Algebra I Lesson #3 Unit 10 Class Worksheet #3 For Worksheets #4 - #6

Monomial:

Monomial: a polynomial

Monomial: a polynomial with one term.

5x

$$5x -3y x 2 x^4$$

$$5x -3y x 2 x^4$$

$$8xy -7ac$$

$$5x$$
 $-3y$
 x
 2
 x^4
 $8xy$
 $-7ac$
 $15x^3$

$$5x$$
 $-3y$
 x
 2
 x^4
 $8xy$
 $-7ac$
 $15x^3$
 -7

$$5x$$
 $-3y$ x 2 x^4 $8xy$ $-7ac$ $15x^3$ -7 $12x^3y^2z$

1. $(x^3)(x^4) =$ _____

1.
$$(x^3)(x^4) =$$

$$(x^3)(x^4) =$$

1.
$$(x^3)(x^4) =$$

 $(\mathbf{x}^3)(\mathbf{x}^4) = (\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$

1.
$$(x^3)(x^4) =$$

 $(x^3)(x^4) = (x \cdot x \cdot x)(x \cdot x \cdot x \cdot x)$

1.
$$(x^3)(x^4) =$$

$$(x^{3})(x^{4}) = (x \cdot x \cdot x)(x \cdot x \cdot x \cdot x)$$

 $(x^{3})(x^{4}) =$

1.
$$(x^3)(x^4) =$$

$$(x^{3})(x^{4}) = (x \cdot x \cdot x)(x \cdot x \cdot x \cdot x)$$
$$(x^{3})(x^{4}) = x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$$

1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$(x^{3})(x^{4}) = (x \cdot x \cdot x)(x \cdot x \cdot x \cdot x)$$
$$(x^{3})(x^{4}) = x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

2.
$$(x^2)(x^6) =$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

2.
$$(x^2)(x^6) =$$

 $(x^2)(x^6) =$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

2.
$$(x^2)(x^6) = _$$

 $(x^2)(x^6) = (x \cdot x)$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

2.
$$(x^2)(x^6) =$$

 $(x^2)(x^6) = (x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)$

1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \mathbf{x}^7$$

2.
$$(x^2)(x^6) =$$

 $(x^2)(x^6) = (x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)$
 $(x^2)(x^6) =$

1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \mathbf{x}^7$$

2.
$$(x^2)(x^6) =$$

 $(x^2)(x^6) = (x \cdot x)(x \cdot x \cdot x \cdot x \cdot x \cdot x)$
 $(x^2)(x^6) = x \cdot x$

1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

2.
$$(x^2)(x^6) = \underline{x^8}$$

 $(x^2)(x^6) = (x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)$
 $(x^2)(x^6) = x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

3.
$$(x^5)(x^5) =$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

3.
$$(x^5)(x^5) =$$

$$(x^5)(x^5) =$$

1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

3.
$$(x^5)(x^5) =$$

 $(\mathbf{x}^5)(\mathbf{x}^5) = (\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

3.
$$(x^5)(x^5) =$$

$$(x^5)(x^5) = (x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x \cdot x)$$

1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

3.
$$(x^5)(x^5) =$$

$$(x^5)(x^5) = (x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x \cdot x)$$
$$(x^5)(x^5) =$$
1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

3.
$$(x^5)(x^5) =$$

1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

4.
$$(x)(x^3) =$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

4.
$$(x)(x^3) =$$

 $(x^1)(x^3) =$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

4.
$$(x)(x^3) = _$$

 $(x^1)(x^3) = (x)$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

4.
$$(x)(x^3) = _$$

 $(x^1)(x^3) = (x)(x \cdot x \cdot x)$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

4.
$$(x)(x^3) = _$$

 $(x^1)(x^3) = (x)(x \cdot x \cdot x)$
 $(x^1)(x^3) =$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

4.
$$(x)(x^3) = _$$

 $(x^1)(x^3) = (x)(x \cdot x \cdot x)$
 $(x^1)(x^3) = x \cdot x \cdot x \cdot x$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

4.
$$(\mathbf{x})(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

 $(\mathbf{x}^1)(\mathbf{x}^3) = (\mathbf{x})(\mathbf{x}\cdot\mathbf{x}\cdot\mathbf{x})$
 $(\mathbf{x}^1)(\mathbf{x}^3) = \mathbf{x}\cdot\mathbf{x}\cdot\mathbf{x}\cdot\mathbf{x}$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

1.
$$(x^3)(x^4) = x^7$$
 Rule:

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

1.
$$(\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

Rule: When <u>multiplying</u> two powers of x,

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

Rule: When <u>multiplying</u> two powers of x, you just <u>add the exponents</u>.

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

(X^a**)**

4. $(x^1)(x^3) = x^4$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

 $(\mathbf{x}^{\mathbf{a}})(\mathbf{x}^{\mathbf{b}})$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

 $(\mathbf{x}^{a})(\mathbf{x}^{b}) =$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

 $(\mathbf{x}^{\mathbf{a}})(\mathbf{x}^{\mathbf{b}}) = \mathbf{x}$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

Rule: When <u>multiplying</u> two powers of x, you just <u>add the exponents</u>.

 $(\mathbf{x}^{\mathbf{a}})(\mathbf{x}^{\mathbf{b}}) = \mathbf{x}^{(\mathbf{a})}$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

Rule: When <u>multiplying</u> two powers of x, you just <u>add the exponents</u>.

 $(\mathbf{x}^{\mathbf{a}})(\mathbf{x}^{\mathbf{b}}) = \mathbf{x}^{(\mathbf{a}^+)}$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

Rule: When <u>multiplying</u> two powers of x, you just <u>add the exponents</u>.

$$(\mathbf{x}^{\mathbf{a}})(\mathbf{x}^{\mathbf{b}}) = \mathbf{x}^{(\mathbf{a}+\mathbf{b})}$$

$$1. \quad (\mathbf{x}^3)(\mathbf{x}^4) = \underline{\mathbf{x}^7}$$

$$2. \quad (\mathbf{x}^2)(\mathbf{x}^6) = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^5)(\mathbf{x}^5) = \underline{\mathbf{x}^{10}}$$

$$4. \quad (\mathbf{x}^1)(\mathbf{x}^3) = \underline{\mathbf{x}^4}$$

Rule: When <u>multiplying</u> two powers of x, you just <u>add the exponents</u>.

$$(\mathbf{x}^{\mathbf{a}})(\mathbf{x}^{\mathbf{b}}) = \mathbf{x}^{(\mathbf{a}+\mathbf{b})}$$

Consider the following examples.

Consider the following examples.

5.
$$(3x)(5) =$$

Consider the following examples.

5.
$$(3x)(5) =$$

Consider the following examples.

5.
$$(3x)(5) =$$

$$(3x)(5) =$$

Consider the following examples.

5.
$$(3x)(5) =$$

 $(3\mathbf{x})(5) = 3 \cdot \mathbf{x}$

Consider the following examples.

5.
$$(3x)(5) =$$

 $(3\mathbf{x})(5) = 3 \cdot \mathbf{x} \cdot 5$

Consider the following examples.

5.
$$(3x)(5) =$$

 $(3x)(5) = 3 \cdot x \cdot 5$
 $(3x)(5) =$

Algebra I Multiplying Monomials Consider the following examples.

5.
$$(3x)(5) =$$

 $(3x)(5) = 3 \cdot x \cdot 5$
 $(3x)(5) = 3 \cdot 5 \cdot x$

Algebra I Multiplying Monomials Consider the following examples.

