Algebra I Lesson \#3 Unit 10 Class Worksheet \#3
For Worksheets \#4-\#6

Algebra I Multiplying Monomials

Algebra I Multiplying Monomials

Monomial:

Algebra I Multiplying Monomials

Monomial: a polynomial

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.

$$
5 x
$$

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.
$5 x \quad-3 y$

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.

$$
\begin{array}{lll}
5 x & -3 y & x
\end{array}
$$

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.

$$
\begin{array}{llll}
5 x & -3 y & x & 2
\end{array}
$$

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.
5x
$-3 y$
x
2
x^{4}

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.
5x
$-3 y$
x
2
x^{4}
$8 x y$

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.
5x
$-3 y$
x
2
x^{4}
$8 x y-7 a c$

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.
5x
$-3 y$
x
2
x^{4}
$8 x y \quad-7 \mathrm{ac} \quad 15 x^{3}$

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.
5x
$-3 y$
x
2
x^{4}
$8 x y$
$-7 \mathrm{ac}$
$15 x^{3}$
-7

Algebra I Multiplying Monomials

Monomial: a polynomial with one term.
Here are some examples.
5x
$-3 y$
x
2
x^{4}
$\begin{array}{lllll}8 x y & -7 a c & 15 x^{3} & -7 & 12 x^{3} y^{2} z\end{array}$

Algebra I Multiplying Monomials

Multiplying Powers of x

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=$

Algebra I Multiplying Monomials

Multiplying Powers of x

$$
\text { 1. } \begin{aligned}
& \left(x^{3}\right)\left(x^{4}\right)= \\
\left(x^{3}\right)\left(x^{4}\right) & =
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

$$
\text { 1. } \begin{aligned}
\quad\left(x^{3}\right)\left(x^{4}\right) & = \\
\left(x^{3}\right)\left(x^{4}\right) & =(x \cdot x \cdot x)
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

$$
\text { 1. } \begin{aligned}
\left(x^{3}\right)\left(x^{4}\right) & = \\
\left(x^{3}\right)\left(x^{4}\right) & =(x \cdot x \cdot x)(x \cdot x \cdot x \cdot x)
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

$$
\text { 1. } \begin{aligned}
\left(x^{3}\right)\left(x^{4}\right) & = \\
\left(x^{3}\right)\left(x^{4}\right) & =(x \cdot x \cdot x)(x \cdot x \cdot x \cdot x) \\
\left(x^{3}\right)\left(x^{4}\right) & =
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

$$
\text { 1. } \begin{aligned}
\left(x^{3}\right)\left(x^{4}\right) & = \\
\left(x^{3}\right)\left(x^{4}\right) & =(x \cdot x \cdot x)(x \cdot x \cdot x \cdot x) \\
\left(x^{3}\right)\left(x^{4}\right) & =x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

$$
\text { 1. } \begin{aligned}
\left(x^{3}\right)\left(x^{4}\right) & ={x^{7}}^{\left(x^{3}\right)\left(x^{4}\right)}=(x \cdot x \cdot x)(x \cdot x \cdot x \cdot x) \\
\left(x^{3}\right)\left(x^{4}\right) & =x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=$

$$
\left(x^{2}\right)\left(x^{6}\right)=
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=$

$$
\left(x^{2}\right)\left(x^{6}\right)=(x \cdot x)
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=$

$$
\left(x^{2}\right)\left(x^{6}\right)=(x \cdot x)(x \cdot x \cdot x \cdot x \cdot x \cdot x)
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\underline{\mathbf{x}^{7}}$
2. $\left(x^{2}\right)\left(x^{6}\right)=$

$$
\begin{aligned}
& \left(x^{2}\right)\left(x^{6}\right)=(x \cdot x)(x \cdot x \cdot x \cdot x \cdot x \cdot x) \\
& \left(x^{2}\right)\left(x^{6}\right)=
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\underline{\mathbf{x}^{7}}$
2. $\left(x^{2}\right)\left(x^{6}\right)=$

$$
\begin{aligned}
& \left(x^{2}\right)\left(x^{6}\right)=(x \cdot x)(x \cdot x \cdot x \cdot x \cdot x \cdot x) \\
& \left(x^{2}\right)\left(x^{6}\right)=x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=\mathbf{x}^{8}$

$$
\begin{aligned}
& \left(x^{2}\right)\left(x^{6}\right)=(x \cdot x)(x \cdot x \cdot x \cdot x \cdot x \cdot x) \\
& \left(x^{2}\right)\left(x^{6}\right)=x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=$ \qquad

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=$
$\left(x^{5}\right)\left(x^{5}\right)=$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=$

$$
\left(x^{5}\right)\left(x^{5}\right)=(x \cdot x \cdot x \cdot x \cdot x)
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=\mathbf{x}^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=$

$$
\left(x^{5}\right)\left(x^{5}\right)=(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\underline{x^{7}}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=$

$$
\begin{aligned}
& \left(x^{5}\right)\left(x^{5}\right)=(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x \cdot x) \\
& \left(x^{5}\right)\left(x^{5}\right)=
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\underline{x^{7}}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=$

$$
\begin{aligned}
& \left(x^{5}\right)\left(x^{5}\right)=(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x \cdot x) \\
& \left(x^{5}\right)\left(x^{5}\right)=x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\underline{x^{7}}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$

$$
\begin{aligned}
& \left(x^{5}\right)\left(x^{5}\right)=(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x \cdot x) \\
& \left(x^{5}\right)\left(x^{5}\right)=x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $(x)\left(x^{3}\right)=$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $(x)\left(x^{3}\right)=$
$\left(x^{1}\right)\left(x^{3}\right)=$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $(x)\left(x^{3}\right)=$

$$
\left(\mathrm{x}^{1}\right)\left(\mathrm{x}^{3}\right)=(\mathrm{x})
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $(x)\left(x^{3}\right)=$

$$
\left(\mathrm{x}^{1}\right)\left(\mathrm{x}^{3}\right)=(\mathrm{x})(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=\mathbf{x}^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $(x)\left(x^{3}\right)=$

$$
\left(\mathrm{x}^{1}\right)\left(\mathrm{x}^{3}\right)=(\mathrm{x})(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})
$$

$$
\left(x^{1}\right)\left(x^{3}\right)=
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=\mathbf{x}^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $(x)\left(x^{3}\right)=$

$$
\left(\mathrm{x}^{1}\right)\left(\mathrm{x}^{3}\right)=(\mathrm{x})(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})
$$

$$
\left(x^{1}\right)\left(x^{3}\right)=x \cdot x \cdot x \cdot x
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=\mathbf{x}^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $(x)\left(x^{3}\right)=\mathbf{x}^{4}$

$$
\left(\mathrm{x}^{1}\right)\left(\mathrm{x}^{3}\right)=(\mathrm{x})(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})
$$

$$
\left(x^{1}\right)\left(x^{3}\right)=x \cdot x \cdot x \cdot x
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=x^{4}$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7} \quad$ Rule:
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=x^{4}$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$

Rule: When multiplying two powers of x ,
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=\underline{x^{4}}$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$

Rule: When multiplying two powers of x, you just add the exponents.
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=x^{4}$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$

Rule: When multiplying two powers of x, you just add the exponents.
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
(x^{a})
4. $\left(x^{1}\right)\left(x^{3}\right)=x^{4}$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$

Rule: When multiplying two powers of x, you just add the exponents.
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
(x^{a}) $\left(x^{b}\right)$
4. $\left(x^{1}\right)\left(x^{3}\right)=x^{4}$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=x^{4}$

Rule: When multiplying two powers of x, you just add the exponents.
$\left(\mathbf{x}^{\mathrm{a}}\right)\left(\mathbf{x}^{\mathrm{b}}\right)=$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=x^{4}$

Rule: When multiplying two powers of x, you just add the exponents.
$\left(\mathbf{x}^{\mathrm{a}}\right)\left(\mathbf{x}^{\mathbf{b}}\right)=\mathbf{x}$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=\underline{x^{4}}$

Rule: When multiplying two powers of x, you just add the exponents.

$$
\left(\mathbf{x}^{\mathrm{a}}\right)\left(\mathbf{x}^{\mathrm{b}}\right)=\mathbf{x}^{(\mathbf{a}}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=\underline{x^{4}}$

Rule: When multiplying two powers of x, you just add the exponents.
$\left(\mathbf{x}^{\mathbf{a}}\right)\left(\mathbf{x}^{\mathbf{b}}\right)=\mathbf{x}^{\left({ }^{(a+}\right.}$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
4. $\left(x^{1}\right)\left(x^{3}\right)=\underline{x^{4}}$

Rule: When multiplying two powers of x, you just add the exponents.

$$
\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}
$$

Algebra I Multiplying Monomials

Multiplying Powers of x

1. $\left(x^{3}\right)\left(x^{4}\right)=\mathbf{x}^{7}$
2. $\left(x^{2}\right)\left(x^{6}\right)=x^{8}$

Rule: When multiplying two powers of x, you just add the exponents.
3. $\left(x^{5}\right)\left(x^{5}\right)=\mathbf{x}^{10}$
$\left(\mathbf{x}^{\mathrm{a}}\right)\left(\mathbf{x}^{\mathbf{b}}\right)=\mathbf{x}^{\left({ }^{(a+b)}\right.}$
4. $\left(x^{1}\right)\left(x^{3}\right)=x^{4}$

Algebra I Multiplying Monomials

Consider the following examples.

