
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 24. }-9 x+27=-9(x-3)
$$

25. $x^{2}+8 x=\quad x(x+8)$
26.

$$
\mathbf{x}^{2}-3 \mathbf{x}=\frac{\mathbf{x}(x-}{\uparrow}
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=\underline{-9(x-3)}$
25. $x^{2}+8 x=\underline{x}(x+8)$
26.

$$
x^{2}-3 x=\frac{x(x-3)}{\uparrow}
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
24. $-9 x+27=\underline{-9(x-3)}$
25. $x^{2}+8 x=\underline{x}(x+8)$
26. $\quad x^{2}-3 x=\quad x(x-3)$
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
27. $3 x^{2}-6 x=$
28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
27. $3 x^{2}-6 x=$ \qquad
28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
27. $3 x^{2}-6 x=$ \qquad
28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
27. $3 x^{2}-6 x=$ \qquad
28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(
$$

28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(
$$

28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28. $15 x^{2}+10 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

$$
15 x^{2}+10 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

$$
15 x^{2}+10 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

$$
15 x^{2}+10 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

$$
15 x^{2}+10 x=5 x(
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

$$
15 x^{2}+10 x=5 x(
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 27. } 3 x^{2}-6 x=3 x(x-2)
$$

28. $15 x^{2}+10 x=15 x(3 x+2)$
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
29. $-2 x^{2}+4 x=$
30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(
$$

When the leading coefficient is negative,
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(
$$

When the leading coefficient is negative,
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(
$$

When the leading coefficient is negative, it is customary to factor out a negative number.
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(
$$

When the leading coefficient is negative, it is customary to factor out a negative number.
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ ___ Make sure you understand this sign.
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30. $20 x^{2}-16 x=$ \qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

$$
20 x^{2}-16 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

$$
20 x^{2}-16 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

$$
20 x^{2}-16 x=
$$

\qquad
\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

$$
20 x^{2}-16 x=4 x(
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

$$
20 x^{2}-16 x=4 x(
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

30.

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 29. }-2 x^{2}+4 x=-2 x(x-2)
$$

$$
\text { 30. } \quad 20 x^{2}-16 x=4 x(5 x-4)
$$

\mathbf{A} is the greatest common factor of the terms of the expression. 'Factor out' \mathbf{A}. The second factor is determined by dividing each term of the expression by \mathbf{A}.

The Distributive Properties

$$
\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C}) \quad \mathbf{A B}-\mathbf{A C}=\mathbf{A}(\mathbf{B}-\mathbf{C})
$$

Factoring Trinomials - Type 1

Factoring Trinomials - Type 1

Consider the following multiplication problems.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)= \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)= \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)= \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2} \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2} \\
& \uparrow \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+ \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x \\
& \uparrow \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+ \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x \\
& \underbrace{}_{\uparrow} \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+ \\
& \underbrace{}_{1} \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15 \\
& \text { (} \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15= \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15= \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2} \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+ \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+ \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2} \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2} \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+ \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+ \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+ \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42 \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42= \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2} \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+ \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+ \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2} \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2} \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+ \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+ \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+ \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18 \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18 \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18= \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2} \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+ \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+ \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x
$$

Factoring Trinomial - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x+
$$

Factoring Trinomial - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x+a x
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x+a x
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x+a x+
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x+a x+a b
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+
\end{aligned}
$$

Use the distributive law for multiplication over addition to factor this expression.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+
$$

Use the distributive law for multiplication over addition to factor this expression.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18
\end{aligned}
$$

$$
(x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+(b+a)
$$

Use the distributive law for multiplication over addition to factor this expression.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+(b+a) x \\
& \text { (} x
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+(b+a) x
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+(b+a) x+
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+(b+a) x+a b
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+(b+a) x+a b
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+5 x+3 x+15=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+6 x+7 x+42=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+2 x+9 x+18=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+b x+a x+a b=x^{2}+(b+a) x+a b
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is \mathbf{x}^{2}.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is \mathbf{x}^{2}.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is \mathbf{x}^{2}.

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is x^{2}. The coefficient of the ' x-term' (the middle term) is the sum of the two constants ($b+a$).

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is x^{2}. The coefficient of the ' x-term' (the middle term) is the sum of the two constants ($b+a$).

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is x^{2}. The coefficient of the ' x-term' (the middle term) is the sum of the two constants ($b+a$).

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is x^{2}. The coefficient of the ' x-term' (the middle term) is the sum of the two constants $(b+a)$. The last term is the product of the two constants (ab).

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is x^{2}. The coefficient of the ' x-term' (the middle term) is the sum of the two constants $(b+a)$. The last term is the product of the two constants (ab).

Factoring Trinomials - Type 1

Consider the following multiplication problems.

$$
\begin{aligned}
& (x+3)(x+5)=x^{2}+8 x+15 \\
& (x+7)(x+6)=x^{2}+13 x+42 \\
& (x+9)(x+2)=x^{2}+11 x+18 \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Notice that these problems are similar. Each involves multiplying two binomials. The first term in each binomial is \underline{x}. The second term in each binomial is a constant. The answers are also similar. Each answer is a trinomial. The first term is x^{2}. The coefficient of the ' x-term' (the middle term) is the sum of the two constants $(b+a)$. The last term is the product of the two constants (ab).

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$
12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$
12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$
12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$
12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$
12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$
12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
\mathrm{a}=
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
a=3
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
a=3
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
a=3
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
\mathrm{a}=3 \mathrm{~b}=
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
a=3 \quad b=7
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
\mathrm{a}=3 \quad \mathrm{~b}=7
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
\mathrm{a}=3 \quad \mathrm{~b}=7
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=$

$$
a=3 \quad b=7
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=\underline{x^{2}}$

$$
\mathrm{a}=3 \quad \mathrm{~b}=7
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=\frac{x^{2}}{}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=\underline{x^{2}}$

$$
\mathrm{a}=3 \quad \mathrm{~b}=7
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=\underline{x^{2}}$

$$
a=3 \quad b=7
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}$

$$
\mathrm{a}=3 \quad \mathrm{~b}=7 \quad \mathrm{~b}+\mathrm{a}=
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=\quad x^{2}$

$$
a=3 \quad b=7 \quad b+a=10
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+$

$$
a=3 \quad b=7 \quad b+a=10
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x$

$$
a=3 \quad b=7 \quad b+a=10
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x$

$$
a=3 \quad b=7 \quad b+a=10
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x$

$$
a=3 \quad b=7 \quad b+a=10
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=\quad x^{2}+10 x+$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=\quad x^{2}+10 x+21$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=\quad x^{2}+10 x+21$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=\quad x^{2}+10 x+21$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=$ \qquad
13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\quad x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$
13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=$

$$
\mathrm{a}=
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\quad x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
a=8
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
a=8
$$

13. $(x-4)(x+9)=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
a=8
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
\mathrm{a}=8 \quad \mathrm{~b}=
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
\downarrow \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
a=8 \quad b=-5
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
\downarrow \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
a=8 \quad b=-5
$$

13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
a=8 \quad b=-5
$$

13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
a=8 \quad b=-5
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\quad x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\underline{x^{2}}$

$$
a=8 \quad b=-5
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\quad x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\underline{x^{2}}$

$$
a=8 \quad b=-5
$$

13. $(x-4)(x+9)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\quad x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\underline{x^{2}}$

$$
a=8 \quad b=-5
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\quad x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=$

$$
a=8 \quad b=-5 \quad b+a=
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 11. } \begin{aligned}
& (x+3)(x+7)=\frac{x^{2}+10 x+21}{b} \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=x^{2}$

$$
a=8 \quad b=-5 \quad b+a=3
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\underline{x^{2}+}$

$$
a=8 \quad b=-5 \quad b+a=3
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. } \begin{array}{l}
(x+3)(x+7)= \\
a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{array}
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x$

$$
a=8 \quad b=-5 \quad b+a=3
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. } \left.\begin{array}{rl}
(x+3)(x+7)
\end{array}\right)=\frac{x^{2}+10 x+21}{b} \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x$

$$
a=8 \quad b=-5 \quad b+a=3
$$

13. $(x-4)(x+9)=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x$

$$
a=8 \quad b=-5 \quad b+a=3
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. } \left.\begin{array}{rl}
(x+3)(x+7)
\end{array}\right)=\frac{x^{2}+10 x+21}{b} \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. } \left.\begin{array}{rl}
(x+3)(x+7)
\end{array}\right)=\frac{x^{2}+10 x+21}{b} \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+\mathbf{a b}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\frac{x^{2}+10 x+21}{} \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21 \\
& \text { 12. }(x+8)(x-5)=\frac{x^{2}+\mathbf{3 x}-\mathbf{4 0}}{} \\
& a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
\end{aligned}
$$

13. $(x-4)(x+9)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\frac{x^{2}+10 x+21}{} \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21 \\
& \text { 12. }(x+8)(x-5)=\frac{x^{2}+\mathbf{3 x}-\mathbf{4 0}}{} \\
& a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
\end{aligned}
$$

13. $(x-4)(x+9)=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=\quad x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. } \left.\left.\begin{array}{rl}
(x+3)(x+7)
\end{array}\right)=\frac{x^{2}+10 x+21}{b a b} \begin{array}{l}
a=3 \quad b=7
\end{array}\right)
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$ $\mathrm{a}=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. } \left.\left.\begin{array}{rl}
(x+3)(x+7)
\end{array}\right)=\frac{x^{2}+10 x+21}{b a b} \begin{array}{l}
a=3 \quad b=7
\end{array}\right)
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$ $a=-4$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. } \left.\left.\begin{array}{rl}
(x+3)(x+7)
\end{array}\right)=\frac{x^{2}+10 x+21}{b a b} \begin{array}{l}
a=3 \quad b=7
\end{array}\right)
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$ $a=-4$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. } \left.\left.\begin{array}{rl}
(x+3)(x+7)
\end{array}\right)=\frac{x^{2}+10 x+21}{b a b} \begin{array}{l}
a=3 \quad b=7
\end{array}\right)
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$ $a=-4$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

$$
a=-4 \quad b=
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

$$
a=-4 \quad b=9
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

$$
a=-4 \quad b=9
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

$$
a=-4 \quad b=9
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$

$$
a=-4 \quad b=9
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=x^{2}$

$$
a=-4 \quad b=9
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=x^{2}$ $a=-4 \quad b=9$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=x^{2}$

$$
a=-4 \quad b=9
$$

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$ \qquad $a=-4 \quad b=9 \quad b+a=$