5.
$$(3x)(5) = \underline{15}$$

 $(3x)(5) = 3 \cdot x \cdot 5$
 $(3x)(5) = 3 \cdot 5 \cdot x$

Algebra I Multiplying Monomials Consider the following examples.

5.
$$(3x)(5) = 15x$$

 $(3x)(5) = 3 \cdot x \cdot 5$
 $(3x)(5) = 3 \cdot 5 \cdot x$

Consider the following examples.

5. (3x)(5) = 15x

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. (2x)(4x) =_____

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. (2x)(4x) =_____

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. (2x)(4x) =_____

(2x)(4x) =

Consider the following examples.

5. (3x)(5) = 15x

6.
$$(2x)(4x) =$$

 $(2\mathbf{x})(4\mathbf{x}) = 2 \cdot \mathbf{x}$
Consider the following examples.

5. (3x)(5) = 15x

6.
$$(2x)(4x) =$$

 $(2\mathbf{x})(4\mathbf{x}) = 2 \cdot \mathbf{x} \cdot 4 \cdot \mathbf{x}$

Consider the following examples.

5. (3x)(5) = 15x

6.
$$(2x)(4x) =$$

 $(2x)(4x) = 2 \cdot x \cdot 4 \cdot x$ (2x)(4x) =

Consider the following examples.

5. (3x)(5) = 15x

6.
$$(2x)(4x) =$$

 $(2x)(4x) = 2 \cdot x \cdot 4 \cdot x$ $(2x)(4x) = 2 \cdot 4$

Consider the following examples.

5. (3x)(5) = 15x

6.
$$(2x)(4x) =$$

 $(2x)(4x) = 2 \cdot x \cdot 4 \cdot x$ $(2x)(4x) = 2 \cdot 4 \cdot x \cdot x$

Algebra I Multiplying Monomials Consider the following examples.

5. (3x)(5) = 15x

6.
$$(2x)(4x) = 8$$

 $(2\mathbf{x})(4\mathbf{x}) = 2 \cdot \mathbf{x} \cdot 4 \cdot \mathbf{x}$ $(2\mathbf{x})(4\mathbf{x}) = 2 \cdot 4 \cdot \mathbf{x} \cdot \mathbf{x}$

Algebra I Multiplying Monomials Consider the following examples.

5. (3x)(5) = 15x

6.
$$(2x)(4x) = 8x^2$$

 $(2\mathbf{x})(4\mathbf{x}) = 2 \cdot \mathbf{x} \cdot 4 \cdot \mathbf{x}$ $(2\mathbf{x})(4\mathbf{x}) = 2 \cdot 4 \cdot \mathbf{x} \cdot \mathbf{x}$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) =$$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) =$$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) =$$

 $(5x^2)(-8x^3) =$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) =$$

 $(5x^2)(-8x^3) = 5 \cdot x^2$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) =$$

$$(5x^2)(-8x^3) = 5 \cdot x^2 \cdot (-8) \cdot x^3$$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) =$$

$$(5x^2)(-8x^3) = 5 \cdot x^2 \cdot (-8) \cdot x^3$$

 $(5x^2)(-8x^3) =$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) =$$

$$(5x^{2})(-8x^{3}) = 5 \cdot x^{2} \cdot (-8) \cdot x^{3}$$
$$(5x^{2})(-8x^{3}) = 5 \cdot (-8)$$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) =$$

$$(5x^{2})(-8x^{3}) = 5 \cdot x^{2} \cdot (-8) \cdot x^{3}$$
$$(5x^{2})(-8x^{3}) = 5 \cdot (-8) \cdot x^{2} \cdot x^{3}$$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40$$

 $(5x^2)(-8x^3) = 5 \cdot x^2 \cdot (-8) \cdot x^3$

$$(5x^2)(-8x^3) = 5 \cdot (-8) \cdot x^2 \cdot x^3$$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

 $(5x^2)(-8x^3) = 5 \cdot x^2 \cdot (-8) \cdot x^3$
 $(5x^2)(-8x^3) = 5 \cdot (-8) \cdot x^2 \cdot x^3$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$
- 7. $(5x^2)(-8x^3) = -40x^5$
- 8. $(-8x^2y)(-3xy^2) =$ _____

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$
- 7. $(5x^2)(-8x^3) = -40x^5$
- 8. $(-8x^2y)(-3xy^2) =$ _____

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$
- 7. $(5x^2)(-8x^3) = -40x^5$
- 8. $(-8x^2y)(-3xy^2) =$ _____ $(-8x^2y)(-3xy^2) =$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) =$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2\cdot y$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) =$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2 \cdot y \cdot (-3)\cdot x \cdot y^2$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) =$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2\cdot y\cdot (-3)\cdot x\cdot y^2$
 $(-8x^2y)(-3xy^2) =$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) =$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2\cdot y\cdot (-3)\cdot x\cdot y^2$
 $(-8x^2y)(-3xy^2) = (-8)\cdot (-3)$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) =$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2 \cdot y \cdot (-3)\cdot x \cdot y^2$
 $(-8x^2y)(-3xy^2) = (-8)\cdot (-3)\cdot x^2 \cdot x$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) =$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2 \cdot y \cdot (-3)\cdot x \cdot y^2$
 $(-8x^2y)(-3xy^2) = (-8)\cdot (-3)\cdot x^2 \cdot x \cdot y \cdot y^2$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24}$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2 \cdot y \cdot (-3)\cdot x \cdot y^2$
 $(-8x^2y)(-3xy^2) = (-8)\cdot (-3)\cdot x^2 \cdot x \cdot y \cdot y^2$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3}$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2 \cdot y \cdot (-3) \cdot x \cdot y^2$
 $(-8x^2y)(-3xy^2) = (-8)\cdot (-3)\cdot x^2 \cdot x \cdot y \cdot y^2$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6. $(2x)(4x) = 8x^2$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

 $(-8x^2y)(-3xy^2) = (-8)\cdot x^2 \cdot y \cdot (-3) \cdot x \cdot y^2$
 $(-8x^2y)(-3xy^2) = (-8)\cdot (-3)\cdot x^2 \cdot x \cdot y \cdot y^2$

Consider the following examples.

- 5. (3x)(5) = 15x
- 6. $(2x)(4x) = 8x^2$
- 7. $(5x^2)(-8x^3) = -40x^5$
- 8. $(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^5)(2x^3) =$$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^5)(2x^3) =$$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^5)(2x^3) =$$

 $(-1x^5)(2x^3) =$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^5)(2x^3) =$$

 $(-1x^5)(2x^3) = (-1) \cdot x^5$

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^5)(2x^3) =$$

 $(-1x^5)(2x^3) = (-1) \cdot x^5 \cdot 2 \cdot x^3$
Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^5)(2x^3) =$$

 $(-1x^5)(2x^3) = (-1) \cdot x^5 \cdot 2 \cdot x^3$
 $(-1x^5)(2x^3) =$

Just rearrange the factors !!!

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^{5})(2x^{3}) =$$

 $(-1x^{5})(2x^{3}) = (-1) \cdot x^{5} \cdot 2 \cdot x^{3}$
 $(-1x^{5})(2x^{3}) = (-1) \cdot 2$

Just rearrange the factors !!!

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^{5})(2x^{3}) = _$$

 $(-1x^{5})(2x^{3}) = (-1) \cdot x^{5} \cdot 2 \cdot x^{3}$
 $(-1x^{5})(2x^{3}) = (-1) \cdot 2 \cdot x^{5} \cdot x^{3}$
Just rearrange the factors !!!