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=$ \qquad

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=$
$(3 \mathrm{x})(5)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=$ \qquad
$(3 \mathrm{x})(5)=3 \cdot \mathrm{x}$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=$
$(3 x)(5)=3 \cdot x \cdot 5$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=$
$(3 \mathrm{x})(5)=3 \cdot \mathrm{x} \cdot 5$
$(3 \mathrm{x})(5)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=$ \qquad
$(3 \mathrm{x})(5)=3 \cdot \mathrm{x} \cdot 5$
$(3 \mathrm{x})(5)=3 \cdot 5 \cdot \mathrm{x}$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15}$
$(3 x)(5)=3 \cdot x \cdot 5$
$(3 \mathrm{x})(5)=3 \cdot 5 \cdot \mathrm{x}$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
$(3 x)(5)=3 \cdot x \cdot 5$
$(3 \mathrm{x})(5)=3 \cdot 5 \cdot \mathrm{x}$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=$

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 \mathrm{x})(4 \mathrm{x})=$
$(2 x)(4 x)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=$
$(2 \mathrm{x})(4 \mathrm{x})=2 \cdot \mathrm{x}$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=$
$(2 \mathrm{x})(4 \mathrm{x})=2 \cdot \mathrm{x} \cdot 4 \cdot \mathrm{x}$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 \mathrm{x})(4 \mathrm{x})=$
$(2 \mathrm{x})(4 \mathrm{x})=2 \cdot \mathrm{x} \cdot 4 \cdot \mathrm{x}$
$(2 x)(4 x)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 x)(4 x)=$
$(2 \mathrm{x})(4 \mathrm{x})=2 \cdot \mathrm{x} \cdot 4 \cdot \mathrm{x}$
$(2 x)(4 x)=2 \cdot 4$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 x)(4 x)=$
$(2 \mathrm{x})(4 \mathrm{x})=2 \cdot \mathrm{x} \cdot 4 \cdot \mathrm{x}$

$$
(2 \mathrm{x})(4 \mathrm{x})=2 \cdot 4 \cdot \mathrm{x} \cdot \mathrm{x}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 \mathrm{x})(4 \mathrm{x})=\underline{\mathbf{8}}$
$(2 \mathrm{x})(4 \mathrm{x})=2 \cdot \mathrm{x} \cdot 4 \cdot \mathrm{x}$

$$
(2 \mathrm{x})(4 \mathrm{x})=2 \cdot 4 \cdot \mathrm{x} \cdot \mathrm{x}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 \mathrm{x})(4 \mathrm{x})=\boldsymbol{8} \mathrm{x}^{2}$
$(2 \mathrm{x})(4 \mathrm{x})=2 \cdot \mathrm{x} \cdot 4 \cdot \mathrm{x}$
$(2 x)(4 x)=2 \cdot 4 \cdot x \cdot x$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=15 x$
6. $(2 x)(4 x)=\underline{8} x^{2}$

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=$

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=$ \qquad
$\left(5 x^{2}\right)\left(-8 x^{3}\right)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{15 x}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=$
$\left(5 x^{2}\right)\left(-8 x^{3}\right)=5 \cdot x^{2}$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{15 x}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=$

$$
\left(5 x^{2}\right)\left(-8 x^{3}\right)=5 \cdot x^{2} \cdot(-8) \cdot x^{3}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=$
$\left(5 x^{2}\right)\left(-8 x^{3}\right)=5 \cdot x^{2} \cdot(-8) \cdot x^{3}$
$\left(5 x^{2}\right)\left(-8 x^{3}\right)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=$

$$
\begin{aligned}
& \left(5 x^{2}\right)\left(-8 x^{3}\right)=5 \cdot x^{2} \cdot(-8) \cdot x^{3} \\
& \left(5 x^{2}\right)\left(-8 x^{3}\right)=5 \cdot(-8)
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=$

$$
\begin{aligned}
\left(5 x^{2}\right)\left(-8 x^{3}\right) & =5 \cdot x^{2} \cdot(-8) \cdot x^{3} \\
\left(5 x^{2}\right)\left(-8 x^{3}\right) & =5 \cdot(-8) \cdot x^{2} \cdot x^{3}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=\mathbf{- 4 0}$

$$
\begin{aligned}
\left(5 x^{2}\right)\left(-8 x^{3}\right) & =5 \cdot x^{2} \cdot(-8) \cdot x^{3} \\
\left(5 x^{2}\right)\left(-8 x^{3}\right) & =5 \cdot(-8) \cdot x^{2} \cdot x^{3}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=\mathbf{- 4 0 x ^ { 5 }}$

$$
\begin{aligned}
\left(5 x^{2}\right)\left(-8 x^{3}\right) & =5 \cdot x^{2} \cdot(-8) \cdot x^{3} \\
\left(5 x^{2}\right)\left(-8 x^{3}\right) & =5 \cdot(-8) \cdot x^{2} \cdot x^{3}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-\mathbf{4 0} \mathbf{x}^{5}$

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$ \qquad

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$ \qquad

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$

$$
\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-\mathbf{4 0} \mathbf{x}^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$

$$
\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$

$$
\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y \cdot(-3) \cdot x \cdot y^{2}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{15 x}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$

$$
\begin{aligned}
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y \cdot(-3) \cdot x \cdot y^{2} \\
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$

$$
\begin{aligned}
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y \cdot(-3) \cdot x \cdot y^{2} \\
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot(-3)
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$

$$
\begin{aligned}
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y \cdot(-3) \cdot x \cdot y^{2} \\
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot(-3) \cdot x^{2} \cdot x
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=$

$$
\begin{aligned}
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y \cdot(-3) \cdot x \cdot y^{2} \\
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot(-3) \cdot x^{2} \cdot x \cdot y \cdot y^{2}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}}$

$$
\begin{aligned}
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y \cdot(-3) \cdot x \cdot y^{2} \\
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot(-3) \cdot x^{2} \cdot x \cdot y \cdot y^{2}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{3}$

$$
\begin{aligned}
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y \cdot(-3) \cdot x \cdot y^{2} \\
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot(-3) \cdot x^{2} \cdot x \cdot y \cdot y^{2}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-\mathbf{4 0} \mathbf{x}^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{3} \mathbf{y}^{\mathbf{3}}$

$$
\begin{aligned}
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot x^{2} \cdot y \cdot(-3) \cdot x \cdot y^{2} \\
& \left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=(-8) \cdot(-3) \cdot x^{2} \cdot x \cdot y \cdot y^{2}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{3}}$

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=$

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=$ \qquad
$\left(-1 x^{5}\right)\left(2 x^{3}\right)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=$ \qquad
$\left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot x^{5}$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=$ \qquad

$$
\left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot x^{5} \cdot 2 \cdot x^{3}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{3} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=$ \qquad
$\left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot x^{5} \cdot 2 \cdot x^{3}$
$\left(-1 x^{5}\right)\left(2 x^{3}\right)=$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=15 x$
6. $(2 x)(4 x)=\underline{8 x^{2}}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{3} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=$ \qquad

$$
\begin{aligned}
& \left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot x^{5} \cdot 2 \cdot x^{3} \\
& \left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot 2
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=15 x$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-\mathbf{4 0} \mathbf{x}^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{3} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=$ \qquad

$$
\begin{aligned}
& \left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot x^{5} \cdot 2 \cdot x^{3} \\
& \left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot 2 \cdot x^{5} \cdot x^{3}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=\underline{15 x}$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-\mathbf{4 0} \mathbf{x}^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{3} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=-2$

$$
\begin{aligned}
& \left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot x^{5} \cdot 2 \cdot x^{3} \\
& \left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot 2 \cdot x^{5} \cdot x^{3}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 x)(5)=15 x$
6. $(2 x)(4 x)=8 \mathbf{x}^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-\mathbf{4 0} \mathbf{x}^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=-2 x^{8}$

$$
\begin{aligned}
& \left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot x^{5} \cdot 2 \cdot x^{3} \\
& \left(-1 x^{5}\right)\left(2 x^{3}\right)=(-1) \cdot 2 \cdot x^{5} \cdot x^{3}
\end{aligned}
$$

Just rearrange the factors !!!

Algebra I Multiplying Monomials

Consider the following examples.
5. $(3 \mathrm{x})(5)=\underline{\mathbf{1 5 x}}$
6. $(2 x)(4 x)=8 x^{2}$
7. $\left(5 x^{2}\right)\left(-8 x^{3}\right)=-40 x^{5}$
8. $\left(-8 x^{2} y\right)\left(-3 x y^{2}\right)=\underline{\mathbf{2 4}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{3}}$
9. $\left(-x^{5}\right)\left(2 x^{3}\right)=-2 x^{8}$

Algebra I Multiplying Monomials

Algebra I Multiplying Monomials

Powers of Monomials

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(\mathrm{x}^{2}\right)^{3}=$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=$

$$
\left(x^{2}\right)^{3}=
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. }\left(x^{2}\right)^{3}= \\
& \left(x^{2}\right)^{3}=x^{2} \cdot x^{2} \cdot x^{2}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. }\left(x^{2}\right)^{3}= \\
& \left(x^{2}\right)^{3}=x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{3}=
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. } \quad\left(x^{2}\right)^{3}= \\
& \left(x^{2}\right)^{3}=x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{3}=(x \cdot x)(x \cdot x)(x \cdot x)
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. }\left(x^{2}\right)^{3}= \\
& \left(x^{2}\right)^{3}=x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{3}=(x \cdot x)(x \cdot x)(x \cdot x) \\
& \left(x^{2}\right)^{3}=
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. } \quad\left(x^{2}\right)^{3}= \\
& \begin{array}{l}
\left(x^{2}\right)^{3}=x^{2} \cdot x^{2} \cdot x^{2} \\
\left(x^{2}\right)^{3}=(x \cdot x)(x \cdot x)(x \cdot x) \\
\left(x^{2}\right)^{3}=x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{array}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. } \quad\left(x^{2}\right)^{3}=x^{6} \\
& \left(x^{2}\right)^{3}=x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{3}=(x \cdot x)(x \cdot x)(x \cdot x) \\
& \left(x^{2}\right)^{3}=x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. }\left(x^{2}\right)^{3}=x^{6} \\
& \text { 2. }\left(x^{2}\right)^{4}=
\end{aligned}
$$

$$
\left(x^{2}\right)^{4}=
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. }\left(x^{2}\right)^{3}=x^{6} \\
& \text { 2. }\left(x^{2}\right)^{4}= \\
& \left(x^{2}\right)^{4}=x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=$

$$
\begin{aligned}
& \left(x^{2}\right)^{4}=x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{4}=
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=$

$$
\begin{aligned}
& \left(x^{2}\right)^{4}=x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{4}=(x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x)
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 1. }\left(x^{2}\right)^{3}=x^{6} \\
& \text { 2. }\left(x^{2}\right)^{4}= \\
& \left(x^{2}\right)^{4}=x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{4}=(x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x) \\
& \left(x^{2}\right)^{4}=
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=$