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=$ \qquad $a=-4 \quad b=9 \quad b+a=5$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=\underline{x^{2}+}$

$$
a=-4 \quad b=9 \quad b+a=5
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=\underline{x^{2}+5 x}$

$$
a=-4 \quad b=9 \quad b+a=5
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=\quad x^{2}+5 x$

$$
a=-4 \quad b=9 \quad b+a=5
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=\quad x^{2}+5 x$

$$
a=-4 \quad b=9 \quad b+a=5
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=\quad x^{2}+5 x$

$$
a=-4 \quad b=9 \quad b+a=5 \quad a b=
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 11. }(x+3)(x+7)=x^{2}+10 x+21 \\
& a=3 \quad b=7 \quad b+a=10 \quad a b=21
\end{aligned}
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=\quad x^{2}+5 x$

$$
a=-4 \quad b=9 \quad b+a=5 \quad a b=-36
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x+21$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=\quad x^{2}+5 x-$ $a=-4 \quad b=9 \quad b+a=5 \quad a b=-36$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x+21$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=x^{2}+5 x-36$ $a=-4 \quad b=9 \quad b+a=5 \quad a b=-36$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x+21$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=x^{2}+5 x-36$ $a=-4 \quad b=9 \quad b+a=5 \quad a b=-36$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
11. $(x+3)(x+7)=x^{2}+10 x+21$

$$
a=3 \quad b=7 \quad b+a=10 \quad a b=21
$$

12. $(x+8)(x-5)=\quad x^{2}+3 x-40$

$$
a=8 \quad b=-5 \quad b+a=3 \quad a b=-40
$$

13. $(x-4)(x+9)=\quad x^{2}+5 x-36$ $a=-4 \quad b=9 \quad b+a=5 \quad a b=-36$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$
15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$
15. $(x+8)(x+2)=$
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$
15. $(x+8)(x+2)=$
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$
15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
\mathrm{a}=
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
a=-6
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
a=-6
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
a=-6
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
a=-6 b=
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
a=-6 \quad b=-3
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
a=-6 \quad b=-3
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
a=-6 \quad b=-3
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=$

$$
\mathrm{a}=-6 \mathrm{~b}=-3
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\underline{x^{2}}$

$$
a=-6 b=-3
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=\mathbf{x}^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\underline{x^{2}}$

$$
a=-6 \quad b=-3
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\underline{x^{2}}$

$$
a=-6 \quad b=-3
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=x^{2}$

$$
a=-6 \quad b=-3 \quad b+a=
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=x^{2}$

$$
a=-6 \quad b=-3 \quad b+a=-9
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=x^{2}-$

$$
a=-6 \quad b=-3 \quad b+a=-9
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=x^{2}-9 x$

$$
a=-6 \quad b=-3 \quad b+a=-9
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=x^{2}-9 x$

$$
a=-6 \quad b=-3 \quad b+a=-9
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=x^{2}-9 x$

$$
a=-6 \quad b=-3 \quad b+a=-9
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a} \begin{array}{l}
x=-6 \quad b=-3
\end{array} \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=8
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=8
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=8
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a} \begin{array}{l}
x=-6 \quad b=-3
\end{array} \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=$ \qquad

$$
\mathrm{a}=8 \quad \mathrm{~b}=
$$

16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
\downarrow \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$

$$
a=8 \quad b=2
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=8 \quad b=2
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=8 \quad b=2
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=8 \quad b=2
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=x^{2}$

$$
a=8 \quad b=2
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=8 \quad b=2
$$

16. $(x-7)(x+2)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=$ \qquad

$$
a=8 \quad b=2
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=x^{2}$

$$
a=8 \quad b=2 \quad b+a=
$$

16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=x^{2}$

$$
a=8 \quad b=2 \quad b+a=10
$$

16. $(x-7)(x+2)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=\underline{x^{2}+}$

$$
\mathrm{a}=8 \quad \mathrm{~b}=2 \quad \mathrm{~b}+\mathrm{a}=10
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=\quad x^{2}+10 x$

$$
\mathrm{a}=8 \quad \mathrm{~b}=2 \quad \mathrm{~b}+\mathrm{a}=10
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=\quad x^{2}+10 x$

$$
a=8 \quad b=2 \quad b+a=10
$$

16. $(x-7)(x+2)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=\quad x^{2}+10 x$

$$
a=8 \quad b=2 \quad b+a=10
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 14. } \begin{aligned}
& (x-6)(x-3)=\frac{x^{2}-9 x+18}{a}+-6 \quad b=-3 \quad b+a=-9 \quad a b=18
\end{aligned}
$$

15. $(x+8)(x+2)=x^{2}+10 x$

$$
\mathrm{a}=8 \quad \mathrm{~b}=2 \quad \mathrm{~b}+\mathrm{a}=10 \quad \mathrm{ab}=
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 14. }(x-6)(x-3)=\frac{x^{2}-9 x+18}{} \\
& a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18 \\
& \text { 15. } \\
& (x+8)(x+2)=\frac{x^{2}+10 x}{b+a=10 \quad a b=16} \\
& a=8 \quad b=2 \quad b
\end{aligned}
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 14. }(x-6)(x-3)=\frac{x^{2}-9 x+18}{} \\
& a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18 \\
& \text { 15. }(x+8)(x+2)=\frac{x^{2}+10 x+}{b+a=10 \quad a b=16} \\
& a=8 \quad b=2 \quad b
\end{aligned}
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 14. }(x-6)(x-3)=\frac{x^{2}-9 x+18}{} \\
& a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18 \\
& \text { 15. }(x+8)(x+2)=\frac{x^{2}+10 x+16}{b+a=10 \quad a b=16} \\
& a=8 \quad b=2 \quad b
\end{aligned}
$$

16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 14. }(x-6)(x-3)=\frac{x^{2}-9 x+18}{} \\
& a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18 \\
& \text { 15. }(x+8)(x+2)=\frac{x^{2}+10 x+16}{b+a=10 \quad a b=16} \\
& a=8 \quad b=2 \quad b
\end{aligned}
$$

16. $(x-7)(x+2)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$ \qquad

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$
$\mathrm{a}=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$ $a=-7$

$$
\begin{aligned}
& \text { Use this pattern. } \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$ $a=-7$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$ $a=-7$

$$
\begin{gathered}
\text { Use this pattern. } \\
\downarrow \\
(\mathrm{x}+\mathrm{a})(\mathrm{x}+\mathrm{b})=\mathrm{x}^{2}+(\mathrm{b}+\mathrm{a}) \mathrm{x}+\mathrm{ab}
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$
$\mathrm{a}=-7 \mathrm{~b}=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$
$a=-7 \quad b=2$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$
$a=-7 \quad b=2$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$
$a=-7 \quad b=2$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$
$a=-7 \quad b=2$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=x^{2}$
$a=-7 \quad b=2$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=x^{2}$
$a=-7 \quad b=2$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\underline{x^{2}}$
$a=-7 \quad b=2$

Use this pattern.
$(x+a)(x+b)=x^{2}+(b+a) x+a b$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$

$$
a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18
$$

15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$ \qquad

$$
a=-7 \quad b=2 \quad b+a=
$$

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$ \qquad

$$
a=-7 b=2 \quad b+a=-5
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$ \qquad

$$
a=-7 \quad b=2 \quad b+a=-5
$$

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\xrightarrow[x^{2}-5 x]{ }$

$$
a=-7 \quad b=2 \quad b+a=-5
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\xrightarrow[x^{2}-5 x]{ }$

$$
a=-7 \quad b=2 \quad b+a=-5
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\underline{x^{2}-5 x}$

$$
a=-7 \quad b=2 \quad b+a=-5
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\underline{x^{2}-5 x}$
$a=-7 \quad b=2 \quad b+a=-5 \quad a b=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\quad x^{2}-5 x$
$a=-7 \quad b=2 \quad b+a=-5 \quad a b=-14$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=$
$a=-7 \quad b=2 \quad b+a=-5 \quad a b=-14$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\quad x^{2}-5 x-14$
$a=-7 \quad b=2 \quad b+a=-5 \quad a b=-14$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=\quad x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\quad x^{2}-5 x-14$

$$
a=-7 \quad b=2 \quad b+a=-5 \quad a b=-14
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
14. $(x-6)(x-3)=\quad x^{2}-9 x+18$
$a=-6 \quad b=-3 \quad b+a=-9 \quad a b=18$
15. $(x+8)(x+2)=x^{2}+10 x+16$
$a=8 \quad b=2 \quad b+a=10 \quad a b=16$
16. $(x-7)(x+2)=\quad x^{2}-5 x-14$

$$
a=-7 \quad b=2 \quad b+a=-5 \quad a b=-14
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
17. $(x+3)(x-8)=$ \qquad
18. $(x-2)(x-6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
17. $(x+3)(x-8)=$
18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
17. $(x+3)(x-8)=$
18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
17. $(x+3)(x-8)=$
18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)= \\
& a=
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)= \\
& a=3
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 17. } \begin{aligned}
& (x+3)(x-8)= \\
& a=3
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)= \\
& a=3
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
17. $(x+3)(x-8)=$

$$
\mathrm{a}=3 \quad \mathrm{~b}=
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 17. } \begin{aligned}
& (x+3)(x-8)= \\
& a=3 \quad b=-8
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 17. } \begin{aligned}
& (x+3)(x-8)= \\
& a=3 \quad b=-8
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 17. } \begin{aligned}
& (x+3)(x-8)= \\
& a=3 \quad b=-8
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 17. } \begin{aligned}
& (x+3)(x-8)= \\
& a=3 \quad b=-8
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
(x+3)(x-8)= \\
a=3 \quad b=-8
\end{array} x^{2} \\
& a=2
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
(x+3)(x-8)= \\
a=3 \quad b=-8
\end{array} \mathbf{x}^{2} \\
& a=3
\end{aligned}
$$

18. $(x-2)(x-6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
(x+3)(x-8)= \\
a=3 \quad b=-8
\end{array} x^{2} \\
& a=2
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\frac{x^{2}}{b-3} \quad b=-8 \quad b+a=
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=x^{2} \\
& a=3 \quad b=-8 \quad b+a=-5
\end{aligned}
$$

18. $(x-2)(x-6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
(x+3)(x-8)=\frac{x^{2}-}{b} \\
a=3 \quad b=-8 \quad b+a=-5
\end{array} .
\end{aligned}
$$

18. $(x-2)(x-6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 17. } \begin{aligned}
& (x+3)(x-8)=\frac{x^{2}-\mathbf{5 x}}{} \\
& a=3 \quad b=-8 \quad b+a=-5
\end{aligned}
$$

18. $(x-2)(x-6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 17. } \begin{aligned}
& (x+3)(x-8)=\frac{x^{2}-\mathbf{5 x}}{} \\
& a=3 \quad b=-8 \quad b+a=-5
\end{aligned}
$$

18. $(x-2)(x-6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 17. } \begin{aligned}
& (x+3)(x-8)=\frac{x^{2}-\mathbf{5 x}}{} \\
& a=3 \quad b=-8 \quad b+a=-5
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+\mathbf{a b}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\quad x^{2}-5 x \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+\mathbf{a b}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\frac{x^{2}-\mathbf{5 x}}{} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\frac{x^{2}-5 x-}{b} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad \text { ab }=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\frac{x^{2}-\mathbf{5} x-24}{b} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+\mathbf{a b}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\frac{x^{2}-\mathbf{5} x-24}{b} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\quad x^{2}-5 x-24 \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=-\quad x^{2}-5 x-24 \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$
$\mathrm{a}=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$ $a=-2$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\quad x^{2}-5 x-24 \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$ $a=-2$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=$ $a=-2$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
18. $(x-2)(x-6)=$

$$
\mathrm{a}=-2 \mathrm{~b}=
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\quad x^{2}-5 x-24 \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
18. $(x-2)(x-6)=$

$$
a=-2 \quad b=-6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
18. $(x-2)(x-6)=$

$$
a=-2 \quad b=-6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\quad x^{2}-5 x-24 \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
18. $(x-2)(x-6)=$

$$
a=-2 \quad b=-6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\quad x^{2}-5 x-24 \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
18. $(x-2)(x-6)=$

$$
a=-2 \quad b=-6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
18. $(x-2)(x-6)=x^{2}$

$$
a=-2 \quad b=-6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
18. $(x-2)(x-6)=\underline{x^{2}}$

$$
a=-2 \quad b=-6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
18. $(x-2)(x-6)=\underline{x^{2}}$

$$
a=-2 \quad b=-6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=x^{2}$

$$
a=-2 \quad b=-6 \quad b+a=
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=x^{2}$

$$
a=-2 \quad b=-6 \quad b+a=-8
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=x^{2}-$
$a=-2 \quad b=-6 \quad b+a=-8$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=\quad x^{2}-8 x$

$$
a=-2 \quad b=-6 \quad b+a=-8
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\frac{x^{2}-5 x-24}{b} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad \text { ab }=-24
\end{aligned}
$$