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^{5})(2x^{3}) = \underline{-2}$$

 $(-1x^{5})(2x^{3}) = (-1) \cdot x^{5} \cdot 2 \cdot x^{3}$
 $(-1x^{5})(2x^{3}) = (-1) \cdot 2 \cdot x^{5} \cdot x^{3}$
Just rearrange the factors !!!

Consider the following examples.

5.
$$(3x)(5) = 15x$$

6.
$$(2x)(4x) = 8x^2$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^{5})(2x^{3}) = \underline{-2x^{8}}$$

 $(-1x^{5})(2x^{3}) = (-1) \cdot x^{5} \cdot 2 \cdot x^{3}$
 $(-1x^{5})(2x^{3}) = (-1) \cdot 2 \cdot x^{5} \cdot x^{3}$

Just rearrange the factors !!!

Consider the following examples.

5.
$$(3x)(5) = 15x$$

$$6. \quad (2\mathbf{x})(4\mathbf{x}) = \mathbf{8x^2}$$

7.
$$(5x^2)(-8x^3) = -40x^5$$

8.
$$(-8x^2y)(-3xy^2) = \underline{24x^3y^3}$$

9.
$$(-x^5)(2x^3) = -2x^8$$

1.
$$(x^2)^3 =$$

1.
$$(x^2)^3 =$$

$$(x^2)^3 =$$

1.
$$(x^2)^3 =$$

$$(\mathbf{x}^2)^3 = \mathbf{x}^2 \cdot \mathbf{x}^2 \cdot \mathbf{x}^2$$

1.
$$(x^2)^3 =$$

 $(x^2)^3 = x^2 \cdot x^2 \cdot x^2$
 $(x^2)^3 =$

1.
$$(x^2)^3 =$$

 $(x^2)^3 = x^2 \cdot x^2 \cdot x^2$
 $(x^2)^3 = (x \cdot x)(x \cdot x)(x \cdot x)$

1.
$$(x^2)^3 =$$

 $(x^2)^3 = x^2 \cdot x^2 \cdot x^2$
 $(x^2)^3 = (x \cdot x)(x \cdot x)(x \cdot x)$
 $(x^2)^3 =$

1.
$$(x^2)^3 =$$

 $(x^2)^3 = x^2 \cdot x^2 \cdot x^2$
 $(x^2)^3 = (x \cdot x)(x \cdot x)(x \cdot x)$
 $(x^2)^3 = x \cdot x \cdot x \cdot x \cdot x$

1.
$$(\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

 $(\mathbf{x}^2)^3 = \mathbf{x}^2 \cdot \mathbf{x}^2 \cdot \mathbf{x}^2$
 $(\mathbf{x}^2)^3 = (\mathbf{x} \cdot \mathbf{x})(\mathbf{x} \cdot \mathbf{x})(\mathbf{x} \cdot \mathbf{x})$
 $(\mathbf{x}^2)^3 = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$

1.
$$(x^2)^3 = \underline{x^6}$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

2.
$$(x^2)^4 =$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

2.
$$(x^2)^4 =$$

 $(x^2)^4 =$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

2.
$$(x^2)^4 =$$

 $(x^2)^4 = x^2 \cdot x^2 \cdot x^2 \cdot x^2$

$$1. \quad (\mathbf{x}^2)^3 = \mathbf{x}^6$$

2.
$$(x^2)^4 =$$

 $(x^2)^4 = x^2 \cdot x^2 \cdot x^2 \cdot x^2$
 $(x^2)^4 =$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

2.
$$(x^2)^4 =$$

 $(x^2)^4 = x^2 \cdot x^2 \cdot x^2 \cdot x^2$
 $(x^2)^4 = (x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x)$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

2.
$$(x^2)^4 =$$

 $(x^2)^4 = x^2 \cdot x^2 \cdot x^2 \cdot x^2$
 $(x^2)^4 = (x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x)$
 $(x^2)^4 =$

$$1. \quad (\mathbf{x}^2)^3 = \mathbf{x}^6$$

2.
$$(x^2)^4 =$$

 $(x^2)^4 = x^2 \cdot x^2 \cdot x^2 \cdot x^2$
 $(x^2)^4 = (x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x)$
 $(x^2)^4 = x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$

1.
$$(x^2)^3 = \underline{x^6}$$

2. $(x^2)^4 = \underline{x^8}$
 $(x^2)^4 = x^2 \cdot x^2 \cdot x^2 \cdot x^2$
 $(x^2)^4 = (x \cdot x)(x \cdot x)(x \cdot x)(x \cdot x)$
 $(x^2)^4 = x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

3.
$$(x^3)^3 =$$

1.
$$(\mathbf{x}^2)^3 = \mathbf{x}^6$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

3.
$$(x^3)^3 =$$

$$(x^3)^3 =$$

1.
$$(\mathbf{x}^2)^3 = \mathbf{x}^6$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

3.
$$(x^3)^3 =$$

$$(\mathbf{x}^3)^3 = \mathbf{x}^3 \cdot \mathbf{x}^3 \cdot \mathbf{x}^3$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

3.
$$(x^3)^3 =$$

$$(x^3)^3 = x^3 \cdot x^3 \cdot x^3$$

 $(x^3)^3 =$

1.
$$(\mathbf{x}^2)^3 = \mathbf{x}^6$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

3.
$$(x^3)^3 =$$

$$(x^3)^3 = x^3 \cdot x^3 \cdot x^3$$
$$(x^3)^3 = (x \cdot x \cdot x)(x \cdot x \cdot x)(x \cdot x \cdot x)$$

$$1. \quad (\mathbf{x}^2)^3 = \mathbf{x}^6$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

3.
$$(x^3)^3 =$$

$$(\mathbf{x}^3)^3 = (\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$$

$$(x^3)^3 =$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

3.
$$(x^3)^3 =$$

 $(x^3)^3 = x^3 \cdot x^3 \cdot x^3$

$$(\mathbf{x}^3)^3 = (\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$$

$$(\mathbf{x}^3)^3 = \mathbf{x} \cdot \mathbf{x}$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

$$(x^{3})^{3} = x^{3} \cdot x^{3} \cdot x^{3}$$
$$(x^{3})^{3} = (x \cdot x \cdot x)(x \cdot x \cdot x)(x \cdot x \cdot x)$$
$$(x^{3})^{3} = x \cdot x$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

1.
$$(\mathbf{x}^2)^3 = \mathbf{x}^6$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

$$(\mathbf{x}^5)^6 = \mathbf{x}^5 \boldsymbol{\cdot} \mathbf{x}^5 \boldsymbol{\cdot} \mathbf{x}^5 \boldsymbol{\cdot} \mathbf{x}^5 \boldsymbol{\cdot} \mathbf{x}^5 \boldsymbol{\cdot} \mathbf{x}^5$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

 $(x^5)^6 = x^5 \cdot x^5 \cdot x^5 \cdot x^5 \cdot x^5 \cdot x^5$
 $(x^5)^6 =$

$$1. \quad (\mathbf{x}^2)^3 = \mathbf{x}^6$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 = \underline{\qquad}$$

 $(x^5)^6 = x^5 \cdot x^5 \cdot x^5 \cdot x^5 \cdot x^5 \cdot x^5$
 $(x^5)^6 = (x \cdot x \cdot x \cdot x)(x \cdot x \cdot x)$

1.
$$(\mathbf{x}^2)^3 = \mathbf{x}^6$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

$$(\mathbf{x}^5)^6 = \mathbf{x}^5 \cdot \mathbf{x}^5 \cdot \mathbf{x}^5 \cdot \mathbf{x}^5 \cdot \mathbf{x}^5 \cdot \mathbf{x}^5$$

 $(x^5)^6 = (x \cdot x \cdot x \cdot x)(x \cdot x)(x \cdot x \cdot x)(x \cdot x \cdot x)(x \cdot x)($

We have a problem !!!