$$
\begin{aligned}
& \left(x^{2}\right)^{4}=x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{4}=(x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x) \\
& \left(x^{2}\right)^{4}=x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$

$$
\begin{aligned}
& \left(x^{2}\right)^{4}=x^{2} \cdot x^{2} \cdot x^{2} \cdot x^{2} \\
& \left(x^{2}\right)^{4}=(x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x)
\end{aligned}
$$

$$
\left(x^{2}\right)^{4}=x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\mathbf{x}^{8}$
3. $\left(x^{3}\right)^{3}=$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=$

$$
\left(x^{3}\right)^{3}=
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=$

$$
\left(x^{3}\right)^{3}=x^{3} \cdot x^{3} \cdot x^{3}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\mathbf{x}^{8}$
3. $\left(x^{3}\right)^{3}=$

$$
\begin{aligned}
& \left(x^{3}\right)^{3}=x^{3} \cdot x^{3} \cdot x^{3} \\
& \left(x^{3}\right)^{3}=
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=$

$$
\begin{aligned}
& \left(x^{3}\right)^{3}=x^{3} \cdot x^{3} \cdot x^{3} \\
& \left(x^{3}\right)^{3}=(x \cdot x \cdot x)(x \cdot x \cdot x)(x \cdot x \cdot x)
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=$

$$
\begin{aligned}
& \left(x^{3}\right)^{3}=x^{3} \cdot x^{3} \cdot x^{3} \\
& \left(x^{3}\right)^{3}=(x \cdot x \cdot x)(x \cdot x \cdot x)(x \cdot x \cdot x) \\
& \left(x^{3}\right)^{3}=
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=$

$$
\begin{aligned}
& \left(x^{3}\right)^{3}=x^{3} \cdot x^{3} \cdot x^{3} \\
& \left(x^{3}\right)^{3}=(x \cdot x \cdot x)(x \cdot x \cdot x)(x \cdot x \cdot x) \\
& \left(x^{3}\right)^{3}=x \cdot x \cdot x
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\underline{x^{8}}$
3. $\left(x^{3}\right)^{3}=x^{9}$

$$
\left(x^{3}\right)^{3}=x^{3} \cdot x^{3} \cdot x^{3}
$$

$$
\left(\mathrm{x}^{3}\right)^{3}=(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x})
$$

$$
\left(x^{3}\right)^{3}=x \cdot x \cdot x
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\mathbf{x}^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$
$\left(x^{5}\right)^{6}=$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\mathbf{x}^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$

$$
\left(x^{5}\right)^{6}=x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\mathbf{x}^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$
$\left(x^{5}\right)^{6}=x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5}$
$\left(x^{5}\right)^{6}=$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\underline{x^{8}}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$ \qquad

$$
\begin{aligned}
& \left(x^{5}\right)^{6}=x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \\
& \left(x^{5}\right)^{6}=(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot z
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$ \qquad

$$
\begin{aligned}
& \left(x^{5}\right)^{6}=x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \\
& \left(x^{5}\right)^{6}=(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x
\end{aligned}
$$

We have a problem !!!

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$ \qquad

$$
\begin{aligned}
& \left(x^{5}\right)^{6}=x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \\
& \left(x^{5}\right)^{6}=(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)\left(x \cdot x \cdot x^{2}\right.
\end{aligned}
$$

We need a rule !!!

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$

Rule:
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$ \qquad

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$

Rule: When a power of x
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$ \qquad

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\underline{x}^{8}$
3. $\left(x^{3}\right)^{3}=\underline{x}^{9}$
4. $\left(\mathrm{x}^{5}\right)^{6}=$ \qquad

Rule: When a power of x is raised to another power,

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$ \qquad

Rule: When a power of x is raised to another power, you just multiply the exponents.

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$ \qquad

Rule: When a power of x is raised to another power, you just multiply the exponents.

$$
\left(x^{a}\right)^{b}=
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=\underline{x}^{8}$
3. $\left(x^{3}\right)^{3}=x^{9}$
4. $\left(x^{5}\right)^{6}=$ \qquad

Rule: When a power of x is raised to another power, you just multiply the exponents.

$$
\left(x^{a}\right)^{b}=x^{a b}
$$

Algebra I Multiplying Monomials

Powers of Monomials

1. $\left(x^{2}\right)^{3}=x^{6}$
2. $\left(x^{2}\right)^{4}=x^{8}$
3. $\left(x^{3}\right)^{3}=\mathbf{x}^{9}$
4. $\left(x^{5}\right)^{6}=x^{30}$

Rule: When a power of x is raised to another power, you just multiply the exponents.

$$
\left(x^{a}\right)^{b}=x^{a b}
$$

Algebra I Multiplying Monomials

Powers of Monomials

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 5. }(2 x)^{3}=
$$

Algebra I Multiplying Monomials

Powers of Monomials

5. $(2 x)^{3}=$

$(2 \mathrm{x})^{3}=$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. }(2 x)^{3}= \\
& (2 x)^{3}=(2 x)(2 x)(2 x)
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. }(2 x)^{3}= \\
& (2 x)^{3}=(2 x)(2 x)(2 x) \\
& (2 x)^{3}=
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. }(2 x)^{3}= \\
& (2 x)^{3}=(2 x)(2 x)(2 x) \\
& (2 x)^{3}=
\end{aligned}
$$

Rearrange the factors !!!

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \quad \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x)
\end{aligned} \\
& (2 x)^{3}=(2 \cdot 2 \cdot 2)(x \cdot x \cdot x)
\end{aligned}
$$

Rearrange the factors !!!

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x)
\end{aligned}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 5. }(2 x)^{3}=
$$

$$
(2 x)^{3}=(2 x)(2 x)(2 x)
$$

$$
(2 x)^{3}=(2 \cdot 2 \cdot 2)(x \cdot x \cdot x)
$$

$$
(2 x)^{3}=
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3}
\end{aligned}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 5. }(2 x)^{3}=
$$

$$
(2 x)^{3}=(2 x)(2 x)(2 x)
$$

$$
(2 x)^{3}=(2 \cdot 2 \cdot 2)(x \cdot x \cdot x)
$$

$$
(2 x)^{3}=2^{3}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3} \cdot x^{3}
\end{aligned}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3} \cdot x^{3}
\end{aligned}
\end{aligned}
$$

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3} \cdot x^{3}
\end{aligned}
\end{aligned}
$$

Notice that every factor inside the parenthesis

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3} \cdot x^{3}
\end{aligned}
\end{aligned}
$$

Notice that every factor inside the parenthesis

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
&(2 x)^{3}= \\
&(2 x)^{3}=(2 x)(2 x)(2 x) \\
&(2 x)^{3}=(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
&(2 x)^{3}=2^{3} \cdot x^{3} \\
& 4 \uparrow
\end{aligned}
\end{aligned}
$$

Notice that every factor inside the parenthesis

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=$

$$
\begin{aligned}
& (2 x)^{3}=(2 x)(2 x)(2 x) \\
& (2 x)^{3}=(2 \cdot 2 \cdot 2)(x \cdot x \cdot x)
\end{aligned}
$$

$$
(2 x)^{3}=2^{3} \cdot x^{3}
$$

$$
\uparrow \uparrow
$$

Notice that every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=$

$$
\begin{aligned}
& (2 x)^{3}=(2 x)(2 x)(2 x) \\
& (2 x)^{3}=(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
& (2 x){ }^{\frac{1}{4}}=2^{3} \cdot x^{3} \\
& \uparrow \uparrow
\end{aligned}
$$

Notice that every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =
\end{aligned}
\end{aligned}
$$

Notice that every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=$

$$
\begin{aligned}
& (2 \mathrm{x})^{3}=(2 \mathrm{x})(2 \mathrm{x})(2 \mathrm{x}) \\
& (2 \mathrm{x})^{3}=(2 \cdot 2 \cdot 2)(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x}) \\
& (2 \mathrm{x})^{3}=\underset{\uparrow}{2}
\end{aligned}
$$

Notice that every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
&(2 \mathrm{x})^{3}= \\
&(2 \mathrm{x})^{3}=(2 \mathrm{x})(2 \mathrm{x})(2 \mathrm{x}) \\
&(2 \mathrm{x})^{3}=(2 \cdot 2 \cdot 2)(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x}) \\
& \downarrow \\
&(2 \mathrm{x})^{3}=2^{3}
\end{aligned}
\end{aligned}
$$

Notice that every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3} .
\end{aligned}
\end{aligned}
$$

Notice that every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=$

$$
\begin{aligned}
& (2 \mathrm{x})^{3}=(2 \mathrm{x})(2 \mathrm{x})(2 \mathrm{x}) \\
& (2 \mathrm{x})^{3}=(2 \cdot 2 \cdot 2)(\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x}) \\
& (2 \mathrm{x})^{3}=2^{3} \cdot \mathrm{x} \\
& \uparrow
\end{aligned}
$$

Notice that every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=$

$$
\begin{aligned}
&(2 x)^{3}=(2 x)(2 x)(2 x) \\
&(2 x)^{3}=(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
& \downarrow \\
&(2 x)^{3}=2^{3} \cdot x^{3}
\end{aligned}
$$

Notice that every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Take another look.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & = \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3} \cdot x^{3}
\end{aligned}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & =\underline{8} \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3} \cdot x^{3}
\end{aligned}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 5. } \begin{aligned}
(2 x)^{3} & =\underline{8 x^{3}} \\
(2 x)^{3} & =(2 x)(2 x)(2 x) \\
(2 x)^{3} & =(2 \cdot 2 \cdot 2)(x \cdot x \cdot x) \\
(2 x)^{3} & =2^{3} \cdot x^{3}
\end{aligned} .
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 5. }(2 x)^{3}=8 x^{3}
$$