18. $(x-2)(x-6)=\quad x^{2}-8 x$

$$
a=-2 \quad b=-6 \quad b+a=-8
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=\quad x^{2}-8 x$

$$
a=-2 \quad b=-6 \quad b+a=-8
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\quad x^{2}-5 x-24 \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=x^{2}-8 x$
$a=-2 \quad b=-6 \quad b+a=-8 \quad a b=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=-\quad x^{2}-5 x-24 \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24
\end{aligned}
$$

18. $(x-2)(x-6)=x^{2}-8 x$
$a=-2 \quad b=-6 \quad b+a=-8 \quad a b=12$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
(x+3)(x-8)= \\
a=3 \quad b=-8 \quad x^{2}-5 x-24 \\
b+a=-5 \quad \text { ab }=-24
\end{array}
\end{aligned}
$$

18. $(x-2)(x-6)=\quad x^{2}-8 x+$

$$
a=-2 \quad b=-6 \quad b+a=-8 \quad a b=12
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\frac{x^{2}-5 x-24}{b} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad \text { ab }=-24
\end{aligned}
$$

18. $(x-2)(x-6)=\quad x^{2}-8 x+12$

$$
a=-2 \quad b=-6 \quad b+a=-8 \quad a b=12
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. } \begin{array}{l}
(x+3)(x-8)= \\
a=3 \quad b=-8 \quad x^{2}-5 x-24 \\
b+a=-5 \quad \text { ab }=-24
\end{array}
\end{aligned}
$$

18. $(x-2)(x-6)=\quad x^{2}-8 x+12$

$$
a=-2 \quad b=-6 \quad b+a=-8 \quad a b=12
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 17. }(x+3)(x-8)=\underline{x^{2}-5 x-24} \\
& a=3 \quad b=-8 \quad b+a=-5 \quad a b=-24 \\
& \text { 18. }(x-2)(x-6)=\quad x^{2}-8 x+12 \\
& a=-2 \quad b=-6 \quad b+a=-8 \quad a b=12
\end{aligned}
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.
19. $(x-9)(x+7)=$
20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. }(x-9)(x+7)=
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. }(x-9)(x+7)=
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. }(x-9)(x+7)=
$$

20. $(x+8)(x+6)=$ \qquad
```
Use this pattern.
\[
(x+a)(x+b)=x^{2}+(b+a) x+a b
\]
```


Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)= \\
& a=
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad
```
Use this pattern.
\[
(x+a)(x+b)=x^{2}+(b+a) x+a b
\]
```


Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)= \\
& a=-9
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad
```
Use this pattern.
\[
(x+a)(x+b)=x^{2}+(b+a) x+a b
\]
```


Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)= \\
& a=-9
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)= \\
& a=-9
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)= \\
& a=-9 \quad b=
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)= \\
& a=-9 \quad b=7
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{aligned}
& \text { Use this pattern. } \\
& \downarrow \\
& (x+a)(x+b)=x^{2}+(b+a) x+a b
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)= \\
& a=-9 \quad b=7
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)= \\
& a=-9 \quad b=7
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)= \\
& a=-9 \quad b=7
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=\frac{x^{2}}{}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\quad x^{2} \\
& a=-9 \quad b=7
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=\frac{x^{2}}{}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=x^{2} \\
& a=-9 \quad b=7
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=x^{2} \\
& a=-9 \quad b=7
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}}{} \\
& a=-9 \quad b=7 \quad b+a=
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}}{b-9 \quad b=7 \quad b+a=-2} \\
& a=-9
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-}{b} \\
& a=-9 \quad b=7 \quad b+a=-2
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\quad x^{2}-2 x \\
& a=-9 \quad b=7 \quad b+a=-2
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
(x+a)(x+b)=x^{2}+(b+a) x+a b
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\quad x^{2}-2 x \\
& a=-9 \quad b=7 \quad b+a=-2
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\quad x^{2}-2 x \\
& a=-9 \quad b=7 \quad b+a=-2
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-2 x}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-2 x}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-2 x-}{b} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-2 x-63}{b-9 \quad b=7 \quad b+a=-2 \quad a b=-63} \\
& a=-9 \quad
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-2 x-63}{b-9 \quad b=7 \quad b+a=-2 \quad a b=-63} \\
& a=-9 \quad
\end{aligned}
$$

20. $(x+8)(x+6)=$ \qquad

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(\mathbf{x}-\mathbf{9})(x+7)=\frac{\mathbf{x}^{2}-\mathbf{2 x}-\mathbf{6 3}}{}(a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63 \\
& \text { 20. }(\mathbf{x}+\mathbf{8})(x+6)=
\end{aligned}
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$
$\mathrm{a}=$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$
$a=8$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$
$a=8$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$
$a=8$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$ $a=8 \quad b=$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$ $a=8 \quad b=6$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$

$$
a=8 \quad b=6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$

$$
a=8 \quad b=6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

20. $(x+8)(x+6)=$

$$
a=8 \quad b=6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=x^{2}
$$

$$
a=8 \quad b=6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=x^{2}
$$

$$
a=8 \quad b=6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=x^{2}
$$

$$
a=8 \quad b=6
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20. }(x+8)(x+6)=\frac{x^{2}}{} \\
& a=8 \quad b=6 \quad b+a=
\end{aligned}
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=\quad x^{2}+
$$

$$
a=8 \quad b=6 \quad b+a=14
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=x^{2}+14 x
$$

$$
a=8 \quad b=6 \quad b+a=14
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\text { 19. } \begin{aligned}
& (x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=x^{2}+14 x
$$

$$
a=8 \quad b=6 \quad b+a=14
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=x^{2}+14 x
$$

$$
a=8 \quad b=6 \quad b+a=14
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=x^{2}+14 x
$$

$$
\mathrm{a}=8 \quad \mathrm{~b}=6 \quad \mathrm{~b}+\mathrm{a}=14 \quad \mathrm{ab}=
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-2 x-63}{b} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=x^{2}+14 x
$$

$$
\mathrm{a}=8 \quad \mathrm{~b}=6 \quad \mathrm{~b}+\mathrm{a}=14 \quad \mathrm{ab}=48
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-2 x-63}{b} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=\quad x^{2}+14 x+
$$

$$
\mathrm{a}=8 \quad \mathrm{~b}=6 \quad \mathrm{~b}+\mathrm{a}=14 \quad \mathrm{ab}=48
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=\quad x^{2}+14 x+48
$$

$$
\mathrm{a}=8 \quad \mathrm{~b}=6 \quad \mathrm{~b}+\mathrm{a}=14 \quad \mathrm{ab}=48
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{} \\
& a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63
\end{aligned}
$$

$$
\text { 20. }(x+8)(x+6)=\quad x^{2}+14 x+48
$$

$$
\mathrm{a}=8 \quad \mathrm{~b}=6 \quad \mathrm{~b}+\mathrm{a}=14 \quad \mathrm{ab}=48
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Algebra I Class Worksheet \#1 Unit 11

Perform the indicated operations.

$$
\begin{aligned}
& \text { 19. }(x-9)(x+7)=\frac{x^{2}-\mathbf{2 x}-\mathbf{6 3}}{}(a=-9 \quad b=7 \quad b+a=-2 \quad a b=-63 \\
& \text { 20. }(x+8)(x+6)=\frac{x^{2}+\mathbf{1 4 x}+\mathbf{4 8}}{} \\
& a=8 \quad b=6 \quad b+a=14 \quad a b=48
\end{aligned}
$$

Use this pattern.

$$
(x+a)(x+b)=x^{2}+(b+a) x+a b
$$

Factoring Trinomials - Type 1

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
x^{2}+8 x+15=
$$

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
x^{2}+8 x+15=(x+3)(x+5)
$$

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=
\end{aligned}
$$

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6)
\end{aligned}
$$

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=
\end{aligned}
$$

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2)
\end{aligned}
$$

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=
\end{aligned}
$$

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 10̂trinomials.

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 10̂trinomials. These are trinomials of the form $\mathbf{1 x} \mathbf{x}^{\mathbf{2}}+\mathbf{D x}+\mathbf{E}$.

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 10̂trinomials. These are trinomials of the form $\mathbf{1} \mathbf{x}^{\mathbf{2}}+\mathbf{D x}+\mathbf{E}$. (The leading coefficient is 1.)

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 10̂trinomials. These are trinomials of the form $\mathbf{1} \mathbf{x}^{\mathbf{2}}+\mathbf{D x}+\mathbf{E}$. (The leading coefficient is 1.) Looking at the pattern,

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 10̂trinomials. These are trinomials of the form $\mathbf{1} \mathbf{x}^{\mathbf{2}}+\mathbf{D x}+\mathbf{E}$. (The leading coefficient is 1.) Looking at the pattern, it is clear that we must find two numbers \mathbf{a} and \mathbf{b}

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 1 ôtrinomials. These are trinomials of the form $\mathbf{1} \mathbf{x}^{\mathbf{2}}+\mathbf{D x}+\mathbf{E}$. (The leading coefficient is 1.) Looking at the pattern, it is clear that we must find two numbers \mathbf{a} and \mathbf{b} whose sum is the coefficient of x

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 10̂trinomials. These are trinomials of the form $\mathbf{1} \mathbf{x}^{\mathbf{2}}+\mathbf{D x}+\mathbf{E}$. (The leading coefficient is 1.) Looking at the pattern, it is clear that we must find two numbers \mathbf{a} and \mathbf{b} whose sum is the coefficient of x (the middle term)

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 1ôtrinomials. These are trinomials of the form $\mathbf{1} \mathbf{x}^{\mathbf{2}}+\mathbf{D x}+\mathbf{E}$. (The leading coefficient is 1.) Looking at the pattern, it is clear that we must find two numbers \mathbf{a} and \mathbf{b} whose sum is the coefficient of x (the middle term) and whose product is the constant term.

Factoring Trinomials - Type 1

Now consider the same equations written as factoring problems.

$$
\begin{aligned}
& x^{2}+8 x+15=(x+3)(x+5) \\
& x^{2}+13 x+42=(x+7)(x+6) \\
& x^{2}+11 x+18=(x+9)(x+2) \\
& x^{2}+(b+a) x+a b=(x+a)(x+b)
\end{aligned}
$$

The purpose of this part of this lesson is to demonstrate how to factor áype 10̂trinomials. These are trinomials of the form $\mathbf{1} \mathbf{x}^{\mathbf{2}}+\mathbf{D x}+\mathbf{E}$. (The leading coefficient is 1.) Looking at the pattern, it is clear that we must find two numbers \mathbf{a} and \mathbf{b} whose sum is the coefficient of x (the middle term) and whose product is the constant term. Good luck.