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^{5})^{6} =$$

 $(x^{5})^{6} = x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5} \cdot x^{5}$
 $(x^{5})^{6} = (x \cdot x \cdot x \cdot x \cdot x)(x \cdot x \cdot x)$

We need a rule !!!

1.
$$(x^2)^3 = \underline{x^6}$$
 Rule:

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

1.
$$(x^2)^3 = \underline{x^6}$$
 Rule: When a power of x

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

1.
$$(x^2)^3 = \underline{x^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

Rule: When a power of x is raised to another power,

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

$$(\mathbf{x}^{\mathbf{a}})^{\mathbf{b}} =$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

4.
$$(x^5)^6 =$$

$$(\mathbf{x}^{\mathbf{a}})^{\mathbf{b}} = \mathbf{x}^{\mathbf{a}\mathbf{b}}$$

$$1. \quad (\mathbf{x}^2)^3 = \underline{\mathbf{x}^6}$$

$$2. \quad (\mathbf{x}^2)^4 = \underline{\mathbf{x}^8}$$

$$3. \quad (\mathbf{x}^3)^3 = \underline{\mathbf{x}^9}$$

$$4. \quad (\mathbf{x}^5)^6 = \mathbf{x}^{30}$$

$$(\mathbf{x}^{\mathbf{a}})^{\mathbf{b}} = \mathbf{x}^{\mathbf{a}\mathbf{b}}$$

5. $(2x)^3 =$ _____

5.
$$(2x)^3 =$$

$$(2x)^3 =$$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 =$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 =$

Rearrange the factors !!!

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$

Rearrange the factors !!!

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$

$$(2x)^3 =$$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$

 $(2\mathbf{x})^3 = (2 \cdot 2 \cdot 2)(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$

$$(2x)^3 = 2^3$$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$
 $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$

$$(2x)^3 = 2^3 \cdot$$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$
 $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$
 $(2x)^3 = 2^3 \cdot x^3$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$

 $(2\mathbf{x})^3 = (2 \cdot 2 \cdot 2)(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$

$$(2x)^3 = 2^3 \cdot x^3$$

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$

$$(2x)^3 = 2^3 \cdot x^3$$

Notice that every **factor** inside the parenthesis

5.
$$(2x)^3 = (2x)(2x)(2x)$$

 $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$
 $(2x)^3 = 2^3 \cdot x^3$

Notice that every **<u>factor</u>** inside the parenthesis

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$

$$(2\mathbf{x})^3 = 2^3 \cdot \mathbf{x}^3$$

Notice that every **<u>factor</u>** inside the parenthesis

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$ $(2x)^3 = 2^3 \cdot x^3$

5.
$$(2x)^3 =$$

$$(2x)^{3} = (2x)(2x)(2x)$$

 $(2x)^{3} = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$
 $(2x)^{3} = 2^{3} \cdot x^{3}$

Notice that every <u>factor</u> inside the parenthesis is raised to the power of the exponent **outside** the parenthesis.

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$

$$(2x)^3 =$$

Notice that every <u>factor</u> inside the parenthesis is raised to the power of the exponent **outside** the parenthesis.

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$ $(2x)^3 = 2$

Notice that every <u>factor</u> inside the parenthesis is raised to the power of the exponent **outside** the parenthesis.

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$ $(2x)^3 = 2^3$

Notice that every <u>factor</u> inside the parenthesis is raised to the power of the exponent **outside** the parenthesis.

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$

$$(2\mathbf{x})^3 = 2^3 \cdot$$

Notice that every <u>factor</u> inside the parenthesis is raised to the power of the exponent **outside** the parenthesis.

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$

$$(2\mathbf{x})^3 = (2 \cdot 2 \cdot 2)(\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x})$$

$$(2\mathbf{x})^3 = 2^3 \cdot \mathbf{x}$$

Notice that every <u>factor</u> inside the parenthesis is raised to the power of the exponent **outside** the parenthesis.
5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$ $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$ $(2x)^3 = 2^3 \cdot x^3$

Notice that every <u>factor</u> inside the parenthesis is raised to the power of the exponent **outside** the parenthesis.

Take another look.

5.
$$(2x)^3 =$$

 $(2x)^3 = (2x)(2x)(2x)$
 $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$
 $(2x)^3 = 2^3 \cdot x^3$

5.
$$(2x)^3 = \underline{8}$$

 $(2x)^3 = (2x)(2x)(2x)$
 $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$
 $(2x)^3 = 2^3 \cdot x^3$

5.
$$(2x)^3 = \underline{8x^3}$$

 $(2x)^3 = (2x)(2x)(2x)$
 $(2x)^3 = (2 \cdot 2 \cdot 2)(x \cdot x \cdot x)$
 $(2x)^3 = 2^3 \cdot x^3$

5. $(2x)^3 = 8x^3$

5.
$$(2x)^3 = 8x^3$$

6.
$$(5x)^2 =$$

5.
$$(2x)^3 = 8x^3$$

6.
$$(5x)^2 =$$

$$(5x)^2 =$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 =$$

$$(5x)^2 =$$

Every **factor** inside the parenthesis

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 =$$

$$(5x)^2 =$$

Every **factor** inside the parenthesis

$$5. \quad (2\mathbf{x})^3 = \underline{\mathbf{8x^3}}$$

6.
$$(5x)^2 =$$

$$(5x)^2 =$$

$$5. \quad (2\mathbf{x})^3 = \underline{\mathbf{8x^3}}$$

6.
$$(5x)^2 =$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 =$$

$$(5x)^2 =$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 =$$

$$(5x)^2 = 5$$

5.
$$(2x)^3 = 8x^3$$

6.
$$(5x)^2 = _$$

 $(5x)^2 = 5^2$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 =$$

$$(5x)^2 = 5^2$$
.

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 =$$

$$(5\mathbf{x})^2 = 5^2 \cdot \mathbf{x}$$

5.
$$(2x)^3 = 8x^3$$

6.
$$(5x)^2 =$$

 $(5x)^2 = 5^2 \cdot x^2$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 =$$

$$(5x)^2 = 5^2 \cdot x^2$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = \underline{25}$$

$$(5x)^2 = 5^2 \cdot x^2$$

$$5. \quad (2\mathbf{x})^3 = \underline{\mathbf{8x^3}}$$

6.
$$(5x)^2 = 25x^2$$

$$(5x)^2 = 5^2 \cdot x^2$$

$$5. \quad (2\mathbf{x})^3 = \underline{\mathbf{8x^3}}$$

6.
$$(5x)^2 = 25x^2$$

$$5. \quad (2\mathbf{x})^3 = \underline{\mathbf{8x^3}}$$

6.
$$(5x)^2 = 25x^2$$

7.
$$(3xy)^4 =$$

$$5. \quad (2\mathbf{x})^3 = \underline{\mathbf{8x^3}}$$

6.
$$(5x)^2 = 25x^2$$

7.
$$(3xy)^4 =$$

$$(3xy)^4 =$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7.
$$(3xy)^4 =$$

$$(3xy)^4 =$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7.
$$(3xy)^4 =$$

$$(3xy)^4 = 3$$

5.
$$(2x)^3 = 8x^3$$

6.
$$(5x)^2 = 25x^2$$

7.
$$(3xy)^4 =$$

 $(3xy)^4 = 3^4$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81$

$$(3xy)^4 = 3^4$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81$

$$(3xy)^4 = 3^4 \cdot$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7.
$$(3xy)^4 = 81$$

$$(3xy)^4 = 3^4 \cdot x$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7.
$$(3xy)^4 = \underline{81}$$