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 x)^{2}=$

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=$
$(5 \mathrm{x})^{2}=$

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$
$(5 \mathrm{x})^{2}=$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 x)^{2}=$
$(5 x)^{2}=$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$
$(5 \mathrm{x})^{2}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 x)^{2}=$
$(5 \mathrm{x})^{2}=$ $\uparrow \uparrow$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$
$(5 \mathrm{x})^{2}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$

$$
\underset{\uparrow}{(5 x)^{2}}=\underset{\uparrow}{5}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$ \qquad

$$
(5 x)^{2}=5^{2}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$

$$
(5 x)^{2}=5^{2}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$

$$
\underset{\uparrow}{(5 x})^{2}=\underbrace{2 \cdot x}_{\uparrow}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$ $(5 \mathrm{x})^{\downarrow}=5^{2} \cdot \mathrm{x}^{\downarrow}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 x)^{2}=$

$$
(5 x)^{2}=5^{2} \cdot x^{2}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5}}$

$$
(5 x)^{2}=5^{2} \cdot x^{2}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$

$$
(5 x)^{2}=5^{2} \cdot x^{2}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=$

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=$
$(3 x y)^{4}=$

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=$
$(3 x y)^{4}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=$
$\underset{\uparrow}{(3 x y})^{4}=\underset{\uparrow}{3}$
Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=$ \qquad

$$
(3 x y)^{4}=3^{4}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{81}$

$$
(3 x y)^{4}=3^{4}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{81}$

$$
(3 x y)^{4}=3^{4} .
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{81}$

$$
\underset{\uparrow}{(3 x y)^{4}}={ }_{\uparrow}^{3^{4} \cdot x}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{81}$
$(3 x y)^{4}=3^{4} \cdot x^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{81 x^{4}}$
$(3 x y)^{4}=3^{4} \cdot x^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{81 x^{4}}$

$$
(3 x y)^{4}=3^{4} \cdot x^{4} .
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{81 x^{4}}$

$$
\underset{\uparrow}{(3 x y})^{4}=3^{4} \cdot x^{4} \cdot y
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{81 x^{4}}$
$(3 x y)^{4}=3^{4} \cdot x^{4} \cdot y^{\downarrow}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{\mathbf{8 1}} \mathbf{x}^{4} \mathbf{y}^{4}$

$$
(3 x y)^{4}=3^{4} \cdot x^{4} \cdot y^{4}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{\mathbf{8 1}} \mathbf{x}^{4} \mathbf{y}^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}} \quad$ Rule:
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{\mathbf{8 1}} \mathbf{x}^{4} \mathbf{y}^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=8 x^{3}$

Rule: $(\mathbf{a b})^{\mathbf{n}}=$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{\mathbf{8 1}} \mathbf{x}^{4} \mathbf{y}^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$

Rule: $(\mathbf{a b})^{\mathbf{n}}=\mathbf{a}^{\mathbf{n}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{\mathbf{8 1}} \mathbf{x}^{4} \mathbf{y}^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 \mathrm{x})^{3}=\underline{8 \mathbf{x}^{3}} \quad$ Rule: $(\mathbf{a b})^{\mathbf{n}}=\mathbf{a}^{\mathbf{n} .}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{\mathbf{8 1}} \mathbf{x}^{4} \mathbf{y}^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
5. $(2 x)^{3}=\underline{8 x^{3}}$

Rule: $(\mathbf{a b})^{\mathbf{n}}=\mathbf{a}^{\mathbf{n}} \cdot \mathbf{b}^{\mathbf{n}}$
6. $(5 \mathrm{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
7. $(3 x y)^{4}=\underline{\mathbf{8 1}} \mathbf{x}^{4} \mathbf{y}^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=$

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=$
$\left(2 x^{3}\right)^{4}=$

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=$
$\left(2 x^{3}\right)^{4}=$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=$
$\left.\underset{4}{\left(2 x^{3}\right.}\right)^{4}=$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=$
$\left(2 \mathrm{x}^{3}\right)^{4}=$ $\uparrow \uparrow$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=$ \qquad
$\left(2 x^{3}\right)^{4}=$ $\uparrow \uparrow$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

8. $\left(2 x^{3}\right)^{4}=$ \qquad
$\left(2 x^{3}\right)^{4}=$ $\uparrow \uparrow$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=$ \qquad
$\left(2 x^{3}\right)^{4}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=$ \qquad

$$
\left.\underset{\uparrow}{\left(2 x^{3}\right.}\right)^{4}=\underset{\uparrow}{2}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

8. $\left(2 x^{3}\right)^{4}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=\underline{16}$
$\left(2 x^{3}\right)^{4}=2^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=\underline{16}$

$$
\left(2 x^{3}\right)^{4}=2^{4}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=\underline{16}$

$$
\underset{\uparrow}{\left(2 x^{3}\right)^{4}}={\underset{\uparrow}{2} \cdot\left(x^{3}\right)}^{2}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

8. $\left(2 x^{3}\right)^{4}=\underline{16}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16$

$$
\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=\underline{16}$

$$
\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}
$$

When a power of x is raised to another power,

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=\underline{16}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$

When a power of x is raised to another power, you just multiply the exponents.

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
When a power of x is raised to another power, you just multiply the exponents.

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=\underline{16} \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 8. } \begin{aligned}
\left(2 x^{3}\right)^{4} & =\underline{16 x^{12}} \\
\left(2 x^{3}\right)^{4} & =2^{4} \cdot\left(x^{3}\right)^{4}
\end{aligned}
$$

9. $\left(3 x y^{2}\right)^{3}=$ \qquad

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 8. } \begin{aligned}
\left(2 x^{3}\right)^{4} & =\underline{16 x^{12}} \\
\left(2 x^{3}\right)^{4} & =2^{4} \cdot\left(x^{3}\right)^{4}
\end{aligned}
$$

9. $\left(3 x y^{2}\right)^{3}=$
$\left(3 x y^{2}\right)^{3}=$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 8. } \begin{aligned}
\left(2 x^{3}\right)^{4} & =\underline{16 x^{12}} \\
\left(2 x^{3}\right)^{4} & =2^{4} \cdot\left(x^{3}\right)^{4}
\end{aligned}
$$

9. $\left(3 x y^{2}\right)^{3}=$ \qquad
$\left(3 x y^{2}\right)^{3}=$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 8. }\left(2 x^{3}\right)^{4}=16 x^{12} \\
& \left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4} \\
& \text { 9. }\left(3 x^{2}\right)^{3}= \\
& \left(3 x y^{2}\right)^{3}= \\
& \uparrow
\end{aligned}
$$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 8. } \begin{aligned}
\left(2 x^{3}\right)^{4} & =\underline{16 x^{12}} \\
\left(2 x^{3}\right)^{4} & =2^{4} \cdot\left(x^{3}\right)^{4}
\end{aligned}
$$

9. $\left(3 x y^{2}\right)^{3}=$ \qquad
$\left(3 x y^{2}\right)^{3}=$ $\uparrow \uparrow$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 x^{12}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=$ \qquad
$\left(3 x y^{2}\right)^{3}=$ $\uparrow \uparrow \uparrow$

Every factor inside the parenthesis

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=$ \qquad
$\left(3 x y^{2}\right)^{3}=$
$\uparrow \uparrow \uparrow$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 x^{12}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 \mathrm{xy}^{2}\right)^{3}=$ \qquad
$\left(3 x y^{2}\right)^{3}=$
$\uparrow \uparrow \uparrow$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x^{2}\right)^{3}=$ \qquad
$\left(3 x y^{2}\right)^{3}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x^{2}\right)^{3}=$ \qquad
$\left(3 x y^{2}\right)^{3}=3$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 \mathrm{xy}^{2}\right)^{3}=$ \qquad
$\left(3 x y^{2}\right)^{3}=3^{3}$
$\uparrow \uparrow$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 \mathrm{xy}^{2}\right)^{3}=\underline{\mathbf{2 7}}$
$\left(3 x y^{2}\right)^{3}=3^{3}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{12}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}}$
$\left(3 x y^{2}\right)^{3}=3^{3}$.

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}}$

$$
\left(3 x y^{2}\right)^{3}=3^{3} \cdot x
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{27}$
$\underset{\uparrow}{\left(3 x y^{2}\right)^{3}}={ }_{\uparrow}^{3} \cdot x^{3}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3}$
$\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 x^{12}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3}$
$\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3}$.

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3}$
$\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3} \cdot\left(y^{2}\right)$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3}$
$\underset{\uparrow}{\left(3 \mathrm{xy}^{2}\right)^{\downarrow}}=3^{3} \cdot \mathrm{x}^{3} \cdot \underset{\uparrow}{\left(\mathrm{y}^{2}\right)^{\downarrow}}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\begin{aligned}
& \text { 8. }\left(2 x^{3}\right)^{4}=16 x^{12} \\
& \left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4} \\
& \text { 9. }\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3} \\
& \left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3} \cdot\left(y^{2}\right)^{3}
\end{aligned}
$$

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 8. } \begin{aligned}
\left(2 x^{3}\right)^{4} & =\underline{16 x^{12}} \\
\left(2 x^{3}\right)^{4} & =2^{4} \cdot\left(x^{3}\right)^{4}
\end{aligned}
$$

$$
\text { 9. }\left(3 x y^{2}\right)^{3}=\underline{27} x^{3}
$$

$$
\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3} \cdot\left(y^{2}\right)^{3}
$$

When a power of y

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$

When a power of y
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3}$
$\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3} \cdot\left(y^{2}\right)^{3}$

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 x^{12}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3}$
$\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3} \cdot\left(y^{2}\right)^{3}$

When a power of y is raised to another power,

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 \mathbf{x}^{\mathbf{1 2}}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3}$
$\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3} \cdot\left(y^{2}\right)^{3}$

When a power of y is raised to another power,

Algebra I Multiplying Monomials

Powers of Monomials
8. $\left(2 x^{3}\right)^{4}=16 x^{12}$
$\left(2 x^{3}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4}$
9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{3}$
$\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3} \cdot\left(y^{2}\right)^{3}$

When a power of y is raised to another power, you just multiply the exponents.

Algebra I Multiplying Monomials

Powers of Monomials

$$
\text { 8. } \begin{aligned}
\left(2 x^{3}\right)^{4} & =\underline{16 x^{12}} \\
\left(2 x^{3}\right)^{4} & =2^{4} \cdot\left(x^{3}\right)^{4}
\end{aligned}
$$

9. $\left(3 x y^{2}\right)^{3}=\underline{\mathbf{2 7}} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{6}$
$\left(3 x y^{2}\right)^{3}=3^{3} \cdot x^{3} \cdot\left(y^{2}\right)^{3}$

When a power of y is raised to another power, you just multiply the exponents.