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } x^{2}+5 x+6=
$$

32. $x^{2}-3 x+2=$ \qquad
33. $\mathbf{x}^{2}-7 x-30=$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } x^{2}+5 x+6=
$$

32. $x^{2}-3 x+2=$
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(\mathbf{x}+\mathbf{a})(\mathbf{x}+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } x^{2}+5 x+6=
$$

32. $x^{2}-3 x+2=$
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a= \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \quad a b= \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \quad a b=6 \\
& \text { 32. } x^{2}-3 x+2= \\
& \text { 33. } x^{2}-7 x-30=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
\text { 31. } x^{2}+5 x+6 & = \\
b+a=5 \quad a b & =6 \\
\text { 32. } x^{2}-3 x+2 & = \\
\text { 33. } \quad x^{2}-7 x-30 & =
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \quad a b=6 \quad a=\quad b= \\
& \text { 32. } x^{2}-3 x+2= \\
&
\end{aligned}
$$

33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=
\end{aligned}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \quad \text { ab }=6 \quad a=2 \quad b=3
\end{aligned}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \quad \text { ab }=6 \quad a=2 \quad b=3
\end{aligned}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6= \\
& b+a=5 \quad \text { ab }=6 \quad a=2 \quad b=3
\end{aligned}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\left.\begin{array}{rlrl}
\text { 31. } x^{2}+5 x+6 & = & (x+ \\
b+a=5 & \text { ab } & =6 & a=2
\end{array} \quad b=3\right)
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & = & (x+2) \\
b+a=5 & \text { ab } & =6 \\
a=2 & b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlrl}
x^{2}+5 x+6 & = & (x+2) \\
b+a & =5 & \text { ab } & =6 \\
\text { a } & \text { a } & \text { b }=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & = & (x+2) \\
b+a=5 & \text { ab } & =6 \\
\text { a } & \text { a } 2 & b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & = & (x+2)(x \\
b+a=5 & \text { ab } & =6 \\
\text { a } & \text { a } 2 & b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\quad(x+2)(x+ \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\quad(x+2)(x+3) \\
& \mathrm{b}+\mathrm{a}=5 \quad \mathrm{ab}=6 \quad \mathrm{a}=2 \quad \mathrm{~b}=3
\end{aligned}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\quad(x+2)(x+3) \\
& \mathrm{b}+\mathrm{a}=5 \quad \mathrm{ab}=6 \quad \mathrm{a}=2 \quad \mathrm{~b}=3
\end{aligned}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
\text { 31. } x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+3} \quad \text { ab }
\end{aligned} \text { } \begin{array}{rl}
b+a=5 & a=2 \quad b=3 \\
\text { 32. } \quad x^{2}-3 x+2 & =
\end{array}
$$

33. $x^{2}-7 x-30=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad
33. $x^{2}-7 x-30=$

$$
\begin{gathered}
\text { Use this pattern. } \\
\downarrow \\
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+a}=5 \quad \text { ab } & =6 \quad a=2 \quad b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad

$$
b+a=
$$

33. $x^{2}-7 x-30=$

$$
\begin{gathered}
\text { Use this pattern. } \\
\downarrow \\
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+a}=5 \quad \text { ab } & =6 \quad a=2 \quad b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ \qquad

$$
b+a=-3
$$

33. $\mathbf{x}^{2}-7 x-30=$

$$
\begin{gathered}
\text { Use this pattern. } \\
\downarrow \\
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ $b+a=-3$
33. $x^{2}-7 x-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3
\end{array}
$$

32. $x^{2}-3 x+2=$ $b+a=-3$
33. $x^{2}-7 x-30=$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+a}=5 \quad \text { ab } & =6 \quad a=2 \quad b=3
\end{array}
$$

32. $x^{2}-3 x+2=$

$$
b+a=-3 \quad a b=
$$

33. $x^{2}-7 x-30=$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3
\end{array}
$$

$$
\text { 32. } x^{2}-3 x+2=
$$

$$
b+a=-3 \quad a b=2
$$

33. $x^{2}-7 x-30=$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 31. } \begin{array}{rlr}
x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+a}=5 \quad \text { ab } & =6 \quad a=2 \quad b=3
\end{array}
$$

$$
\text { 32. } x^{2}-3 x+2=
$$

$$
b+a=-3 \quad a b=2
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{array}{rlrl}
\text { 31. } x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+3} \\
b+a=5 \quad a b & =6 & a=2 & b=3 \\
\text { 32. } x^{2}-\mathbf{3 x}+\mathbf{2} & = & \\
b+a=-3 & \text { ab } & =2 & a= \\
b=
\end{array}
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2= \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=
\end{aligned}
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\left.\begin{array}{rlrl}
\text { 31. } x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+3} \\
b+a=5 & a b & =6 & a=2
\end{array} \quad b=3\right)
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\left.\begin{array}{rlrl}
\text { 31. } x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+3} \\
b+a=5 & a b & =6 & a=2
\end{array} \quad b=3\right)
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\left.\begin{array}{rlrl}
\text { 31. } x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+3} \\
b+a=5 & a b & =6 & a=2
\end{array} \quad b=3\right)
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{array}{rlrl}
\text { 31. } \mathbf{x}^{2}+\mathbf{5 x}+\mathbf{6} & =\frac{(x+2)(\mathbf{x}+\mathbf{3})}{} \\
b+a=5 \quad a b & =6 \quad a=2 & b=3 \\
\text { 32. } \quad x^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x}{} \\
b+a=-3 & \text { ab } & =2 \quad a=-1 & b=-2
\end{array}
$$

33. $\mathrm{x}^{2}-7 \mathrm{x}-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{array}{rlrl}
\text { 31. } x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x)} \\
b+a=5 \quad a b & =6 \quad a=2 & b=3 \\
\text { 32. } \quad x^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x-}{} \\
b+a=-3 & \text { ab } & =2 \quad a=-1 & b=-2
\end{array}
$$

33. $\mathrm{x}^{2}-7 \mathrm{x}-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{array}{rlrl}
\text { 31. } x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+3} \\
b+a=5 \quad a b & =6 & a=2 & b=3 \\
\text { 32. } \quad x^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x-1)}{} \\
b+a=-3 & \text { ab } & =2 \quad a=-1 & b=-2
\end{array}
$$

33. $\mathrm{x}^{2}-7 \mathrm{x}-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{array}{rlrl}
\text { 31. } x^{2}+\mathbf{5 x}+\mathbf{6} & =\frac{(x+2)(x+3)}{} & (x) \\
b+a=5 \quad a b & =6 & a=2 & b=3 \\
\text { 32. } x^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x-1)}{} \\
b+a=-3 & a b & =2 \quad a=-1 & b=-2
\end{array}
$$

33. $\mathrm{x}^{2}-7 \mathrm{x}-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& \mathrm{b}+\mathrm{a}=5 \quad \mathrm{ab}=6 \quad \mathrm{a}=2 \quad \mathrm{~b}=3
\end{aligned}
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& \mathrm{b}+\mathrm{a}=5 \quad \mathrm{ab}=6 \quad \mathrm{a}=2 \quad \mathrm{~b}=3 \\
& \text { 32. } \begin{aligned}
\mathbf{x}^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x-1)(x}{} \\
b+a=-3 \quad \text { ab } & =2 \quad a=-1 \quad b=-2
\end{aligned}
\end{aligned}
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& \mathrm{b}+\mathrm{a}=5 \quad \mathrm{ab}=6 \quad \mathrm{a}=2 \quad \mathrm{~b}=3
\end{aligned}
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

33. $\mathrm{x}^{2}-7 \mathrm{x}-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\quad(x+2)(x+3) \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

33. $\mathrm{x}^{2}-7 \mathrm{x}-30=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
\text { 31. } x^{2}+5 x+6 & =\frac{(x+2)(x+3)}{(x+3} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3 \\
\text { 32. } \quad x^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x-1)(x-2)}{(x)} \\
b+a=-3 \quad a b & =2 \quad a=-1 \quad b=-2 \\
\text { 33. } \quad x^{2}-7 x-30 & =
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } \begin{array}{rlr}
\mathbf{x}^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x-1)(x-2)}{(x-2} \\
b+a=-3 & \text { ab } & =2 \quad a=-1 \quad b=-2
\end{array}
\end{aligned}
$$

33. $x^{2}-7 x-30=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

33. $x^{2}-7 x-30=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

33. $x^{2}-7 x-30=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
33. $x^{2}-7 x-30=$

$$
b+a=
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7 \quad a b=
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7 \quad a b=-30
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7 \quad a b=-30
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

33. $x^{2}-7 x-30=$
$b+a=-7 \quad a b=-30 \quad a=\quad b=$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

33. $x^{2}-7 x-30=$
$b+a=-7 \quad a b=-30 \quad a=3 \quad b=$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 33. } x^{2}-7 x-30=
$$

$$
b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{array}{rlrl}
\text { 31. } x^{2}+\mathbf{5 x}+\mathbf{6} & =\frac{(x+2)(x+3)}{} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3 \\
\text { 32. } \quad x^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x-1)(x-2)}{(x-1} \\
b+a=-3 & a b & =2 \quad a=-1 & b=-2 \\
\text { 33. } x^{2}-\mathbf{7 x}-\mathbf{3 0} & =\frac{(x}{} \\
b+a=-7 \quad a b & =-30 \quad a=3 \quad b=-10
\end{array}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2 \\
& \text { 33. } x^{2}-7 x-30=(x+ \\
& b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2 \\
& \text { 33. } x^{2}-7 x-30=(x+3) \\
& b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2 \\
& \text { 33. } x^{2}-7 x-30=(x+3) \\
& b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 33. } x^{2}-7 x-30=(x+3) \\
& b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 33. } x^{2}-7 x-30=(x+3)(x \\
& b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { 33. } x^{2}-7 x-30=(x+3)(x- \\
& b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
\text { 31. } x^{2}+\mathbf{5 x}+\mathbf{6} & =\frac{(x+2)(x+3)}{} \\
b+a=5 \quad a b & =6 \quad a=2 \quad b=3 \\
\text { 32. } \quad x^{2}-\mathbf{3 x}+\mathbf{2} & =\frac{(x-1)(x-2)}{(x-1} \quad \\
b+a=-3 \quad a b & =2 \quad a=-1 \quad b=-2 \\
\text { 33. } \quad x^{2}-\mathbf{7 x}-\mathbf{3 0} & =\frac{(x+\mathbf{3})(x-10)}{b+a}=-7 \quad a b=-30 \quad a=3 \quad b=-10
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 31. } x^{2}+5 x+6=\underline{(x+2)(x+3)} \\
& b+a=5 \quad a b=6 \quad a=2 \quad b=3 \\
& \text { 32. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2 \\
& \text { 33. } x^{2}-7 x-30=(x+3)(x-10) \\
& b+a=-7 \quad a b=-30 \quad a=3 \quad b=-10
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& \text { 35. } x^{2}+17 x+72= \\
& \text { 36. } x^{2}-13 x+40=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 34. } x^{2}+x-12=
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 34. } x^{2}+x-12=
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 34. } x^{2}+x-12=
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a= \\
& \text { 35. } x^{2}+17 x+72= \\
& \text { 36. } x^{2}-13 x+40=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& \text { b }+\mathrm{a}=1 \\
& \text { 35. } x^{2}+\mathbf{1 7} x+\mathbf{7 2}= \\
& \text { 36. } x^{2}-\mathbf{1 3 x}+\mathbf{4 0}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& \text { b }+\mathrm{a}=1 \\
& \text { 35. } x^{2}+\mathbf{1 7} x+\mathbf{7 2}= \\
& \text { 36. } x^{2}-\mathbf{1 3 x}+\mathbf{4 0}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \\
& \text { 35. } x^{2}+\mathbf{1 7} x+\mathbf{7 2}= \\
& \text { 36. } x^{2}-\mathbf{1 3 x}+\mathbf{4 0}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \quad a b= \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}= \\
& \text { 36. } x^{2}-\mathbf{1 3 x}+\mathbf{4 0}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \quad a b=-12 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}= \\
& \text { 36. } \quad \mathbf{x}^{2}-\mathbf{1 3 x}+\mathbf{4 0}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \quad a b=-12 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}= \\
& \text { 36. } \quad \mathbf{x}^{2}-\mathbf{1 3 x}+\mathbf{4 0}=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \quad \text { ab }=-12 \quad a=\quad b=
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \quad \text { ab }=-12 \quad a=4 \quad b=
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12= \\
& \text { (} \mathbf{x} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\quad(x+ \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4) \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4) \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4) \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4)(x \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\left.\begin{array}{rl}
\text { 34. } x^{2}+x-12 & =\frac{(x+4)(x-3)}{(x-3} \\
b+a=1 & a b
\end{array}=-12 \quad a=4 \quad b=-3\right) ~ l
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3
\end{aligned}
$$