 $(3xy)^4 = 3^4 \cdot x^4$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81x^4$

$$(3xy)^4 = 3^4 \cdot x^4$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81x^4$

$$(3xy)^4 = 3^4 \cdot x^4 \cdot$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81x^4$

$$(3xy)^4 = 3^4 \cdot x^4 \cdot y$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7.
$$(3xy)^4 = \underline{81x^4}$$

 $(3xy)^4 = 3^4 \cdot x^4 \cdot y^4$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = \underline{81x^4y^4}$

$$(3xy)^4 = 3^4 \cdot x^4 \cdot y^4$$

$$5. \quad (2\mathbf{x})^3 = \mathbf{8x^3}$$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81x^4y^4$
- 5. $(2x)^3 = 8x^3$ Rule:
- 6. $(5x)^2 = 25x^2$
- 7. $(3xy)^4 = \underline{81x^4y^4}$

5.
$$(2x)^3 = 8x^3$$
 Rule: $(ab)^n =$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81x^4y^4$

5.
$$(2x)^3 = 8x^3$$
 Rule: $(ab)^n = a^n$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81x^4y^4$

5.
$$(2x)^3 = 8x^3$$
 Rule: $(ab)^n = a^n$.

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81x^4y^4$

5.
$$(2\mathbf{x})^3 = \underline{\mathbf{8x^3}}$$
 Rule: $(\mathbf{ab})^n = \mathbf{a^n \cdot b^n}$

6.
$$(5x)^2 = 25x^2$$

7. $(3xy)^4 = 81x^4y^4$

8.
$$(2x^3)^4 =$$

8.
$$(2x^3)^4 =$$

$$(2x^3)^4 =$$

8.
$$(2x^3)^4 =$$

$$(2x^3)^4 =$$

8.
$$(2x^3)^4 =$$

$$(2x^3)^4 =$$

8.
$$(2x^3)^4 =$$

$$(2x^3)^4 =$$

8.
$$(2x^3)^4 =$$

$$(2x^3)^4 =$$

8.
$$(2x^3)^4 =$$

 $(2x^3)^4 =$

8.
$$(2x^3)^4 =$$

$$(2x^3)^4 =$$

8.
$$(2x^3)^4 =$$

$$(2x^3)^4 = 2$$

8.
$$(2x^3)^4 =$$

 $(2x^3)^4 = 2^4$

8.
$$(2x^3)^4 = 16$$

$$(2x^3)^4 = 2^4$$

8.
$$(2x^3)^4 = 16$$

$$(2x^3)^4 = 2^4$$
.

8.
$$(2x^3)^4 = 16$$

 $(2x^3)^4 = 2^4 \cdot (x^3)$

8.
$$(2x^3)^4 = \underline{16}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

8.
$$(2x^3)^4 = 16$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

8.
$$(2x^3)^4 = 16$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

When a power of x is raised to another power,

8.
$$(2x^3)^4 = 16$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

When a power of x is raised to another power, you just <u>multiply the</u> <u>exponents</u>.

8.
$$(2x^3)^4 = 16x^{12}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

When a power of x is raised to another power, you just <u>multiply the</u> <u>exponents</u>.

8.
$$(2x^3)^4 = 16x^{12}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

$$(3xy^2)^3 =$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

$$(3xy^2)^3 =$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

$$(3xy^2)^3 =$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

$$(3xy^2)^3 =$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

$$(3xy^2)^3 =$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

$$(3xy^2)^3 =$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

 $(3xy^2)^3 =$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

$$(3xy^2)^3 =$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

$$(3xy^2)^3 = 3$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 =$$

 $(3xy^2)^3 = 3^3$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27$$

 $(3xy^2)^3 = 3^3$
8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27$$

$$(3xy^2)^3 = 3^3$$
.

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27$$

$$(3xy^2)^3 = 3^3 \cdot x$$

8.
$$(2x^3)^4 = 16x^{12}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

9.
$$(3xy^2)^3 = 27$$

 $(3xy^2)^3 = 3^3 \cdot x^3$

8.
$$(2x^3)^4 = 16x^{12}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

9.
$$(3xy^2)^3 = 27x^3$$

 $(3xy^2)^3 = 3^3 \cdot x^3$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27x^3$$

$$(3xy^2)^3 = 3^3 \cdot x^3 \cdot x^3 \cdot y^3 \cdot y^3$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27x^3$$

$$(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)$$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27x^3$$

 $(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)^3$

8.
$$(2x^3)^4 = 16x^{12}$$

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27x^3$$

$$(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)^3$$

8.
$$(2x^3)^4 = 16x^{12}$$

When a power of y

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27x^3$$

$$(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)^3$$

8.
$$(2x^3)^4 = 16x^{12}$$

When a power of y

$$(2x^3)^4 = 2^4 \cdot (x^3)^4$$

9.
$$(3xy^2)^3 = 27x^3$$

$$(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)^3$$

8.
$$(2x^3)^4 = 16x^{12}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

9.
$$(3xy^2)^3 = 27x^3$$

$$(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)^3$$

When a power of y is raised to another power,

8.
$$(2x^3)^4 = 16x^{12}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

9.
$$(3xy^2)^3 = 27x^3$$

 $(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)^3$

When a power of y is raised to another power,

8.
$$(2x^3)^4 = 16x^{12}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

9.
$$(3xy^2)^3 = 27x^3$$

 $(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)^3$

When a power of y is raised to another power, you just <u>multiply the</u> <u>exponents</u>.

8.
$$(2x^3)^4 = 16x^{12}$$

 $(2x^3)^4 = 2^4 \cdot (x^3)^4$

9.
$$(3xy^2)^3 = 27x^3y^6$$

$$(3xy^2)^3 = 3^3 \cdot x^3 \cdot (y^2)^3$$

When a power of y is raised to another power, you just <u>multiply the</u> <u>exponents</u>.

10. $(-5x^3y^4)^2 =$ _____

10. $(-5x^3y^4)^2 =$ _____

$$(-5x^3y^4)^2 =$$

10. $(-5x^3y^4)^2 =$ _____

 $(-5x^3y^4)^2 =$

10. $(-5x^3y^4)^2 =$ _____

 $(-5x^3y^4)^2 = (-5)$

10.
$$(-5x^{3}y^{4})^{2} =$$

 $(-5x^{3}y^{4})^{2} = (-5)^{2}$

10.
$$(-5x^{3}y^{4})^{2} = 25$$

 $(-5x^{3}y^{4})^{2} = (-5)^{2}$

10. $(-5x^3y^4)^2 = \underline{25}$

 $(-5x^3y^4)^2 = (-5)^2$.