Algebra I Multiplying Monomials

Powers of Monomials
10. $\left(-5 x^{3} y^{4}\right)^{2}=$

Algebra I Multiplying Monomials

Powers of Monomials
10. $\left(-5 x^{3} y^{4}\right)^{2}=$
$\left(-5 x^{3} y^{4}\right)^{2}=$

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=$ \qquad $\left(-5 x^{3} y^{4}\right)^{2}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
10. $\left(-5 x^{3} y^{4}\right)^{2}=$ \qquad

$$
\underset{\uparrow}{\left(-5 x^{3} y^{4}\right)^{2}}=\underset{\uparrow}{(-5)}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}}$

$$
\underset{\uparrow}{\left(-5 x^{3} y^{4}\right)^{2}}=\underset{\uparrow}{(-5)^{2}}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} .
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}}$

$$
\underset{\uparrow}{\left(-5 x^{3} y^{4}\right)^{2}}=(-5)^{2} \cdot\left(x^{3}\right)
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} .
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials
10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=$

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=$
$\left(-2 x^{2} y^{5}\right)^{3}=$

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=$ \qquad
$\left(-2 x^{2} y^{5}\right)^{3}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=$

$$
\underset{\uparrow}{\left(-2 x^{2} y^{5}\right)^{3}}=\underset{\uparrow}{(-2)}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=$ \qquad

$$
\underset{\uparrow}{\left(-2 x^{2} y^{5}\right)^{3}}=\underset{\uparrow}{(-2)^{3}}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=\underline{\mathbf{- 8}}$

$$
\underset{\uparrow}{\left(-2 x^{2} y^{5}\right)^{3}}=\underset{\uparrow}{(-2)^{3}}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=\underline{\mathbf{- 8}}$

$$
\left(-2 x^{2} y^{5}\right)^{3}=(-2)^{3} .
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=\underline{\mathbf{- 8}}$

$$
\underset{\uparrow}{\left(-2 x^{2} y^{5}\right)^{3}}=(-2)^{3} \cdot\left(x^{2}\right)
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=\underline{\mathbf{- 8}}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=-\mathbf{8} x^{6}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=\mathbf{- 8} x^{6}$

$$
\left(-2 x^{2} y^{5}\right)^{3}=(-2)^{3} \cdot\left(x^{2}\right)^{3} .
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=\mathbf{- 8} \mathbf{x}^{6}$

$$
\underset{\uparrow}{\left(-2 x^{2} y^{5}\right)^{3}}=(-2)^{3} \cdot\left(x^{2}\right)^{3} \cdot\left(y^{5}\right)
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=\mathbf{- 8} x^{6}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Multiplying Monomials

Powers of Monomials

10. $\left(-5 x^{3} y^{4}\right)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{6} \mathbf{y}^{8}$

$$
\left(-5 x^{3} y^{4}\right)^{2}=(-5)^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}
$$

11. $\left(-2 x^{2} y^{5}\right)^{3}=-\mathbf{- 8} \mathbf{x}^{6} \mathbf{y}^{15}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=$ \qquad
2. $(5 x)\left(7 x^{5}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=$
2. $(5 x)\left(7 x^{5}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(\mathbf{x}^{4}\right)\left(\mathbf{x}^{5}\right)=$ \qquad
2. $(5 x)\left(7 x^{5}\right)=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(\mathbf{x}^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=$ \qquad
$=(5 \cdot x)\left(7 \cdot x^{5}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 \mathbf{x}^{5}\right)=$
$=(5 \cdot x)\left(7 \cdot x^{5}\right)=(5 \cdot 7)\left(x \cdot x^{5}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=$
$=(5 \cdot x)\left(7 \cdot x^{5}\right)=(5 \cdot 7)\left(x \cdot x^{5}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=35$
$=(5 \cdot x)\left(7 \cdot x^{5}\right)=(5 \cdot 7)\left(x \cdot x^{5}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=\mathbf{3 5}$
$=(5 \cdot x)\left(7 \cdot x^{5}\right)=(5 \cdot 7)\left(x \cdot x^{5}\right)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=\mathbf{3 5}$

$$
=(5 \cdot x)\left(7 \cdot x^{5}\right)=(5 \cdot 7)\left(x^{1} \cdot x^{5}\right)
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=\mathbf{3 5}$
$=(5 \cdot x)\left(7 \cdot x^{5}\right)=(5 \cdot 7)\left(x^{1} \cdot x^{5}\right)$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=\underline{35 x^{6}}$
$=(5 \cdot x)\left(7 \cdot x^{5}\right)=(5 \cdot 7)\left(x^{1} \cdot x^{5}\right)$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

1. $\left(x^{4}\right)\left(x^{5}\right)=\underline{x^{9}}$
2. $(5 x)\left(7 x^{5}\right)=\underline{35 x^{6}}$

$$
=(5 \cdot x)\left(7 \cdot x^{5}\right)=(5 \cdot 7)\left(x^{1} \cdot x^{5}\right)
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=$ \qquad
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=$ \qquad
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=$ \qquad
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=$ \qquad
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 \mathbf{x}^{2}\right)=\mathbf{2 0}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=\mathbf{2 0}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 \mathbf{x}^{3}\right)\left(-4 \mathbf{x}^{2}\right)=\mathbf{2 0}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 \mathbf{x}^{2}\right)=20$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 \mathbf{x}^{3}\right)\left(-4 \mathbf{x}^{2}\right)=\underline{20 x^{5}}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 \mathbf{x}^{2}\right)=\mathbf{2 0 x ^ { 5 }}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)=(-1)(5)\left(x^{3} \cdot x^{3}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=$ \qquad
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)=(-1)(5)\left(x^{3} \cdot x^{3}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=-5$
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)=(-1)(5)\left(x^{3} \cdot x^{3}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=-5$
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)=(-1)(5)\left(x^{3} \cdot x^{3}\right)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-\mathrm{x}^{3}\right)\left(5 \mathrm{x}^{3}\right)=-5$
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)=(-1)(5)\left(x^{3} \cdot x^{3}\right)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=-5$
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)=(-1)(5)\left(x^{3} \cdot x^{3}\right)$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 x^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-x^{3}\right)\left(5 x^{3}\right)=-5 x^{6}$
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)=(-1)(5)\left(x^{3} \cdot x^{3}\right)$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
3. $\left(-5 x^{3}\right)\left(-4 x^{2}\right)=20 \mathbf{x}^{5}$
$=\left(-5 \cdot x^{3}\right)\left(-4 \cdot x^{2}\right)=(-5)(-4)\left(x^{3} \cdot x^{2}\right)$
4. $\left(-\mathbf{x}^{3}\right)\left(5 \mathbf{x}^{3}\right)=\underline{-5 \mathbf{x}^{6}}$
$=\left(-1 \cdot x^{3}\right)\left(5 \cdot x^{3}\right)=(-1)(5)\left(x^{3} \cdot x^{3}\right)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=$ \qquad
6. $\left(x^{2}\right)\left(-x^{2}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=$ \qquad
6. $\left(x^{2}\right)\left(-x^{2}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=$ \qquad
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=$ \qquad
$=(9 \cdot x)(6 \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=54$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=54$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=54 x^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=54 x^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=54 \mathbf{x}^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(\mathbf{9 x})(6 x)=\mathbf{5 4} \mathbf{x}^{\mathbf{2}}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(\mathbf{9 x})(6 x)=\mathbf{5 4} \mathbf{x}^{\mathbf{2}}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad
$=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(\mathbf{9 x})(6 x)=\mathbf{5 4} \mathbf{x}^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$ \qquad
$=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)=(1)(-1)\left(x^{2} \cdot x^{2}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(\mathbf{9 x})(6 x)=\mathbf{5 4} \mathbf{x}^{\mathbf{2}}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=$
$=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)=(1)(-1)\left(x^{2} \cdot x^{2}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(\mathbf{9 x})(6 x)=\mathbf{5 4} \mathbf{x}^{\mathbf{2}}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=-1$
$=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)=(1)(-1)\left(x^{2} \cdot x^{2}\right)$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $\quad(9 x)(6 x)=54 x^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=-1$
$=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)=(1)(-1)\left(x^{2} \cdot x^{2}\right)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $\quad(9 x)(6 x)=54 x^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=-1$
$=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)=(1)(-1)\left(x^{2} \cdot x^{2}\right)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=54 x^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=-1$
$=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)=(1)(-1)\left(x^{2} \cdot x^{2}\right)$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $(9 x)(6 x)=54 x^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(\mathbf{x}^{2}\right)\left(-\mathbf{x}^{2}\right)=\mathbf{- 1} \mathbf{x}^{4}$

$$
=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)=(1)(-1)\left(x^{2} \cdot x^{2}\right)
$$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
5. $\quad(9 x)(6 x)=54 x^{2}$
$=(9 \cdot x)(6 \cdot x)=(9 \cdot 6)(x \cdot x)$
6. $\left(x^{2}\right)\left(-x^{2}\right)=-x^{4}$