35. $x^{2}+17 x+72=$ \qquad
36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72= \\
& \text { 36. } x^{2}-13 x+40=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \quad x^{2}+x-12=\frac{(x+4)(x-3)}{(x-3} \quad \begin{array}{lll}
b+a=1 & a b=-12 & a=4
\end{array} \quad b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \quad x^{2}+x-12=\frac{(x+4)(x-3)}{(x-3} \quad \begin{array}{lll}
b+a=1 & a b=-12 & a=4
\end{array} \quad b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \quad x^{2}+x-12=\frac{(x+4)(x-3)}{(x-3} \quad \begin{array}{lll}
b+a=1 & a b=-12 & a=4
\end{array} \quad b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(\mathbf{x}+\mathbf{4})(\mathbf{x}-\mathbf{3})}{} \begin{array}{l}
b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
\text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7} \mathbf{x}+\mathbf{7 2}= \\
b+a=
\end{array}
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(\mathbf{x}+\mathbf{4})(\mathbf{x}-\mathbf{3})}{} \begin{array}{l}
b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
\text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7} \mathbf{x}+\mathbf{7 2}= \\
b+a=17
\end{array}
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \quad \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(\mathbf{x}+\mathbf{4})(\mathbf{x}-\mathbf{3})}{} \begin{array}{l}
b+a=1 \quad \text { ab }=-12 \quad a=4 \quad b=-3 \\
\text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7} \mathbf{x}+\mathbf{7 2}= \\
b+a=17
\end{array}
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(\mathbf{x}+\mathbf{4})(\mathbf{x}-\mathbf{3})}{} \begin{array}{l}
b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
\text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7} \mathbf{x}+\mathbf{7 2}= \\
b+a=17
\end{array}
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(\mathbf{x}+4)(\mathbf{x}-\mathbf{3})}{b+a=1 \quad a b=-12} \quad a=4 \quad b=-3 \\
& b+x^{2}+\mathbf{1 7} x+\mathbf{7 2}= \\
& \text { 35. } \quad x^{2} \\
& b+a=17 \quad a b=
\end{aligned}
$$

$$
\text { 36. } x^{2}-13 x+40=
$$

\qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72= \\
& b+a=17 \quad a b=72
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72= \\
& b+a=17 \quad a b=72
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72= \\
& \mathrm{b}+\mathrm{a}=17 \mathrm{ab}=72 \quad \mathrm{a}=\quad \mathrm{b}=
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 36. } x^{2}-13 x+40=
$$

\qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72= \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72= \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72= \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72= \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(x+4)(\mathbf{x}-\mathbf{3})}{(b+a=1} \quad a b=-12 \quad a=4 \\
& b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(x+ \\
& b+a=17 \quad a b=72 \quad a=8
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(x+4)(\mathbf{x}-\mathbf{3})}{(\mathrm{x}} \mathrm{b}+\mathrm{a}=1 \quad \mathrm{ab}=-12 \quad a=4 \\
& \mathrm{~b}=-3 \\
& \text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x}+\mathbf{8}) \\
& b+a=17 \quad a b=72 \quad a=8 \\
& b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(x+4)(\mathbf{x}-\mathbf{3})}{(\mathrm{x}} \mathrm{b}+\mathrm{a}=1 \quad \mathrm{ab}=-12 \quad a=4 \\
& b=-3 \\
& \text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x}+\mathbf{8}) \\
& b+a=17 \quad a b=72 \quad a=8 \\
& b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\frac{(x+4)(x-3)}{(x-3} \\
& b+a=1 \quad a b=-12 \quad a=4 \\
& b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(x+8) \\
& b+a=17 \quad a b=72 \quad a=8 \\
& b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\frac{(x+4)(x-3)}{(x)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(x+8)(x+ \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\frac{(x+4)(x-3)}{(x)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x + 8})(\mathbf{x}+\mathbf{9}) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\frac{(x+4)(x-3)}{(x)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x + 8})(\mathbf{x}+\mathbf{9}) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \quad \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(\mathbf{x}+4)(\mathbf{x}-\mathbf{3})}{b+a=1 \quad a b=-12 \quad a=4 \quad b=-3} \\
& \text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x}+\mathbf{8})(\mathbf{x}+\mathbf{9}) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \quad \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(\mathbf{x}+4)(\mathbf{x}-\mathbf{3})}{b+a=1 \quad a b=-12 \quad a=4 \quad b=-3} \\
& \text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x}+\mathbf{8})(\mathbf{x}+\mathbf{9}) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } \quad \mathbf{x}^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(\mathbf{x}+4)(\mathbf{x}-\mathbf{3})}{b+a=1 \quad a b=-12 \quad a=4 \quad b=-3} \\
& \text { 35. } \quad \mathbf{x}^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x}+\mathbf{8})(\mathbf{x}+\mathbf{9}) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9
\end{aligned}
$$

36. $x^{2}-13 x+40=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4)(x-3) \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13 \quad a b=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4)(x-3) \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13 \quad a b=40
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4)(x-3) \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13 \quad a b=40
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13 \quad a b=40 \quad a=\quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40= \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40=(x \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40=(x- \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(x+4)(x-3)}{(x+3} \\
& b+a=1 \quad a b=-12 \quad a=4 \\
& b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x + 8) (x + 9)} \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } \quad x^{2}-\mathbf{1 3 x}+\mathbf{4 0}=(\mathbf{x}-\mathbf{5}) \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(x+4)(x-3)}{(x+3} \\
& b+a=1 \quad a b=-12 \quad a=4 \\
& b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x + 8) (x + 9)} \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } \quad x^{2}-\mathbf{1 3 x}+\mathbf{4 0}=(\mathbf{x}-\mathbf{5}) \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4)(x-3) \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40=(x-5) \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40=(x-5)(x \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+\mathbf{x}-\mathbf{1 2}=\frac{(x+4)(x-3)}{(x+3} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } \quad x^{2}+\mathbf{1 7 x}+\mathbf{7 2}=(\mathbf{x + 8) (x + 9)} \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } \quad x^{2}-\mathbf{1 3 x}+\mathbf{4 0}=(\mathbf{x}-\mathbf{5})(\mathbf{x}- \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=(x+4)(x-3) \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40=(x-5)(x-8) \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40=(x-5)(x-8) \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 34. } x^{2}+x-12=\underline{(x+4)(x-3)} \\
& b+a=1 \quad a b=-12 \quad a=4 \quad b=-3 \\
& \text { 35. } x^{2}+17 x+72=(x+8)(x+9) \\
& b+a=17 \quad a b=72 \quad a=8 \quad b=9 \\
& \text { 36. } x^{2}-13 x+40=(x-5)(x-8) \\
& b+a=-13 \quad a b=40 \quad a=-5 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20= \\
& \text { 38. } x^{2}-8 x-65= \\
& \text { 39. } x^{2}+18 x+77=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20= \\
& \text { 38. } x^{2}-8 x-65= \\
& \text { 39. } x^{2}+18 x+77=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 37. } x^{2}+19 x-20=
$$

38. $x^{2}-8 x-65=$ \qquad
39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 37. } x^{2}+19 x-20=
$$

\qquad
38. $x^{2}-8 x-65=$ \qquad
39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20= \\
& b+a= \\
& \text { 38. } x^{2}-8 x-65= \\
& \text { 39. } x^{2}+18 x+77=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+\mathbf{1 9 x}-\mathbf{2 0}= \\
& b+a=19 \\
& \text { 38. } x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& \text { 39. } \mathbf{x}^{2}+\mathbf{1 8 x}+\mathbf{7 7}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+\mathbf{1 9 x}-\mathbf{2 0}= \\
& b+a=19 \\
& \text { 38. } x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& \text { 39. } \mathbf{x}^{2}+\mathbf{1 8 x}+\mathbf{7 7}=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+\mathbf{1 9 x}-\mathbf{2 0}= \\
& b+a=19 \\
& \text { 38. } x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& \text { 39. } \mathbf{x}^{2}+\mathbf{1 8 x}+\mathbf{7 7}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+\mathbf{1 9 x}-\mathbf{2 0}= \\
& b+a=19 \quad a b= \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& \text { 39. } \mathbf{x}^{2}+\mathbf{1 8 x}+\mathbf{7 7}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+19 x-20= \\
& b+a=19 \quad \text { ab }=-20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+19 x-20= \\
& b+a=19 \quad \text { ab }=-20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+\mathbf{1 9 x}-\mathbf{2 0}= \\
& b+a=19 \quad a b=-20 \quad a=\quad b=
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+\mathbf{1 9 x}-\mathbf{2 0}= \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20= \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $\mathbf{x}^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20= \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $\mathbf{x}^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20= \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $\mathbf{x}^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x- \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $\mathbf{x}^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(\mathbf{x}-\mathbf{1}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(\mathbf{x}-\mathbf{1}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(\mathbf{x}-\mathbf{1}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(\mathbf{x}-\mathbf{1})(x \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $\mathbf{x}^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x-1)(x+ \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x-1)(x+20) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x-1)(x+20) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20
\end{aligned}
$$

38. $x^{2}-8 x-65=$
39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad \mathbf{x}^{2}-\mathbf{8} \mathbf{x}-\mathbf{6 5}= \\
& \text { 39. } \quad \mathbf{x}^{2}+\mathbf{1 8 x}+\mathbf{7 7}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8 \quad \text { ab }=
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8 \quad \text { ab }=-65
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8 \quad a b=-65
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8 \quad \text { ab }=-65 \quad a=\quad b=
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8 \quad \text { ab }=-65 \quad a=-13 \quad b=
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8 \quad \text { ab }=-65 \quad a=-13 \quad b=5
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8 \quad \text { ab }=-65 \quad a=-13 \quad b=5
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}= \\
& b+a=-8 \quad \text { ab }=-65 \quad a=-13 \quad b=5
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x}{} \\
& b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-}{} \\
& b+a=-8 \quad \text { ab }=-65 \quad a=-13 \quad b=5
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8} x-65=\frac{(x-13)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(x+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=\frac{(x-1)(x+20)}{} \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{aligned}
$$

39. $x^{2}+18 x+77=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8} x-\mathbf{6 5}=\frac{(x-13)(x+5)}{(x+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8} x-\mathbf{6 5}=\frac{(x-13)(x+5)}{(x+a} \quad \text { ab }=-65 \quad a=-13 \quad b=5 \\
& b+a \quad
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}= \\
& b+a=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=\frac{(x-1)(x+20)}{(x-20} \quad a=-1 \quad b=20 \\
& b+a=19 \quad a b=-20 \quad a= \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+\mathbf{5})}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}= \\
& b+a=18
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(x+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}= \\
& b+a=18
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=\frac{(x-1)(x+20)}{(x-20} \quad a=-1 \quad b=20 \\
& b+a=19 \quad a b=-20 \quad a= \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+\mathbf{5})}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}= \\
& b+a=18
\end{aligned}
$$

$$
\begin{gathered}
\text { Use this pattern. } \\
\frac{\downarrow}{\mathbf{x}^{2}+(b+a) x+\mathbf{a b}=(x+a)(x+b)}
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad \mathbf{x}^{2}+\mathbf{1 9 x}-\mathbf{2 0}=\frac{(x-1)(x+20)}{(x-20} \quad a=-1 \quad b=20 \\
& b+a=19 \quad a b=-20 \quad a= \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+\mathbf{5})}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}= \\
& b+a=18 \quad a b=
\end{aligned}
$$

$$
\begin{gathered}
\text { Use this pattern. } \\
\stackrel{\downarrow}{\mathbf{x}^{2}+(b+a) x+\mathbf{a b}}=(x+\mathbf{a})(x+b)
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8} x+\mathbf{7 7}= \\
& b+a=18 \quad a b=77
\end{aligned}
$$