10.
$$(-5x^3y^4)^2 = \underline{25}$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)$$

10.
$$(-5x^{3}y^{4})^{2} = \underline{25}$$

 $(-5x^{3}y^{4})^{2} = (-5)^{2} \cdot (x^{3})^{2}$

10.
$$(-5x^{3}y^{4})^{2} = 25x^{6}$$

 $(-5x^{3}y^{4})^{2} = (-5)^{2} \cdot (x^{3})^{2}$

10. $(-5x^3y^4)^2 = 25x^6$

 $(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot$

10. $(-5x^3y^4)^2 = 25x^6$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)$$

10.
$$(-5x^{3}y^{4})^{2} = 25x^{6}$$

 $(-5x^{3}y^{4})^{2} = (-5)^{2} \cdot (x^{3})^{2} \cdot (y^{4})^{2}$

10.
$$(-5x^{3}y^{4})^{2} = 25x^{6}y^{8}$$

 $(-5x^{3}y^{4})^{2} = (-5)^{2} \cdot (x^{3})^{2} \cdot (y^{4})^{2}$

10. $(-5x^3y^4)^2 = 25x^6y^8$

 $(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$

10. $(-5x^3y^4)^2 = 25x^6y^8$

 $(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$

11.
$$(-2x^2y^5)^3 =$$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 =$$

$$(-2x^2y^5)^3 =$$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 =$$

$$(-2x^2y^5)^3 =$$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 =$$

 $(-2x^2y^5)^3 = (-2)$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 =$$

 $(-2x^2y^5)^3 = (-2)^3$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 = -8$$

 $(-2x^2y^5)^3 = (-2)^3$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 = -8$$

$$(-2x^2y^5)^3 = (-2)^3$$
.
10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 = -8$$

 $(-2x^2y^5)^3 = (-2)^3 \cdot (x^2)$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 = -8$$

 $(-2x^2y^5)^3 = (-2)^3 \cdot (x^2)^3$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 = -8x^6$$

 $(-2x^2y^5)^3 = (-2)^3 \cdot (x^2)^3$

10. $(-5x^3y^4)^2 = 25x^6y^8$

 $(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$

11.
$$(-2x^2y^5)^3 = -8x^6$$

$$(-2x^2y^5)^3 = (-2)^3 \cdot (x^2)^3 \cdot$$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 = -8x^6$$

 $(-2x^2y^5)^3 = (-2)^3 \cdot (x^2)^3 \cdot (y^5)^3$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 = -8x^6$$

 $(-2x^2y^5)^3 = (-2)^3 \cdot (x^2)^3 \cdot (y^5)^3$

10.
$$(-5x^3y^4)^2 = 25x^6y^8$$

$$(-5x^3y^4)^2 = (-5)^2 \cdot (x^3)^2 \cdot (y^4)^2$$

11.
$$(-2x^2y^5)^3 = -8x^6y^{15}$$

 $(-2x^2y^5)^3 = (-2)^3 \cdot (x^2)^3 \cdot (y^5)^3$

Simplify each of the following.

1. $(x^4)(x^5) =$ _____

2.
$$(5x)(7x^5) =$$

Simplify each of the following.

1. $(x^4)(x^5) =$ _____

2.
$$(5x)(7x^5) =$$

Simplify each of the following.

1. $(x^4)(x^5) =$ _____

2.
$$(5x)(7x^5) =$$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) =$$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) =$$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) =$$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) =$$

= $(5 \cdot x)(7 \cdot x^5)$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5\mathbf{x})(7\mathbf{x}^5) =$$

= $(5 \cdot \mathbf{x})(7 \cdot \mathbf{x}^5) = (5 \cdot 7)(\mathbf{x} \cdot \mathbf{x}^5)$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) =$$

= $(5 \cdot x)(7 \cdot x^5) = (5 \cdot 7)(x \cdot x^5)$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) = 35$$

= $(5 \cdot x)(7 \cdot x^5) = (5 \cdot 7)(x \cdot x^5)$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) = 35$$

$$= (5 \cdot \mathbf{x})(7 \cdot \mathbf{x}^5) = (5 \cdot 7)(\mathbf{x} \cdot \mathbf{x}^5)$$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) = 35$$

$$= (5 \cdot x)(7 \cdot x^5) = (5 \cdot 7)(x^1 \cdot x^5)$$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) = 35$$

= $(5 \cdot x)(7 \cdot x^5) = (5 \cdot 7)(x^1 \cdot x^5)$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) = \underline{35x^6}$$

= $(5 \cdot x)(7 \cdot x^5) = (5 \cdot 7)(x^1 \cdot x^5)$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

1.
$$(x^4)(x^5) = x^9$$

2.
$$(5x)(7x^5) = 35x^6$$

$$= (5 \cdot x)(7 \cdot x^5) = (5 \cdot 7)(x^1 \cdot x^5)$$

Simplify each of the following.

3. $(-5x^3)(-4x^2) =$

4.
$$(-x^3)(5x^3) =$$

Simplify each of the following.

3. $(-5x^3)(-4x^2) =$

4.
$$(-x^3)(5x^3) =$$

Simplify each of the following.

3. $(-5x^3)(-4x^2) =$

4.
$$(-x^3)(5x^3) =$$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) =$
- $= (-5 \cdot x^3)(-4 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) =$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) =$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) = 20$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) = 20$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$ _____

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) = 20$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) = 20$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) = 20x^5$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) = 20x^5$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$ _____

Simplify each of the following.

3. $(-5x^3)(-4x^2) = 20x^5$

 $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4. $(-x^3)(5x^3) =$

Simplify each of the following.

- 3. $(-5x^3)(-4x^2) = 20x^5$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4. $(-x^3)(5x^3) =$
Simplify each of the following.

- 3. $(-5x^3)(-4x^2) = 20x^5$
- $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$
- 4. $(-x^3)(5x^3) =$ = $(-1 \cdot x^3)(5 \cdot x^3)$

Simplify each of the following.

3. $(-5x^3)(-4x^2) = 20x^5$

 $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4. $(-x^3)(5x^3) = _$ = $(-1 \cdot x^3)(5 \cdot x^3) = (-1)(5)(x^3 \cdot x^3)$

Simplify each of the following.

3. $(-5x^3)(-4x^2) = 20x^5$

 $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4. $(-x^3)(5x^3) =$ = $(-1 \cdot x^3)(5 \cdot x^3) = (-1)(5)(x^3 \cdot x^3)$

Simplify each of the following.

3.
$$(-5x^3)(-4x^2) = 20x^5$$

 $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4.
$$(-x^3)(5x^3) = \underline{-5}$$

= $(-1 \cdot x^3)(5 \cdot x^3) = (-1)(5)(x^3 \cdot x^3)$

Simplify each of the following.

3.
$$(-5x^3)(-4x^2) = 20x^5$$

 $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4. $(-x^3)(5x^3) = \underline{-5}$ = $(-1 \cdot x^3)(5 \cdot x^3) = (-1)(5)(x^3 \cdot x^3)$

Simplify each of the following.

$$3. \quad (-5x^3)(-4x^2) = \underline{20x^5}$$

 $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4.
$$(-x^3)(5x^3) = \underline{-5}$$

= $(-1 \cdot x^3)(5 \cdot x^3) = (-1)(5)(x^3 \cdot x^3)$

Simplify each of the following.

$$3. \quad (-5x^3)(-4x^2) = \underline{20x^5}$$

 $= (-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4.
$$(-x^3)(5x^3) = \underline{-5}$$

= $(-1 \cdot x^3)(5 \cdot x^3) = (-1)(5)(x^3 \cdot x^3)$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

3.
$$(-5x^3)(-4x^2) = 20x^5$$

= $(-5 \cdot x^3)(-4 \cdot x^2) = (-5)(-4)(x^3 \cdot x^2)$

4. $(-x^3)(5x^3) = \underline{-5x^6}$ = $(-1 \cdot x^3)(5 \cdot x^3) = (-1)(5)(x^3 \cdot x^3)$

> Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

3. $(-5x^{3})(-4x^{2}) = \underline{20x^{5}}$ = $(-5 \cdot x^{3})(-4 \cdot x^{2}) = (-5)(-4)(x^{3} \cdot x^{2})$ 4. $(-x^{3})(5x^{3}) = \underline{-5x^{6}}$ = $(-1 \cdot x^{3})(5 \cdot x^{3}) = (-1)(5)(x^{3} \cdot x^{3})$

Simplify each of the following.