$$
=\left(1 \cdot x^{2}\right)\left(-1 \cdot x^{2}\right)=(1)(-1)\left(x^{2} \cdot x^{2}\right)
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=$ \qquad
8. $\left(\mathbf{x}^{2}\right)^{6}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=$
8. $\left(\mathbf{x}^{2}\right)^{6}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=$ \qquad
8. $\left(\mathbf{x}^{2}\right)^{6}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=\underline{x^{20}}$
8. $\left(x^{2}\right)^{6}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=\underline{x^{20}}$
8. $\left(x^{2}\right)^{6}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=\underline{x^{20}}$
8. $\left(x^{2}\right)^{6}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=\underline{x^{20}}$
8. $\left(\mathbf{x}^{2}\right)^{6}=$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=\underline{x^{20}}$
8. $\left(x^{2}\right)^{6}=\quad x^{12}$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
7. $\left(x^{4}\right)^{5}=\underline{x^{20}}$
8. $\left(x^{2}\right)^{6}=x^{12}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(\mathbf{x}^{3}\right)^{3}=$ \qquad
10. $\left(x^{5}\right)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(\mathbf{x}^{3}\right)^{3}=$
10. $\left(x^{5}\right)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(\mathbf{x}^{3}\right)^{3}=$ \qquad
10. $\left(x^{5}\right)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(x^{3}\right)^{3}=\underline{x^{9}}$
10. $\left(x^{5}\right)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(x^{3}\right)^{3}=\underline{x^{9}}$
10. $\left(x^{5}\right)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(x^{3}\right)^{3}=\underline{x^{9}}$
10. $\left(x^{5}\right)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(x^{3}\right)^{3}=\underline{x^{9}}$
10. $\left(x^{5}\right)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(x^{3}\right)^{3}=\underline{x^{9}}$
10. $\left(x^{5}\right)^{2}=\quad \mathbf{x}^{10}$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
9. $\left(x^{3}\right)^{3}=\underline{x^{9}}$
10. $\left(x^{5}\right)^{2}=\underline{x^{10}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 x)^{2}=$
12. $(\mathbf{3 x})^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 x)^{2}=$
12. $(3 x)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 x)^{2}=$ \qquad
12. $(3 x)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 x)^{2}=$ \qquad

$$
=5^{2} \cdot x^{2}
$$

12. $(3 x)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $\quad(5 x)^{2}=\underline{25 x^{2}}$

$$
=5^{2} \cdot x^{2}
$$

12. $(3 x)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 \mathbf{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$

$$
=5^{2} \cdot x^{2}
$$

12. $(3 x)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 x)^{2}=\underline{25} \mathbf{x}^{2}$

$$
=5^{2} \cdot x^{2}
$$

12. $(3 x)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 x)^{2}=\mathbf{2 5} \mathbf{x}^{2}$

$$
=5^{2} \cdot x^{2}
$$

12. $(3 x)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 x)^{2}=25 x^{2}$

$$
=5^{2} \cdot x^{2}
$$

12. $(3 x)^{3}=$ \qquad

$$
=3^{3} \cdot x^{3}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 x)^{2}=\underline{\mathbf{2 5}} \mathbf{x}^{2}$

$$
=5^{2} \cdot x^{2}
$$

12. $\quad(3 x)^{3}=27 \mathbf{x}^{3}$
$=3^{3} \cdot x^{3}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
11. $(5 \mathbf{x})^{2}=\underline{\mathbf{2 5} \mathbf{x}^{2}}$
$=5^{2} \cdot \mathrm{x}^{2}$
12. $\quad(3 x)^{3}=27 \mathbf{x}^{3}$
$=3^{3} \cdot x^{3}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=$
14. $(-3 x)^{4}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=$
14. $(-3 x)^{4}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 \mathrm{x})^{3}=$ \qquad
14. $(-3 x)^{4}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=$

$$
=(-4)^{3} \cdot x^{3}
$$

14. $(-3 x)^{4}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=-64 x^{3}$

$$
=(-4)^{3} \cdot x^{3}
$$

14. $(-3 x)^{4}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=-64 x^{3}$

$$
=(-4)^{3} \cdot x^{3}
$$

14. $(-3 x)^{4}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=-64 x^{3}$

$$
=(-4)^{3} \cdot x^{3}
$$

14. $(-3 x)^{4}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=-64 x^{3}$

$$
=(-4)^{3} \cdot x^{3}
$$

14. $(-3 x)^{4}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=-64 x^{3}$

$$
=(-4)^{3} \cdot x^{3}
$$

14. $(-3 x)^{4}=$ \qquad
$=(-3)^{4} \cdot x^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=-64 x^{3}$

$$
=(-4)^{3} \cdot x^{3}
$$

14. $(-3 x)^{4}=\underline{81 x^{4}}$
$=(-3)^{4} \cdot x^{4}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
13. $(-4 x)^{3}=-64 x^{3}$

$$
=(-4)^{3} \cdot x^{3}
$$

14. $\quad(-3 x)^{4}=\underline{81 x^{4}}$
$=(-3)^{4} \cdot x^{4}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-\mathrm{x})^{5}=$ \qquad
16. $(-x)^{8}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=$ \qquad
16. $(-x)^{8}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=$
$=(-1 \cdot x)^{5}$
16. $(-x)^{8}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=$ \qquad
$=(-1 \cdot x)^{5}$
16. $(-x)^{8}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=$ \qquad
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-\mathrm{x})^{8}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=-1 x^{5}$
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-x)^{8}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=-x^{5}$
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-x)^{8}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=-x^{5}$
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-x)^{8}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=-x^{5}$
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-x)^{8}=$

$$
=(-1 \cdot x)^{8}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=-x^{5}$
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-\mathrm{x})^{8}=$ \qquad
$=(-1 \cdot x)^{8}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=-x^{5}$
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-\mathrm{x})^{8}=$ \qquad
$=(-1 \cdot x)^{8}=(-1)^{8} \cdot x^{8}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=-x^{5}$
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-x)^{8}=-1 x^{8}$
$=(-1 \cdot x)^{8}=(-1)^{8} \cdot x^{8}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
15. $(-x)^{5}=-x^{5}$
$=(-1 \cdot x)^{5}=(-1)^{5} \cdot x^{5}$
16. $(-x)^{8}=\underline{x^{8}}$

$$
=(-1 \cdot x)^{8}=(-1)^{8} \cdot x^{8}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=$ \qquad
18. $\left(2 x^{3}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=$
18. $\left(2 x^{3}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=$ \qquad
18. $\left(2 x^{3}\right)^{5}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=$ \qquad

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=$
$=5^{2} \cdot\left(x^{5}\right)^{2}$
18. $\left(2 x^{3}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25}$
$=5^{2} .\left(x^{5}\right)^{2}$
18. $\left(2 x^{3}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 \mathbf{x}^{5}\right)^{2}=\underline{25}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25} \mathbf{x}^{10}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$
$=5^{2} \cdot\left(x^{5}\right)^{2}$
18. $\left(2 x^{3}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 \mathrm{x}^{3}\right)^{5}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=$ \qquad

$$
=2^{5} \cdot\left(x^{3}\right)^{5}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=$ \qquad

$$
=2^{5} \cdot\left(x^{3}\right)^{5}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 \mathrm{x}^{3}\right)^{5}=$ $=2^{5} \cdot\left(x^{3}\right)^{5}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\quad\left(2 x^{3}\right)^{5}=32$
$=2^{5} \cdot\left(x^{3}\right)^{5}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\quad\left(2 x^{3}\right)^{5}=32$
$=2^{5} \cdot\left(\mathrm{x}^{3}\right)^{5}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=32$

$$
=2^{5} \cdot\left(x^{3}\right)^{5}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25} \mathbf{x}^{10}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 x^{3}\right)^{5}=32 \mathbf{x}^{15}$

$$
=2^{5} \cdot\left(x^{3}\right)^{5}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
17. $\left(5 x^{5}\right)^{2}=\underline{25 x^{10}}$

$$
=5^{2} \cdot\left(x^{5}\right)^{2}
$$

18. $\left(2 \mathbf{x}^{3}\right)^{5}=32 \mathbf{x}^{15}$

$$
=2^{5} \cdot\left(x^{3}\right)^{5}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=$
20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=$
20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=$
20. $\left(5 x^{3} y z^{2}\right)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19.

$$
\left(-3 x^{2}\right)^{3}=
$$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y z^{2}\right)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19.

$$
\begin{aligned}
& \left(-3 x^{2}\right)^{\mathbf{3}}=\mathbf{- 2 7} \\
& =(-3)^{3} \cdot\left(x^{2}\right)^{3}
\end{aligned}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19.

$$
\begin{aligned}
& \left(-3 x^{2}\right)^{3}=\underline{-27 x^{6}} \\
& =(-3)^{3} \cdot\left(x^{2}\right)^{3}
\end{aligned}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y z^{2}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$ \qquad
$=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=\mathbf{1 2 5}$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=\mathbf{1 2 5}$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y z^{2}\right)^{3}=125$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y z^{2}\right)^{3}=125 x^{9}$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y^{2}\right)^{3}=125 x^{9}$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\quad\left(5 x^{3} y z^{2}\right)^{3}=125 x^{9} y^{3}$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\quad\left(5 x^{3} y z^{2}\right)^{3}=125 x^{9} y^{3}$

$$
=5^{3} \cdot\left(\mathrm{x}^{3}\right)^{3} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{z}^{2}\right)^{3}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\quad\left(5 x^{3} y z^{2}\right)^{3}=125 x^{9} y^{3}$

$$
=5^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3} \cdot\left(z^{2}\right)^{3}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=-27 x^{6}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\quad\left(5 x^{3} y z^{2}\right)^{3}=125 x^{9} y^{3} z^{6}$
$=5^{3} \cdot\left(\mathrm{x}^{3}\right)^{3} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{z}^{2}\right)^{3}$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
19. $\left(-3 x^{2}\right)^{3}=\underline{-27 x^{6}}$

$$
=(-3)^{3} \cdot\left(x^{2}\right)^{3}
$$

20. $\left(5 x^{3} y z^{2}\right)^{3}=125 x^{9} y^{3} z^{6}$
$=5^{3} \cdot\left(\mathrm{x}^{3}\right)^{3} \cdot \mathrm{y}^{3} \cdot\left(\mathrm{z}^{2}\right)^{3}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} \mathbf{y}^{2}\right)^{4}=$ \qquad
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} y^{2}\right)^{4}=$ \qquad
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} y^{2}\right)^{4}=$ \qquad
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} y^{2}\right)^{4}=$ \qquad
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} \mathbf{y}^{2}\right)^{4}=$

$$
=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}
$$

22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} \mathbf{y}^{2}\right)^{4}=$