$$
\begin{gathered}
\text { Use this pattern. } \\
\frac{\downarrow}{\mathbf{x}^{2}+(b+a) x+\mathbf{a b}=(x+a)(x+b)}
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+\mathbf{5})}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& b+\quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}= \\
& b+a=18 \quad a b=77
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{b+a=-8} \quad \text { ab }=-65 \quad a=-13 \quad b=5 \\
& b+\quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}= \\
& b+a=18 \quad a b=77 \quad a=\quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=\frac{(x-1)(x+20)}{(x-19} \quad \text { ab }=-20 \quad a=-1 \quad b=20 \\
& b+a=19 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-\mathbf{1 3})(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}= \\
& b+a=18 \quad \text { ab }=77 \quad a=7 \quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x-1)(x+20) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \begin{array}{c}
\text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{array} \\
& \text { 39. } x^{2}+18 x+77= \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x-1)(x+20) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \begin{array}{c}
\text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5}
\end{array} \\
& \text { 39. } x^{2}+18 x+77= \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{(x+a} \quad \begin{array}{lll}
b+-8 & a b=-65 & a=-13
\end{array} \quad b=5 \\
& \text { 39. } \quad x^{2}+\mathbf{1 8} x+\mathbf{7 7}= \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{(x-6} \quad \begin{array}{lll}
b+a=-8 & a b=-65 & a=-13
\end{array} \quad b=5 \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}=\left(\begin{array}{l}
(x
\end{array}\right. \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{(x+a} \quad \begin{array}{lll}
b+-8 & a b=-65 & a=-13
\end{array} \quad b=5 \\
& \text { 39. } \quad x^{2}+\mathbf{1 8} x+\mathbf{7 7}=(x+ \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{(x+a} \quad \begin{array}{lll}
b+-8 & a b=-65 & a=-13
\end{array} \quad b=5 \\
& \text { 39. } \quad x^{2}+\mathbf{1 8} x+\mathbf{7 7}=(x+7) \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}=(x+7) \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{(x+a} \quad \begin{array}{lll}
b+-8 & a b=-65 & a=-13
\end{array} \quad b=5 \\
& \text { 39. } \quad x^{2}+\mathbf{1 8} x+\mathbf{7 7}=(x+7) \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(\mathbf{x}+\mathbf{2 0}) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{(x-6} \quad \text { ab }=-65 \quad a=-13 \quad b=5 \\
& b+a=-8 \quad \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}=(x+7)(x \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x-1)(x+20) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } x^{2}-8 x-65=\underline{(x-13)(x+5)} \\
& b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5 \\
& \text { 39. } x^{2}+18 x+77=(x+7)(x+ \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x-1)(x+20) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } x^{2}-8 x-65=\underline{(x-13)(x+5)} \\
& b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5 \\
& \text { 39. } x^{2}+18 x+77=(x+7)(x+11) \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } x^{2}+19 x-20=(x-1)(x+20) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } x^{2}-8 x-65=\underline{(x-13)(x+5)} \\
& b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5 \\
& \text { 39. } x^{2}+18 x+77=(x+7)(x+11) \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 37. } \quad x^{2}+\mathbf{1 9 x}-\mathbf{2 0}=(\mathbf{x}-\mathbf{1})(x+20) \\
& b+a=19 \quad a b=-20 \quad a=-1 \quad b=20 \\
& \text { 38. } \quad x^{2}-\mathbf{8 x}-\mathbf{6 5}=\frac{(x-13)(x+5)}{b+a=-8 \quad a b=-65 \quad a=-13 \quad b=5} \\
& \text { 39. } \quad x^{2}+\mathbf{1 8 x}+\mathbf{7 7}=(x+7)(x+11) \\
& b+a=18 \quad a b=77 \quad a=7 \quad b=11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
40. $x^{2}-20 x+36=$ \qquad
41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
40. $x^{2}-20 x+36=$
41. $x^{2}+13 x+42=$ \qquad
42. $\mathbf{x}^{2}+7 x+12=$ Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
40. $x^{2}-20 x+36=$
41. $x^{2}+13 x+42=$ \qquad
42. $\mathbf{x}^{2}+7 x+12=$ Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
40. $x^{2}-20 x+36=$
41. $x^{2}+13 x+42=$ \qquad
42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36= \\
& b+a= \\
& \text { 41. } x^{2}+13 x+42= \\
& \text { 42. } x^{2}+7 x+12=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36= \\
& b+a=-20 \\
& \text { 41. } x^{2}+13 x+42= \\
& \text { 42. } x^{2}+7 x+12=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36= \\
& b+a=-20 \\
& \text { 41. } x^{2}+13 x+42= \\
& \text { 42. } x^{2}+7 x+12=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36= \\
& b+a=-20 \\
& \text { 41. } x^{2}+13 x+42= \\
& \text { 42. } x^{2}+7 x+12=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36= \\
& b+a=-20 \quad a b= \\
& \text { 41. } x^{2}+13 x+42= \\
& \text { 42. } x^{2}+7 x+12=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0} x+\mathbf{3 6}= \\
& b+a=-20 \quad a b=36 \\
& \text { 41. } x^{2}+\mathbf{1 3 x}+42= \\
& \text { 42. } x^{2}+\mathbf{7} x+12=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0} x+\mathbf{3 6}= \\
& b+a=-20 \quad a b=36 \\
& \text { 41. } x^{2}+\mathbf{1 3 x}+42= \\
& \text { 42. } x^{2}+\mathbf{7} x+12=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}= \\
& b+a=-20 \quad \text { ab }=36 \quad a=\quad b= \\
& \text { 41. } x^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& \text { 42. } \mathbf{x}^{2}+\mathbf{7} x+\mathbf{1 2}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}= \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36= \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36= \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36= \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x- \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x- \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18
\end{aligned}
$$

41. $x^{2}+13 x+42=$ \qquad
42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=
\end{aligned}
$$

42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=
\end{aligned}
$$

42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathbf{x}-\mathbf{1 8}) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=
\end{aligned}
$$

42. $x^{2}+7 x+12=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad \text { ab }=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& b+a=
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad \text { ab }=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& b+a=13
\end{aligned}
$$

42. $x^{2}+7 x+12=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad \text { ab }=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& b+a=13
\end{aligned}
$$

42. $x^{2}+7 x+12=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad \text { ab }=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& b+a=13
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad \text { ab }=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42= \\
& b+a=13 \quad a b= \\
& \text { 42. } \quad x^{2}+\mathbf{7} x+12=
\end{aligned}
$$

$$
\begin{gathered}
\text { Use this pattern. } \\
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+a)(x+b)
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathbf{x}-\mathbf{1 8}) \\
& \mathrm{b}+\mathrm{a}=-20 \quad \text { ab }=36 \quad \mathrm{a}=-2 \quad \mathrm{~b}=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& \mathrm{b}+\mathrm{a}=13 \quad \mathrm{ab}=42 \\
& \text { 42. } \quad \mathbf{x}^{2}+\mathbf{7 x}+\mathbf{1 2}=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+\mathbf{a b}=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathrm{x}-\mathbf{1 8}) \\
& \mathrm{b}+\mathrm{a}=-20 \quad \text { ab }=36 \quad \mathrm{a}=-2 \quad \mathrm{~b}=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& b+a=13 \quad a b=42 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad \mathbf{x}^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathbf{x}-\mathbf{1 8}) \\
& \mathrm{b}+\mathrm{a}=-20 \quad \text { ab }=36 \quad \mathrm{a}=-2 \quad \mathrm{~b}=-18 \\
& \text { 41. } \quad \mathbf{x}^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& \mathrm{b}+\mathrm{a}=13 \quad \text { ab }=42 \quad \mathrm{a}=\quad \mathrm{b}=
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathbf{x}-\mathbf{1 8}) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}= \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } x^{2}+13 x+42= \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } x^{2}+13 x+42= \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } x^{2}+13 x+42= \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathrm{x}-\mathbf{1 8}) \\
& \mathrm{b}+\mathrm{a}=-20 \quad \text { ab }=36 \quad \mathrm{a}=-2 \quad \mathrm{~b}=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x+ \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathrm{x}-\mathbf{1 8}) \\
& \mathrm{b}+\mathrm{a}=-20 \quad \text { ab }=36 \quad \mathrm{a}=-2 \quad \mathrm{~b}=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x+6) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathrm{x}-\mathbf{1 8}) \\
& \mathrm{b}+\mathrm{a}=-20 \quad \text { ab }=36 \quad \mathrm{a}=-2 \quad \mathrm{~b}=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x+6) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad \text { ab }=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x+6) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-\mathbf{1 8}) \\
& b+a=-20 \quad \text { ab }=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x+6)(x \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x+6)(x+ \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7
\end{aligned}
$$

42. $\mathbf{x}^{2}+7 x+12=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathbf{x}-\mathbf{1 8}) \\
& \mathrm{b}+\mathrm{a}=-20 \quad \text { ab }=36 \quad \mathrm{a}=-2 \quad \mathrm{~b}=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(\mathbf{x + 6})(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+\mathbf{6})(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7} x+\mathbf{1 2}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+\mathbf{6})(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7} x+\mathbf{1 2}=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+\mathbf{6})(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7} x+\mathbf{1 2}=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=7
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=7
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=\frac{(x+6)(x+7)}{} \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=7 \quad a b=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathbf{x}-\mathbf{1 8}) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=\frac{(x+6)(x+7)}{} \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=7 \quad a b=12
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathbf{x}-\mathbf{1 8}) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=\frac{(x+6)(x+7)}{} \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=7 \quad a b=12
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=7 \quad a b=12 \quad a=\quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}= \\
& b+a=7 \quad a b=12 \quad a=3 \quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } x^{2}+13 x+42=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } x^{2}+7 x+12= \\
& b+a=7 \quad a b=12 \quad a=3 \quad b=4
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } x^{2}+13 x+42=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } x^{2}+7 x+12= \\
& b+a=7 \quad a b=12 \quad a=3 \quad b=4
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } x^{2}-20 x+36=(x-2)(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } x^{2}+13 x+42=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } x^{2}+7 x+12= \\
& b+a=7 \quad a b=12 \quad a=3 \quad b=4
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x}{} \begin{array}{l}
(x+12 \\
b+a=7 \quad a b=3
\end{array} \quad b=4
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+}{} \begin{array}{l}
(x+a=7 \quad a b=12 \quad a=3 \quad b=4
\end{array}
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+3)}{} \begin{array}{lll}
b+a=7 & a b=12 & a=3
\end{array} \quad b=4
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+3)}{} \begin{array}{lll}
b+a=7 & a b=12 & a=3
\end{array} \quad b=4
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+3)}{} \begin{array}{lll}
b+a=7 & a b=12 & a=3
\end{array} \quad b=4
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+\mathbf{4 2}=(x+6)(x+7) \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+3)(x}{} \begin{array}{l}
(x+12 \\
b+a=7 \quad a b=3
\end{array} \quad b=4
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=\frac{(x+6)(x+7)}{} \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+3)(x+}{(x+2} \quad a=3 \quad b=4 \\
& b+a=7 \quad a b=12
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(\mathbf{x}-\mathbf{1 8}) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=\frac{(x+6)(x+7)}{} \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \left.\quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+3)(x+4)}{(x+a} \quad \begin{array}{l}
\text { (x }
\end{array}\right) \\
& b+a=7 \quad a b=12 \quad a=3 \quad b=4
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=\frac{(x+6)(x+7)}{} \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+3)(x+4)}{(x+2} \quad a=3 \quad b=4
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 40. } \quad x^{2}-\mathbf{2 0 x}+\mathbf{3 6}=(\mathbf{x}-\mathbf{2})(x-18) \\
& b+a=-20 \quad a b=36 \quad a=-2 \quad b=-18 \\
& \text { 41. } \quad x^{2}+\mathbf{1 3 x}+42=\frac{(x+6)(x+7)}{} \\
& b+a=13 \quad a b=42 \quad a=6 \quad b=7 \\
& \text { 42. } \quad x^{2}+\mathbf{7 x}+\mathbf{1 2}=\frac{(x+3)(x+4)}{(x+2} \quad a=3 \quad b=4 \\
& b+a=7 \quad a b=12 \quad a=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$ \qquad
44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$
44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$
44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$
44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$ $\mathrm{b}+\mathrm{a}=$
44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(\mathbf{x}+\mathbf{a})(\mathbf{x}+\mathbf{b})
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9 \quad a b=
$$