5.
$$(9x)(6x) =$$

6.
$$(x^2)(-x^2) =$$

Simplify each of the following.

5. (9x)(6x) =_____

6.
$$(x^2)(-x^2) =$$

Simplify each of the following.

5. (9x)(6x) =_____

6.
$$(x^2)(-x^2) =$$

Simplify each of the following.

5. (9x)(6x) = _____

 $= (9 \cdot x)(6 \cdot x)$

6. $(x^2)(-x^2) =$

Simplify each of the following.

- 5. (9x)(6x) =_____
 - $= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$
- 6. $(x^2)(-x^2) =$ _____

Simplify each of the following.

- 5. (9x)(6x) =_____
 - $= (9 \cdot \mathbf{x})(6 \cdot \mathbf{x}) = (9 \cdot 6)(\mathbf{x} \cdot \mathbf{x})$
- 6. $(x^2)(-x^2) =$ _____

Simplify each of the following.

- 5. (9x)(6x) = 54
 - $= (9 \cdot \mathbf{x})(6 \cdot \mathbf{x}) = (9 \cdot 6)(\mathbf{x} \cdot \mathbf{x})$
- 6. $(x^2)(-x^2) =$ _____

Simplify each of the following.

- 5. (9x)(6x) = 54
 - $= (9 \cdot \mathbf{x})(6 \cdot \mathbf{x}) = (9 \cdot 6)(\mathbf{x} \cdot \mathbf{x})$
- 6. $(x^2)(-x^2) =$

Simplify each of the following.

- 5. $(9x)(6x) = 54x^2$
 - $= (9 \cdot \mathbf{x})(6 \cdot \mathbf{x}) = (9 \cdot 6)(\mathbf{x} \cdot \mathbf{x})$
- 6. $(x^2)(-x^2) =$

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

$$= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$$

6. $(x^2)(-x^2) =$ _____

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

$$= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$$

6. $(x^2)(-x^2) =$

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

$$= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$$

6. $(x^2)(-x^2) =$ _____

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

$$= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$$

6. $(x^2)(-x^2) =$ = $(1 \cdot x^2)(-1 \cdot x^2)$

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

 $= (9 \cdot \mathbf{x})(6 \cdot \mathbf{x}) = (9 \cdot 6)(\mathbf{x} \cdot \mathbf{x})$

6. $(x^2)(-x^2) =$ = $(1 \cdot x^2)(-1 \cdot x^2) = (1)(-1)(x^2 \cdot x^2)$

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

 $= (9 \cdot \mathbf{x})(6 \cdot \mathbf{x}) = (9 \cdot 6)(\mathbf{x} \cdot \mathbf{x})$

6. $(x^2)(-x^2) =$ = $(1 \cdot x^2)(-1 \cdot x^2) = (1)(-1)(x^2 \cdot x^2)$

Simplify each of the following.

5.
$$(9x)(6x) = 54x^2$$

 $= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$

6.
$$(x^2)(-x^2) = -1$$

= $(1 \cdot x^2)(-1 \cdot x^2) = (1)(-1)(x^2 \cdot x^2)$

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

 $= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$

6. $(x^2)(-x^2) = -1$ = $(1 \cdot x^2)(-1 \cdot x^2) = (1)(-1)(x^2 \cdot x^2)$

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

 $= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$

6. $(x^2)(-x^2) = -1$ = $(1 \cdot x^2)(-1 \cdot x^2) = (1)(-1)(x^2 \cdot x^2)$

Simplify each of the following.

5.
$$(9x)(6x) = 54x^2$$

 $= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$

6.
$$(x^2)(-x^2) = -1$$

= $(1 \cdot x^2)(-1 \cdot x^2) = (1)(-1)(x^2 \cdot x^2)$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

5.
$$(9x)(6x) = 54x^2$$

 $= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$

6.
$$(x^2)(-x^2) = -1x^4$$

= $(1 \cdot x^2)(-1 \cdot x^2) = (1)(-1)(x^2 \cdot x^2)$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

5. $(9x)(6x) = 54x^2$

$$= (9 \cdot x)(6 \cdot x) = (9 \cdot 6)(x \cdot x)$$

6.
$$(x^2)(-x^2) = \underline{-x^4}$$

= $(1 \cdot x^2)(-1 \cdot x^2) = (1)(-1)(x^2 \cdot x^2)$

Simplify each of the following.

7. $(x^4)^5 =$ _____

8.
$$(x^2)^6 =$$

Simplify each of the following.

7. $(x^4)^5 =$ _____

8.
$$(x^2)^6 =$$

Simplify each of the following.

7. $(x^4)^5 =$ _____

8.
$$(x^2)^6 =$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

7. $(x^4)^5 = x^{20}$

8.
$$(x^2)^6 =$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

7.
$$(x^4)^5 = x^{20}$$

8.
$$(x^2)^6 =$$

Simplify each of the following.

7.
$$(x^4)^5 = x^{20}$$

8.
$$(x^2)^6 =$$

Simplify each of the following.

7.
$$(x^4)^5 = x^{20}$$

8.
$$(x^2)^6 =$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

7.
$$(x^4)^5 = x^{20}$$

8.
$$(x^2)^6 = x^{12}$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

7.
$$(x^4)^5 = x^{20}$$

8.
$$(x^2)^6 = x^{12}$$

Simplify each of the following.

9. $(x^3)^3 =$ _____

10.
$$(x^5)^2 =$$

Simplify each of the following.

9. $(x^3)^3 =$ _____

10.
$$(x^5)^2 =$$

Simplify each of the following.

9. $(x^3)^3 =$ _____

10.
$$(x^5)^2 =$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

9. $(x^3)^3 = x^9$

10.
$$(x^5)^2 =$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

9.
$$(x^3)^3 = x^9$$

10.
$$(x^5)^2 =$$

9.
$$(x^3)^3 = x^9$$

10.
$$(x^5)^2 =$$

Simplify each of the following.

9.
$$(x^3)^3 = x^9$$

10.
$$(x^5)^2 =$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

9.
$$(x^3)^3 = x^9$$

10.
$$(x^5)^2 = x^{10}$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

9.
$$(x^3)^3 = x^9$$

10.
$$(x^5)^2 = x^{10}$$

Simplify each of the following.

11. $(5x)^2 =$

12.
$$(3x)^3 =$$

Simplify each of the following.

11. $(5x)^2 =$ _____

12. $(3x)^3 =$ _____

Simplify each of the following.

11. $(5x)^2 =$ _____

12. $(3x)^3 =$ _____

Simplify each of the following.

11. $(5x)^2 =$ _____ = $5^2 \cdot x^2$

12. $(3x)^3 =$ _____

Simplify each of the following.

- 11. $(5x)^2 = 25x^2$ = $5^2 \cdot x^2$
- 12. $(3x)^3 =$ _____

Simplify each of the following.