$$
=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}
$$

22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} y^{2}\right)^{4}=16$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} y^{2}\right)^{4}=16$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} y^{2}\right)^{4}=16$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} \mathbf{y}^{2}\right)^{4}=16 x^{12}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} \mathbf{y}^{2}\right)^{4}=16 x^{12}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} y^{2}\right)^{4}=16 x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\left(-2 x^{3} y^{2}\right)^{4}=16 x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 \mathbf{x}^{3} \mathbf{y}^{2}\right)^{4}=\underline{16 x^{12} y^{8}}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 \mathbf{x}^{3} \mathbf{y}^{2}\right)^{4}=\underline{16 x^{12} y^{8}}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$ \qquad
$=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$

$$
=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=$

$$
=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=\mathbf{- 1}$
$=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathrm{z}^{2}\right)^{5}=\mathbf{- 1}$

$$
=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-x y^{3} z^{2}\right)^{5}=-1 x^{5}$

$$
=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-x y^{3} z^{2}\right)^{5}=-1 x^{5}$

$$
=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-\mathrm{xy}^{3} \mathbf{z}^{2}\right)^{5}=-\mathbf{- 1 x ^ { 5 }}$
$=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-x y^{3} z^{2}\right)^{5}=-1 x^{5} y^{15}$
$=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-x y^{3} z^{2}\right)^{5}=-1 x^{5} y^{15}$
$=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-x y^{3} z^{2}\right)^{5}=-1 x^{5} y^{15} z^{10}$
$=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
21. $\quad\left(-2 x^{3} y^{2}\right)^{4}=\underline{16} x^{12} y^{8}$
$=(-2)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$
22. $\left(-x^{3} z^{2}\right)^{5}=-x^{5} y^{15} z^{10}$

$$
=(-1)^{5} \cdot x^{5} \cdot\left(y^{3}\right)^{5} \cdot\left(z^{2}\right)^{5}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=$
24. $-\left(-3 x^{4}\right)^{3}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=$
24. $-\left(-3 x^{4}\right)^{3}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=$

$$
=-1 \cdot(-2 \mathrm{x})^{6}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=$
$=-1 \cdot(-2 \mathrm{x})^{6} \longleftarrow$ Do this first.
24. $-\left(-3 x^{4}\right)^{3}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=$
$=-1 \cdot(-2 \mathrm{x})^{6} \longleftarrow$ Do this first.
24. $-\left(-3 x^{4}\right)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=$ \qquad
$=-1 \cdot(-2 \mathrm{x})^{6}=\longleftarrow$ Do this first.
$=-1 \cdot(-2)^{6} \cdot x^{6}$
24. $-\left(-3 x^{4}\right)^{3}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

$$
=-1 \cdot\left(-3 x^{4}\right)^{3}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$
$=-1 \cdot\left(-3 x^{4}\right)^{3} \longleftarrow$ Do this first.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$ \qquad
$=-1 \cdot\left(-3 x^{4}\right)^{3}$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$ \qquad

$$
=-1 \cdot\left(-3 x^{4}\right)^{3}=\longleftarrow \quad \text { Do this first. }
$$

$$
=-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1 \cdot(-27)
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1 \cdot(-27)
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=\underline{-64 x^{6}}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$ \qquad

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1 \cdot(-27)
\end{aligned}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=\underline{-64 x^{6}}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$ \qquad

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1 \cdot(-27) \cdot x^{12}
\end{aligned}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=$

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1 \cdot(-27) \cdot x^{12}
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=27 \mathbf{x}^{12}$

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1 \cdot(-27) \cdot x^{12}
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
23. $-(-2 x)^{6}=-64 x^{6}$

$$
\begin{aligned}
& =-1 \cdot(-2 x)^{6}= \\
& =-1 \cdot(-2)^{6} \cdot x^{6}= \\
& =-1 \cdot 64 \cdot x^{6}
\end{aligned}
$$

24. $-\left(-3 x^{4}\right)^{3}=27 x^{12}$

$$
\begin{aligned}
& =-1 \cdot\left(-3 x^{4}\right)^{3}= \\
& =-1 \cdot(-3)^{3} \cdot\left(x^{4}\right)^{3}= \\
& =-1 \cdot(-27) \cdot x^{12}
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 x^{3} y\right)^{3}\left(3 x^{3} y^{5}\right)^{2}=$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

25. $\left(2 x^{3} y\right)^{3}\left(3 x^{3} y^{5}\right)^{2}=$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following. 25. $\left(2 x^{3} y\right)^{3}\left(3 x^{3} y^{5}\right)^{2}=$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 x^{3} y\right)^{3}\left(3 x^{3} y^{5}\right)^{2}=$ \qquad
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 x^{3} y\right)^{3}\left(3 x^{3} y^{5}\right)^{2}=$
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right]$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 x^{3} y\right)^{3}\left(3 x^{3} y^{5}\right)^{2}=$
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right]$.
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\quad\left(2 \mathbf{x}^{3} y\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=$ \qquad
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) ${ }^{n}=\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \quad \begin{aligned}
& \left(2 x^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}= \\
& = \\
& =\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \quad\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\text { (} \quad=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {[8}
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {[8}
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(\mathbf{2} \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}}\left(\mathbf{3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{\mathbf{2}}=$ \qquad
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=[8$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(\mathbf{2} \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}}\left(\mathbf{3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{\mathbf{2}}=$ \qquad
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=\left[8 x^{9}\right.$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3} \mathbf{(3 x ^ { 3 }} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9}\right.}
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{3 x}^{3} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(\mathrm{x}^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(\mathrm{x}^{3}\right)^{2} \cdot\left(\mathrm{y}^{5}\right)^{2}\right]=} \\
= & {\left[8 \mathrm{x}^{9}\right.}
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{3}^{3} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] }
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3} \mathbf{(3 \mathbf { x } ^ { 3 }} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(\mathrm{x}^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] }
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3} \mathbf{(3 \mathbf { x } ^ { 3 }} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(\mathrm{x}^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot[9}
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(\mathbf{3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(\mathrm{x}^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(\mathrm{x}^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot[9}
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 x^{3} y\right)^{3}\left(3 x^{3} \mathbf{y}^{5}\right)^{2}=$ \qquad
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=\left[8 x^{9} y^{3}\right] \cdot[9$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 \mathbf{x}^{3} y\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=$ \qquad
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6}\right.$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 \mathbf{x}^{3} y\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=$
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6}\right.$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(\mathbf{2} \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}}\left(\mathbf{3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{\mathbf{2}}=$
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right] }
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 \mathbf{x}^{3} y\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=$ \qquad
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\left(2 \mathbf{x}^{3} y\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=$ \qquad
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=$
$=(8.9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}}\left(\mathbf{3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}}\left(\mathbf{3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}= \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\mathbf{7 2} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\mathbf{7 2} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3}\left(3 \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\mathbf{7 2} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3 \mathbf { x } ^ { 3 } \mathbf { y } ^ { 5 }) ^ { 2 } = \underline { \mathbf { 7 2 } \mathbf { x } ^ { 1 5 } }} \begin{aligned}
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3 \mathbf { x } ^ { 3 } \mathbf { y } ^ { 5 }) ^ { 2 } = \underline { \mathbf { 7 2 } \mathbf { x } ^ { 1 5 } }} \begin{aligned}
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\begin{aligned}
& \text { 25. } \quad\left(2 \mathbf{x}^{\mathbf{3}} \mathbf{y}\right)^{\mathbf{3}}\left(\mathbf{3 x}^{\mathbf{3}} \mathbf{y}^{\mathbf{5}}\right)^{\mathbf{2}}=\underline{\mathbf{7 2}} \mathbf{x}^{\mathbf{1 5}} \mathbf{y}^{\mathbf{1 3}} \\
& =\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]= \\
& =\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]= \\
& =(8.9)\left(\mathrm{x}^{9} \cdot \mathrm{x}^{6}\right)\left(\mathrm{y}^{3} \cdot \mathrm{y}^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\quad\left(\mathbf{2} \mathbf{x}^{\mathbf{3}} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3 \mathbf { x } ^ { \mathbf { 3 } } \mathbf { y } ^ { \mathbf { 5 } }) ^ { \mathbf { 2 } } = \mathbf { 7 2 } \mathbf { x } ^ { \mathbf { 1 5 } } \mathbf { y } ^ { \mathbf { 1 3 } }}$
$=\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=$
$=\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=$
$=(8.9)\left(\mathrm{x}^{9} \cdot \mathrm{x}^{6}\right)\left(\mathrm{y}^{3} \cdot \mathrm{y}^{10}\right)=$
26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\quad\left(\mathbf{2} \mathbf{x}^{\mathbf{3}} \mathbf{y}\right)^{\mathbf{3}}\left(\mathbf{3} \mathbf{x}^{\mathbf{3}} \mathbf{y}^{\mathbf{5}}\right)^{\mathbf{2}}=\mathbf{7 2} \mathbf{x}^{\mathbf{1 5}} \mathbf{y}^{\mathbf{1 3}}$

$$
\begin{aligned}
& =\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]= \\
& =\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]= \\
& =(8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

$$
=\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]=
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

$$
=\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]=
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\quad\left(\mathbf{2} \mathbf{x}^{\mathbf{3}} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3 \mathbf { x } ^ { \mathbf { 3 } } \mathbf { y } ^ { \mathbf { 5 } }) ^ { \mathbf { 2 } } = \mathbf { 7 2 } \mathbf { x } ^ { \mathbf { 1 5 } } \mathbf { y } ^ { \mathbf { 1 3 } }}$

$$
\begin{aligned}
& =\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]= \\
& =\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]= \\
& =(8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]=
\end{aligned}
$$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
25. $\quad\left(\mathbf{2} \mathbf{x}^{\mathbf{3}} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3 \mathbf { x } ^ { \mathbf { 3 } } \mathbf { y } ^ { 5 }) ^ { \mathbf { 2 } } = \mathbf { 7 2 } \mathbf { x } ^ { \mathbf { 1 5 } } \mathbf { y } ^ { \mathbf { 1 3 } }}$

$$
\begin{aligned}
& =\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]= \\
& =\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]= \\
& =(8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]= \\
& =[(-5) \cdot(16)]\left[x^{3} \cdot x^{2}\right]=
\end{aligned}
$$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]= \\
& =[(-5) \cdot(16)]\left[x^{3} \cdot x^{2}\right]=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]= \\
& =[(-5) \cdot(16)]\left[x^{3} \cdot x^{2}\right]=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=-\mathbf{8 0}$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]= \\
& =[(-5) \cdot(16)]\left[x^{3} \cdot x^{2}\right]=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{\mathbf{3}} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=-\mathbf{8 0}$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]= \\
& =[(-5) \cdot(16)]\left[x^{3} \cdot x^{2}\right]=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\begin{aligned}
& \text { 25. } \quad\left(2 \mathbf{x}^{\mathbf{3}} \mathbf{y}\right)^{\mathbf{3}}\left(\mathbf{3 x}^{\mathbf{3}} \mathbf{y}^{\mathbf{5}}\right)^{\mathbf{2}}=\underline{\mathbf{7 2}} \mathbf{x}^{\mathbf{1 5}} \mathbf{y}^{\mathbf{1 3}} \\
& =\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]= \\
& =\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]= \\
& =(8.9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=-80$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]= \\
& =[(-5) \cdot(16)]\left[x^{3} \cdot x^{2}\right]=
\end{aligned}
$$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=-80 x^{5}$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]= \\
& =[(-5) \cdot(16)]\left[x^{3} \cdot x^{2}\right]=
\end{aligned}
$$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.