44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
\frac{\downarrow}{\mathbf{x}^{2}+(b+a) x+\mathbf{a b}=(x+a)(x+b)}
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9 \quad a b=8
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

$$
\begin{gathered}
\text { Use this pattern. } \\
\frac{\downarrow}{\mathbf{x}^{2}+(b+a) x+\mathbf{a b}=(x+a)(x+b)}
\end{gathered}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9 \quad a b=8
$$

44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9 \quad a b=8 \quad a=\quad b=
$$

44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9 \quad a b=8 \quad a=1 \quad b=
$$

44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9 \quad a b=8 \quad a=1 \quad b=8
$$

44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9 \quad a b=8 \quad a=1 \quad b=8
$$

44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=$

$$
b+a=9 \quad a b=8 \quad a=1 \quad b=8
$$

44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x \\
& b+a=9 \quad \text { ab }=8 \quad \text { a }=1 \quad b=8
\end{aligned}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=\quad(x+ \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8
\end{aligned}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8
\end{aligned}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8
\end{aligned}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8
\end{aligned}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{array}{rlrl}
\text { 43. } x^{2}+9 x+8 & =(x+1)(x \\
b+a=9 & \text { ab } & =8 \quad a=1 \quad b=8
\end{array}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=c \\
& b+a=9 \quad \text { ab }=8 \quad \text { a }=1 \quad(x+1)(x+ \\
& \hline
\end{aligned}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
\text { 43. } x^{2}+9 x+8 & =\frac{(x+1)(x+8)}{b+a}+9 \\
b+8 & \text { ab }
\end{aligned}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
\text { 43. } x^{2}+9 x+8 & =\frac{(x+1)(x+8)}{b+a}+9 \\
b+8 & \text { ab }
\end{aligned}
$$

44. $x^{2}+8 x+12=$
45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
43. $x^{2}+9 x+8=(x+1)(x+8)$

$$
b+a=9 \quad a b=8 \quad a=1 \quad b=8
$$

44. $x^{2}+8 x+12=$ \qquad
45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+8} \quad \begin{array}{l}
b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
b+3
\end{array} \\
& \text { 44. } x^{2}+\mathbf{8 x}+\mathbf{1 2}=
\end{aligned}
$$

45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+8} \quad \begin{array}{l}
b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
b+3
\end{array} \\
& \text { 44. } x^{2}+\mathbf{8 x}+\mathbf{1 2}=
\end{aligned}
$$

45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+8} \quad \begin{array}{l}
b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
b+x^{2}+\mathbf{8 x}+\mathbf{1 2}=
\end{array} \\
& \text { 44. } x^{2}=
\end{aligned}
$$

45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12= \\
& \mathrm{b}+\mathrm{a}= \\
& \text { 45. } x^{2}-3 x+2=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{} \begin{array}{l}
\text { b+a }+9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
\text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}= \\
b+a=8
\end{array}
\end{aligned}
$$

45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{} \begin{array}{l}
\text { b+a }+9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
\text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}= \\
b+a=8
\end{array}
\end{aligned}
$$

45. $x^{2}-3 x+2=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{} \begin{array}{l}
\text { b+a }+9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
\text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}= \\
b+a=8
\end{array}
\end{aligned}
$$

45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } \quad x^{2}+\mathbf{9 x}+\mathbf{8}= \\
& b+a=9 \quad \text { (} \mathbf{x}+\mathbf{1})(\mathbf{x}+\mathbf{8}) \\
& \mathrm{b}+\mathrm{a}=9 \quad \mathrm{a}=1 \quad \mathrm{~b}=8 \\
& \text { 44. } \quad \mathbf{x}^{2}+\mathbf{8} \mathbf{x}+\mathbf{1 2}= \\
& \mathrm{b}+\mathrm{a}=8 \quad \text { ab }= \\
& \text { 45. } \quad \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{2}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } \quad x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+1} \\
& b+a=9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}= \\
& b+a=8 \quad a b=12 \\
& \text { 45. } \quad \mathbf{x}^{2}-\mathbf{3 x}+\mathbf{2}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } \quad x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+1} \quad \text { b } b+a=9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}= \\
& b+a=8 \quad a b=12 \\
& \text { 45. } \quad \mathbf{x}^{2}-\mathbf{3 x}+\mathbf{2}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 45. } x^{2}-3 x+2=
$$

\qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12= \\
& b+a=8 \quad a b=12 \quad a=\quad b=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 45. } x^{2}-3 x+2=
$$

\qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12= \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12= \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12= \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12= \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+ \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } \quad x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+1} \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& b+a=9 \quad \text { ab } \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+2)}{b+a=8 \quad a b=12} \quad a=2 \quad b=6 \\
& \text { 45. } \quad \mathbf{x}^{2}-\mathbf{3 x}+\mathbf{2}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } \quad x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+1} \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& b+a=9 \quad \text { ab } \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+2)}{b+a=8 \quad a b=12} \quad a=2 \quad b=6 \\
& \text { 45. } \quad \mathbf{x}^{2}-\mathbf{3 x}+\mathbf{2}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } \quad x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+1} \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& b+a=9 \quad \text { ab } \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+2)}{b+a=8 \quad a b=12} \quad a=2 \quad b=6 \\
& \text { 45. } \quad \mathbf{x}^{2}-\mathbf{3 x}+\mathbf{2}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 45. } x^{2}-3 x+2=
$$

\qquad

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+8=\frac{(x+1)(x+8)}{b} b+a=9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+2)(x+}{b+a=8 \quad a b=12 \quad a=2 \quad b=6}
\end{aligned}
$$

$$
\text { 45. } x^{2}-3 x+2=
$$

\qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+8=\frac{(x+1)(x+8)}{b} b+a=9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+\mathbf{2})(x+6)}{b+a=8 \quad a b=12 \quad a=2 \quad b=6}
\end{aligned}
$$

45. $x^{2}-3 x+2=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\text { 45. } x^{2}-3 x+2=
$$

\qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } \quad x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+1} \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& b+a=9 \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+2)(x+6)}{(x)} \quad \\
& \text { 44. } \quad x^{2}+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } \quad x^{2}-\mathbf{3 x}+\mathbf{2}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } \quad x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{(x+2} \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& b+a=9 \quad \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+\mathbf{2})(x+6)}{b+a=8 \quad a b=12 \quad a=2 \quad b=6} \\
& \text { 45. } \quad x^{2}-\mathbf{3 x}+\mathbf{2}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2= \\
& b+a=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{} \\
& b+a=9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+\mathbf{2})(x+6)}{} \begin{array}{l}
b+a=8 \quad \text { ab }=12 \quad a=2 \quad b=6
\end{array} \\
& \text { 45. } \quad x^{2}-\mathbf{3 x}+\mathbf{2}= \\
& b+a=-3
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& \text { 44. } \quad x^{2}+8 x+12=\frac{(x+2)(x+6)}{b+a} \quad \text { ab }=12 \quad a=2 \quad b=6 \\
& b+a
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{} \\
& b+a=9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
& \text { 44. } \quad x^{2}+\mathbf{8 x}+\mathbf{1 2}=\frac{(x+\mathbf{2})(x+6)}{} \begin{array}{l}
b+a=8 \quad \text { ab }=12 \quad a=2 \quad b=6
\end{array} \\
& \text { 45. } \quad x^{2}-\mathbf{3 x}+\mathbf{2}= \\
& b+a=-3
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2= \\
& b+a=-3 \quad a b=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2= \\
& b+a=-3 \quad a b=2
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2= \\
& b+a=-3 \quad a b=2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+\mathbf{9 x}+\mathbf{8}=\frac{(x+1)(x+8)}{b} \begin{array}{l}
b+a=9 \quad \text { ab }=8 \quad a=1 \quad b=8 \\
\text { 44. } \quad x^{2}+8 x+\mathbf{1 2}=\frac{(x+2)(x+6)}{b+a} \quad \text { ab }=12 \quad a=2 \quad b=6 \\
\text { 45. } \quad x^{2}-\mathbf{3 x}+\mathbf{2}= \\
b+a=-3 \quad \text { ab }=2 \quad a=\quad b=
\end{array}
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2= \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2= \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2= \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2= \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=\text { (} x \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x- \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x-1) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x-1) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x-1) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x-1)(x \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x-1)(x- \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 43. } x^{2}+9 x+8=(x+1)(x+8) \\
& b+a=9 \quad a b=8 \quad a=1 \quad b=8 \\
& \text { 44. } x^{2}+8 x+12=(x+2)(x+6) \\
& b+a=8 \quad a b=12 \quad a=2 \quad b=6 \\
& \text { 45. } x^{2}-3 x+2=(x-1)(x-2) \\
& b+a=-3 \quad a b=2 \quad a=-1 \quad b=-2
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
46. $x^{2}-9 x+20=$
47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
46. $x^{2}-9 x+20=$
47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
46. $x^{2}-9 x+20=$
47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
46. $x^{2}-9 x+20=$
47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a= \\
& \text { 47. } x^{2}-8 x+15=
\end{aligned}
$$

\qquad
48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \\
& \text { 47. } x^{2}-8 x+15=
\end{aligned}
$$

\qquad
48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \\
& \text { 47. } x^{2}-8 x+15=
\end{aligned}
$$

\qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \\
& \text { 47. } x^{2}-8 x+15=
\end{aligned}
$$

\qquad
48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \quad a b= \\
& \text { 47. } \quad x^{2}-8 x+15= \\
& \text { 48. } \quad x^{2}-11 x+24=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \quad a b=20 \\
& \text { 47. } \quad x^{2}-8 x+15= \\
& \text { 48. } \quad x^{2}-11 x+24=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \quad a b=20 \\
& \text { 47. } \quad x^{2}-8 x+15= \\
& \text { 48. } \quad x^{2}-11 x+24=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-\mathbf{9 x}+20= \\
& b+a=-9 \quad a b=20 \quad a=\quad b= \\
& \text { 47. } x^{2}-\mathbf{8 x}+\mathbf{1 5}= \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-\mathbf{9 x}+\mathbf{2 0}= \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b= \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}= \\
& \text { 48. } \quad x^{2}-\mathbf{1 1} x+\mathbf{2 4}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20= \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x}{x} \\
& b+a=-9 \quad \text { ab }=20 \quad \text { a }=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-1 \\
& b+a=-9 \quad \text { ab }=20 \quad \text { a }=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=\frac{(x-4)}{} \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=\frac{(x-4)}{} \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=\frac{(x-4)}{} \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=\frac{(x-4)(x}{} \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-}{} \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-9} \quad \begin{array}{l}
\text { b }+a=-4 \quad b=-5
\end{array}
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-9} \quad \begin{array}{l}
\text { b }+3=-4 \quad b=-5
\end{array}
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-20} \quad a=-4 \quad b=-5
\end{aligned}
$$

47. $x^{2}-8 x+15=$ \qquad
48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5} \quad \begin{array}{l}
b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
\text { 47. } \quad x^{2}-8 x+15=
\end{array}
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5} \quad \begin{array}{l}
b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
\text { 47. } \quad x^{2}-8 x+15=
\end{array}
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5} \quad \begin{array}{l}
b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
\text { 47. } \quad x^{2}-8 x+15=
\end{array}
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+15= \\
& b+a= \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{} \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-8 x+15= \\
& b+a=-8
\end{aligned}
$$

$$
\text { 48. } x^{2}-11 x+24=
$$

\qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{} \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-8 x+15= \\
& b+a=-8
\end{aligned}
$$

$$
\text { 48. } x^{2}-11 x+24=
$$

\qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{} \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-8 x+15= \\
& b+a=-8
\end{aligned}
$$

$$
\text { 48. } x^{2}-11 x+24=
$$

\qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8} x+15= \\
& b+a=-8 \quad a b= \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-8 x+15= \\
& b+a=-8 \quad a b=15
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-\mathbf{9 x}+\mathbf{2 0}=(\mathbf{x}-\mathbf{4})(\mathbf{x}-\mathbf{5}) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}= \\
& b+a=-8 \quad a b=15 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1} x+\mathbf{2 4}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}= \\
& b+a=-8 \quad a b=15 \quad a=\quad b= \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-8 x+15= \\
& b+a=-8 \quad \text { ab }=15 \quad a=-3 \quad b=
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}= \\
& b+a=-8 \quad a b=15 \quad a=-3 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=-5
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}= \\
& b+a=-8 \quad a b=15 \quad a=-3 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=-5
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}= \\
& b+a=-8 \quad a b=15 \quad a=-3 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=-5
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x}{} \begin{array}{l}
b+a=-8 \quad a b=15 \quad a=-3 \\
b=-5
\end{array} \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-}{(x-8} \quad \begin{array}{l}
b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
\text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{array}
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+15=\frac{(x-3)}{b+a=-8 \quad a b=15 \quad a=-3} \quad b=-5
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+15=\frac{(x-3)}{b+a=-8 \quad a b=15 \quad a=-3} \quad b=-5
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-8 x+15=\frac{(x-3)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5}
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-8 x+15=\frac{(x-3)(x}{b+a}=-8 \quad \text { ab }=15 \quad a=-3 \quad b=-5
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-8 x+15=\frac{(x-3)(x-x}{} \\
& b+a=-8 \quad \text { ab }=15 \quad a=-3 \quad b=-5
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+15=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5} \\
& b+
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad \text { ab }=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+15=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5} \\
& b+
\end{aligned}
$$

48. $x^{2}-11 x+24=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-\mathbf{9 x}+\mathbf{2 0}=(\mathbf{x}-\mathbf{4})(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5} \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5} \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5} \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5} \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24= \\
& b+a=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5}+\quad a b=20 \quad a=-4 \quad b=-5 \\
& b+a=-9 \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{(x-3} \quad b=-5 \\
& \text { 47. } \quad x^{2}+a=-8 \quad a b=15 \quad a=-3 \quad \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}= \\
& b+a=-11
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24= \\
& b+a=-11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24= \\
& b+a=-11
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24= \\
& b+a=-11 a b=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5}+\quad a b=20 \quad a=-4 \quad b=-5 \\
& b+a=-9 \quad x^{2} \quad \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3} \quad b=-5 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}= \\
& b+a=-11 \quad a b=24
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-9} \quad \begin{array}{lll}
b+a=-9 & a b=20 & a=-4 \\
b=-5
\end{array} \\
& \text { 47. } \quad x^{2}-8 x+15=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3} \quad b=-5 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}= \\
& b+a=-11 \quad a b=24
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-4} \quad \begin{array}{lll}
b+a=-9 \quad a b=20 \quad a=-4 & b=-5 \\
\text { 47. } \quad x^{2}-8 x+15=\frac{(x-3)(x-5)}{} \begin{array}{l}
b+a=-8 \quad a b=15 \quad a=-3
\end{array} \quad b=-5 \\
\text { 48. } \quad x^{2}-11 x+24= \\
b+a=-11 \quad a b=24 \quad a=\quad b=
\end{array}
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24= \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24= \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24= \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24= \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24=(x \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5}+\quad a b=20 \quad a=-4 \quad b=-5 \\
& b+a=-9 \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{(x-3} \quad b=-5 \\
& \text { 47. } \quad x^{2}+a=-8 \quad a b=15 \quad a=-3 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=(\mathbf{x}- \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5}+\quad a b=20 \quad a=-4 \quad b=-5 \\
& b+a=-9 \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{(x-3} \quad b=-5 \\
& \text { 47. } \quad x^{2}+a=-8 \quad a b=15 \quad a=-3 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=(\mathbf{x}-\mathbf{3}) \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5}+\quad a b=20 \quad a=-4 \quad b=-5 \\
& b+a=-9 \quad x^{2} \quad \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3} \quad b=-5 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=(\mathbf{x}-\mathbf{3}) \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-5}+\quad a b=20 \quad a=-4 \quad b=-5 \\
& b+a=-9 \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{(x-3} \quad b=-5 \\
& \text { 47. } \quad x^{2}+a=-8 \quad a b=15 \quad a=-3 \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=(\mathbf{x}-\mathbf{3}) \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-20} \quad a=-2 \quad b=-5 \\
& b+a=-9 \quad a b=20 \quad a=-4 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5} \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=(\mathbf{x}-\mathbf{3})(x \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } \quad x^{2}-9 x+20=\frac{(x-4)(x-5)}{(x-20} \quad a=-4 \quad b=-5 \\
& b+a=-9 \quad a b=20 \quad a=-4 \\
& \text { 47. } \quad x^{2}-\mathbf{8 x}+\mathbf{1 5}=\frac{(x-3)(x-5)}{b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5} \\
& \text { 48. } \quad x^{2}-\mathbf{1 1 x}+\mathbf{2 4}=(\mathbf{x}-\mathbf{3})(x- \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24=(x-3)(x-8) \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24=(x-3)(x-8) \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 46. } x^{2}-9 x+20=(x-4)(x-5) \\
& b+a=-9 \quad a b=20 \quad a=-4 \quad b=-5 \\
& \text { 47. } x^{2}-8 x+15=(x-3)(x-5) \\
& b+a=-8 \quad a b=15 \quad a=-3 \quad b=-5 \\
& \text { 48. } x^{2}-11 x+24=(x-3)(x-8) \\
& b+a=-11 \quad a b=24 \quad a=-3 \quad b=-8
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
49. $x^{2}+2 x-15=$
50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
49. $x^{2}+2 x-15=$
50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
49. $x^{2}+2 x-15=$
50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.
49. $x^{2}+2 x-15=$
50. $x^{2}-5 x-14=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a= \\
& \text { 50. } x^{2}-5 x-14=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \\
& \text { 50. } x^{2}-5 x-14=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \\
& \text { 50. } x^{2}-5 x-14=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \\
& \text { 50. } x^{2}-5 x-14=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \quad a b= \\
& \text { 50. } x^{2}-\mathbf{5} x-14=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-\mathbf{1 5}= \\
& b+a=2 \quad a b=-15 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14=
\end{aligned}
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-\mathbf{1 5}= \\
& b+a=2 \quad a b=-15 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \quad a b=-15 \quad a=\quad b=
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15= \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x}{x} \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=(x+ \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=(x+5) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=(x+5) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=(x+5) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x}{} \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x-}{(x+15} \quad a=5 \quad b=-3 \\
& b+a=2 \quad \text { ab }=-15
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x-3)}{(x+3} \quad \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x-3)}{(x+3} \quad \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x-3)}{(x+3} \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x-3)}{(x+2)} \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x-3)}{(x+3} \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x-3)}{(x+2)} \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3
\end{aligned}
$$

50. $x^{2}-5 x-14=$ \qquad

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3}) \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14= \\
& b+a=
\end{aligned}
$$

Use this pattern.
$x^{2}+(b+a) x+a b=(x+a)(x+b)$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } \mathbf{x}^{2}+\mathbf{2 x}-\mathbf{1 5}=\frac{(x+5)(x-\mathbf{3})}{(x+a} \quad \begin{array}{l}
\text { b } \\
b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
\text { 50. } \quad x^{2}-\mathbf{5} x-14= \\
b+a=-5
\end{array}
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-\mathbf{1 5}=\frac{(x+5)(x-\mathbf{3})}{(x)} \begin{array}{l}
b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3 \\
\text { 50. } \quad x^{2}-\mathbf{5} x-14= \\
b+a=-5
\end{array}
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-\mathbf{1 5}=\frac{(x+5)(x-\mathbf{3})}{(x)} \begin{array}{l}
b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3 \\
\text { 50. } \quad x^{2}-\mathbf{5} x-14= \\
b+a=-5
\end{array}
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3}) \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-\mathbf{1 4}= \\
& b+a=-5 \quad a b=
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3}) \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14= \\
& b+a=-5 \quad a b=-14
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-\mathbf{1 5}=\left(\begin{array}{l}
(x+5)(x-3) \\
b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
\text { 50. } \quad x^{2}-\mathbf{5 x}-\mathbf{1 4}= \\
b+a=-5 \quad a b=-14
\end{array}\right.
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } \quad x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3}) \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14= \\
& b+a=-5 \quad a b=-14 \quad a=\quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } \quad x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3}) \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-\mathbf{1 4}= \\
& b+a=-5 \quad \text { ab }=-14 \quad a=2 \quad b=
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } \quad x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3}) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-\mathbf{1 4}= \\
& b+a=-5 \quad \text { ab }=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } \quad x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3}) \\
& b+a=2 \quad \text { ab }=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5 x}-\mathbf{1 4}= \\
& b+a=-5 \quad \text { ab }=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } \quad x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathbf{x}-\mathbf{3}) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-\mathbf{1 4}= \\
& b+a=-5 \quad \text { ab }=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-15=\frac{(x+5)(x-3)}{} \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14=\frac{(x}{x} \\
& b+a=-5 \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-15=(x+5)(x-3) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5 x}-\mathbf{1 4}=\frac{(x+}{} \\
& b+a=-5 \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=(x+5)(x-3) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } x^{2}-5 x-14=(x+2) \\
& b+a=-5 \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) x+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=(x+5)(x-3) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } x^{2}-5 x-14=(x+2) \\
& b+a=-5 \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=(x+5)(x-3) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } x^{2}-5 x-14=(x+2) \\
& b+a=-5 \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
x^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-15=(x+\mathbf{5})(x-\mathbf{3}) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14=\frac{(x+2)(x}{} \\
& b+a=-5 \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+a) x+a b=(x+a)(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-15=(x+5)(x-3) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14=\frac{(x+2)(x-}{(x)} \\
& b+a=-5 \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } \quad x^{2}+\mathbf{2 x}-\mathbf{1 5}=(\mathbf{x}+\mathbf{5})(\mathrm{x}-\mathbf{3}) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14=\frac{(x+2)(x-7)}{(x+a=-5 \quad a b=-14 \quad a=2 \quad b=-7}
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+\mathbf{2 x}-15=(x+5)(x-\mathbf{3}) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14=\frac{(x+2)(x-7)}{(x+a=-5} \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=(x+5)(x-3) \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } \quad x^{2}-\mathbf{5} x-14=\frac{(x+2)(x-7)}{} \\
& b+a=-5 \quad a b=-14 \quad a=2 \quad b=-7
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(b+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+b)
$$

Algebra I Class Worksheet \#1 Unit 11

Factor each of the following completely.

$$
\begin{aligned}
& \text { 49. } x^{2}+2 x-15=\frac{(x+5)(x-3)}{} \\
& b+a=2 \quad a b=-15 \quad a=5 \quad b=-3 \\
& \text { 50. } x^{2}-5 x-14=(x+2)(x-7) \\
& \text { Good luck on your homework!! }
\end{aligned}
$$

Use this pattern.

$$
\mathbf{x}^{2}+(\mathbf{b}+\mathbf{a}) \mathbf{x}+\mathbf{a b}=(x+\mathbf{a})(x+\mathbf{b})
$$