$$
\text { 25. } \begin{aligned}
& \left.\left(2 \mathbf{x}^{3} \mathbf{y}\right)^{3} \mathbf{(3} \mathbf{x}^{3} \mathbf{y}^{5}\right)^{2}=\underline{\mathbf{7 2} \mathbf{x}^{15} \mathbf{y}^{13}} \\
= & {\left[2^{3} \cdot\left(x^{3}\right)^{3} \cdot y^{3}\right] \cdot\left[3^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{5}\right)^{2}\right]=} \\
= & {\left[8 x^{9} y^{3}\right] \cdot\left[9 x^{6} y^{10}\right]=} \\
= & (8 \cdot 9)\left(x^{9} \cdot x^{6}\right)\left(y^{3} \cdot y^{10}\right)=
\end{aligned}
$$

26. $\left(-5 x^{3}\right)(-4 x)^{2}=-80 x^{5}$

$$
\begin{aligned}
& =\left[-5 x^{3}\right] \cdot\left[(-4)^{2} \cdot x^{2}\right]= \\
& =\left[-5 x^{3}\right] \cdot\left[16 x^{2}\right]= \\
& =[(-5) \cdot(16)]\left[x^{3} \cdot x^{2}\right]=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$ \qquad
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) $)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right]$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) $)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right]$.
28.

$$
\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=
$$

\qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) $)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]$
28.

$$
\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=
$$

\qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
$=[1$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=[1$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$ \qquad
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=[1$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{3} \mathbf{y}^{2}\right)^{4}\left(-x^{4} \mathbf{y}^{3}\right)^{3}=$ \qquad

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]= \\
& =\left[1 \mathrm{x}^{12}\right.
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} \mathbf{y}^{3}\right)^{3}=$ \qquad
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 \mathrm{x}^{12}\right.$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$ \qquad
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right]$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right]$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot[-1$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot[-1$
28.
$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$ \qquad
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot[-1$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$ \qquad
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12}\right.$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$ \qquad

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12}\right.
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=
\end{aligned}
$$

28.

$\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$ \qquad
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{3}=$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-1$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-1$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-1$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-1 \mathbf{x}^{24}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-1 \mathbf{x}^{24}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{\mathbf{3}} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\mathbf{- 1 \mathbf { x } ^ { 2 4 } \mathbf { y } ^ { 1 7 }}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-x^{4} \mathbf{y}^{3}\right)^{3}=-\mathbf{x}^{24} \mathbf{y}^{17}$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(\mathrm{x}^{12} \cdot \mathrm{x}^{12}\right)\left(\mathrm{y}^{8} \cdot \mathrm{y}^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{\mathbf{3}} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{\mathbf{3}}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(\mathrm{x}^{12} \cdot \mathrm{x}^{12}\right)\left(\mathrm{y}^{8} \cdot \mathrm{y}^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{\mathbf{3}} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{\mathbf{3}}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(\mathrm{x}^{12} \cdot \mathrm{x}^{12}\right)\left(\mathrm{y}^{8} \cdot \mathrm{y}^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\underline{-\mathbf{x}^{24} \mathbf{y}^{17}}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. (ab) $)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{\mathbf{3}} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{\mathbf{3}}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

$$
=\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right]
$$

Every factor inside the parenthesis is raised to the power of the exponent outside the parenthesis. $\quad(a b)^{n}=a^{n} b^{n}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\underline{-\mathbf{x}^{24} \mathbf{y}^{17}}$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

$$
=\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] .
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{\mathbf{3}} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{\mathbf{3}}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(\mathrm{x}^{12} \cdot \mathrm{x}^{12}\right)\left(\mathrm{y}^{8} \cdot \mathrm{y}^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

$$
=\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]=
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{\mathbf{3}} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{\mathbf{3}}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

$$
=\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]=
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\underline{-\mathbf{x}^{24} \mathbf{y}^{17}}$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =[-27
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\underline{-\mathbf{x}^{24} \mathbf{y}^{17}}$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(\mathrm{x}^{12} \cdot \mathrm{x}^{12}\right)\left(\mathrm{y}^{8} \cdot \mathrm{y}^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =[-27
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =[-27
\end{aligned}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right]
\end{aligned}
$$

Rule: When a power of a variable is raised to another power, you just multiply the exponents. $\left(x^{a}\right)^{b}=x^{a b}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-\mathbf{x}^{24} \mathbf{y}^{17}$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] .
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-\mathbf{x}^{24} \mathbf{y}^{17}$
$=\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\underline{-\mathbf{x}^{24} \mathbf{y}^{17}}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]=
\end{aligned}
$$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\underline{-\mathbf{x}^{24} \mathbf{y}^{17}}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$ \qquad

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]= \\
& =(-27)(-5)\left(x^{12} \cdot x^{3}\right)=
\end{aligned}
$$

Rule: When multiplying two monomials, you can rearrange the factors.

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\underline{-\mathbf{x}^{24} \mathbf{y}^{17}}$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(\mathrm{x}^{12} \cdot \mathrm{x}^{12}\right)\left(\mathrm{y}^{8} \cdot \mathrm{y}^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]= \\
& =(-27)(-5)\left(x^{12} \cdot x^{3}\right)=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$
$=\left[(-1)^{4} \cdot\left(\mathrm{x}^{3}\right)^{4} \cdot\left(\mathrm{y}^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(\mathrm{x}^{4}\right)^{3} \cdot\left(\mathrm{y}^{3}\right)^{3}\right]=$
$=\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]=$
$=(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=$
28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]= \\
& =(-27)(-5)\left(x^{12} \cdot x^{3}\right)=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=\underline{-\mathbf{x}^{24} \mathbf{y}^{17}}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=135$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]= \\
& =(-27)(-5)\left(x^{12} \cdot x^{3}\right)=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} y^{2}\right)^{4}\left(-x^{4} y^{3}\right)^{3}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=135$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]= \\
& =(-27)(-5)\left(x^{12} \cdot x^{3}\right)=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{\mathbf{3}} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{\mathbf{3}}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=135$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]= \\
& =(-27)(-5)\left(x^{12} \cdot x^{3}\right)=
\end{aligned}
$$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-\mathbf{x}^{\mathbf{3}} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{\mathbf{3}}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=135 x^{15}$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]= \\
& =(-27)(-5)\left(x^{12} \cdot x^{3}\right)=
\end{aligned}
$$

Rule: When multiplying two powers of a variable, you just add the exponents. $\left(x^{a}\right)\left(x^{b}\right)=x^{(a+b)}$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
27. $\left(-x^{3} \mathbf{y}^{2}\right)^{4}\left(-\mathbf{x}^{4} \mathbf{y}^{3}\right)^{\mathbf{3}}=-\mathbf{x}^{\mathbf{2 4}} \mathbf{y}^{17}$

$$
\begin{aligned}
& =\left[(-1)^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}\right] \cdot\left[(-1)^{3} \cdot\left(x^{4}\right)^{3} \cdot\left(y^{3}\right)^{3}\right]= \\
& =\left[1 x^{12} y^{8}\right] \cdot\left[-1 x^{12} y^{9}\right]= \\
& =(1)(-1)\left(x^{12} \cdot x^{12}\right)\left(y^{8} \cdot y^{9}\right)=
\end{aligned}
$$

28. $\left(-3 x^{4}\right)^{3}\left(-5 x^{3}\right)=135 x^{15}$

$$
\begin{aligned}
& =\left[(-3)^{3} \cdot\left(x^{4}\right)^{3}\right] \cdot\left[-5 x^{3}\right]= \\
& =\left[-27 x^{12}\right] \cdot\left[-5 x^{3}\right]= \\
& =(-27)(-5)\left(x^{12} \cdot x^{3}\right)=
\end{aligned}
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-\mathbf{6}^{2}=$ \qquad
30. $(-6)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=$ \qquad
30. $(-6)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=$ \qquad
30. $(-6)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=$
$=(-1)(6)(6)$
30. $(-6)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=$
$=(-1)(6)(6)$
30. $(-6)^{2}=$ \qquad

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=$
$=(-1)(6)(6)$
30. $(-6)^{2}=$

$$
=(-6)(-6)
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=$
$=(-1)(6)(6)$
30. $(-6)^{2}=$

$$
=(-6)(-6)
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=$
$=(-1)(6)(6)$
30. $(-6)^{2}=$
$=(-6)(-6)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=-36$
$=(-1)(6)(6)$
30. $(-6)^{2}=$

$$
=(-6)(-6)
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=-36$
$=(-1)(6)(6)$
30. $(-6)^{2}=$

$$
=(-6)(-6)
$$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=-36$
$=(-1)(6)(6)$
30. $(-6)^{2}=36$
$=(-6)(-6)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=-36$
$=(-1)(6)(6)$
30. $(-6)^{2}=36$
$=(-6)(-6)$

Algebra I Class Worksheet \#3 Unit 10

Simplify each of the following.
29. $-6^{2}=-36$
$=(-1)(6)(6)$
30. $(-6)^{2}=36$
$=(-6)(-6)$

Good luck on your homework !!