11. $(5x)^2 = 25x^2$

 $= 5^2 \cdot x^2$

12. $(3x)^3 =$ _____

11.
$$(5x)^2 = 25x^2$$

= $5^2 \cdot x^2$
12. $(3x)^3 =$ _____

Simplify each of the following.

11.
$$(5x)^2 = \underline{25x^2}$$

= $5^2 \cdot x^2$

12. $(3x)^3 =$ _____

Simplify each of the following.

11.
$$(5x)^2 = 25x^2$$

= $5^2 \cdot x^2$
12. $(3x)^3 =$ ______

 $= 3^3 \cdot x^3$

Simplify each of the following.

11.
$$(5x)^2 = \underline{25x^2}$$

= 5²·x²

12.
$$(3x)^3 = 27x^3$$

= $3^3 \cdot x^3$

- 11. $(5x)^2 = 25x^2$ = $5^2 \cdot x^2$
- 12. $(3x)^3 = 27x^3$ = $3^3 \cdot x^3$

Simplify each of the following.

13. $(-4x)^3 =$

14.
$$(-3x)^4 =$$

Simplify each of the following.

13. $(-4x)^3 =$ _____

14. $(-3x)^4 =$ _____

Simplify each of the following.

13. $(-4x)^3 =$

14. $(-3x)^4 =$ _____

Simplify each of the following.

13. $(-4x)^3 =$ _____ = $(-4)^3 \cdot x^3$

14. $(-3x)^4 =$ _____

Simplify each of the following.

13. $(-4x)^3 = -64x^3$ = $(-4)^3 \cdot x^3$

14. $(-3x)^4 =$ _____

- 13. $(-4x)^3 = -64x^3$
 - $= (-4)^3 \cdot x^3$
- 14. $(-3x)^4 =$ _____

Simplify each of the following.

13.
$$(-4x)^3 = -64x^3$$

$$= (-4)^3 \cdot x^3$$

14. $(-3x)^4 =$ _____

Simplify each of the following.

13.
$$(-4x)^3 = -64x^3$$

 $= (-4)^3 \cdot x^3$ 14. $(-3x)^4 =$ _____

Simplify each of the following.

13.
$$(-4x)^3 = -64x^3$$

$$= (-4)^3 \cdot x^3$$

14. $(-3x)^4 =$ _____ = $(-3)^4 \cdot x^4$

Simplify each of the following.

13.
$$(-4x)^3 = -64x^3$$

= $(-4)^3 \cdot x^3$
14. $(-3x)^4 = 81x^4$
= $(-3)^4 \cdot x^4$

- 13. $(-4x)^3 = -64x^3$ = $(-4)^3 \cdot x^3$
- 14. $(-3x)^4 = 81x^4$ = $(-3)^4 \cdot x^4$

Simplify each of the following.

15. $(-x)^5 =$ _____

16.
$$(-x)^8 =$$

Simplify each of the following.

15. $(-x)^5 =$ _____ 16. $(-x)^8 =$ _____
Simplify each of the following.

15. $(-x)^5 =$ _____ = $(-1 \cdot x)^5$

16. $(-x)^8 =$ _____

Simplify each of the following.

15. $(-x)^5 =$ _____ = $(-1 \cdot x)^5$

16. $(-x)^8 =$ _____

Simplify each of the following.

15. $(-\mathbf{x})^5 = _$ = $(-1 \cdot \mathbf{x})^5 = (-1)^5 \cdot \mathbf{x}^5$

16. $(-x)^8 =$ _____

Simplify each of the following.

15. $(-x)^5 = -1x^5$ = $(-1 \cdot x)^5 = (-1)^5 \cdot x^5$

16. $(-x)^8 =$ _____

Simplify each of the following.

15. $(-x)^5 = \underline{-x^5}$ = $(-1 \cdot x)^5 = (-1)^5 \cdot x^5$ 16. $(-x)^8 = \underline{\qquad}$

Simplify each of the following.

15. $(-\mathbf{x})^5 = \underline{-\mathbf{x}^5}$ = $(-1 \cdot \mathbf{x})^5 = (-1)^5 \cdot \mathbf{x}^5$ **16.** $(-\mathbf{x})^8 = \underline{\qquad}$

Simplify each of the following.

15. $(-x)^5 = \underline{-x^5}$ = $(-1 \cdot x)^5 = (-1)^5 \cdot x^5$ **16.** $(-x)^8 = \underline{\qquad}$ = $(-1 \cdot x)^8$

Simplify each of the following.

15. $(-x)^5 = \underline{-x^5}$ = $(-1 \cdot x)^5 = (-1)^5 \cdot x^5$ **16.** $(-x)^8 = \underline{\qquad}$ = $(-1 \cdot x)^8$

Simplify each of the following.

15. $(-\mathbf{x})^5 = \underline{-\mathbf{x}^5}$ = $(-1 \cdot \mathbf{x})^5 = (-1)^5 \cdot \mathbf{x}^5$ **16.** $(-\mathbf{x})^8 = \underline{\qquad}$ = $(-1 \cdot \mathbf{x})^8 = (-1)^8 \cdot \mathbf{x}^8$

Simplify each of the following.

15.
$$(-x)^5 = \underline{-x^5}$$

= $(-1 \cdot x)^5 = (-1)^5 \cdot x^5$
16. $(-x)^8 = \underline{1x^8}$
= $(-1 \cdot x)^8 = (-1)^8 \cdot x^8$

Simplify each of the following.

15. $(-x)^5 = \underline{-x^5}$ = $(-1 \cdot x)^5 = (-1)^5 \cdot x^5$ 16. $(-x)^8 = \underline{x^8}$ = $(-1 \cdot x)^8 = (-1)^8 \cdot x^8$

Simplify each of the following.

17. $(5x^5)^2 =$

18.
$$(2x^3)^5 =$$

Simplify each of the following.

17. $(5x^5)^2 =$ _____

18. $(2x^3)^5 =$ _____

Simplify each of the following.

17. $(5x^5)^2 =$ _____

18. $(2x^3)^5 =$ _____

Simplify each of the following.

17. $(5x^5)^2 =$ _____ = $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 =$ _____

Simplify each of the following.

17. $(5x^5)^2 =$ = $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 =$ _____

- 17. $(5x^5)^2 =$ = $5^2 \cdot (x^5)^2$
- 18. $(2x^3)^5 =$ _____

- 17. $(5x^5)^2 = 25$ = $5^2 \cdot (x^5)^2$
- 18. $(2x^3)^5 =$ _____

- 17. $(5x^5)^2 = 25$ = $5^2 \cdot (x^5)^2$
- 18. $(2x^3)^5 =$ _____

Simplify each of the following.

- 17. $(5x^5)^2 = 25$ = $5^2 \cdot (x^5)^2$
- 18. $(2x^3)^5 =$ _____

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

- 17. $(5x^5)^2 = 25x^{10}$ = $5^2 \cdot (x^5)^2$
- 18. $(2x^3)^5 =$ _____

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

17. $(5x^5)^2 = 25x^{10}$

$$= 5^2 \cdot (x^5)^2$$

18. $(2x^3)^5 =$ _____

Simplify each of the following.

17. $(5x^5)^2 = 25x^{10}$ = $5^2 \cdot (x^5)^2$ 18. $(2x^3)^5 =$ _____

Simplify each of the following.

17.
$$(5x^5)^2 = 25x^{10}$$

 $= 5^2 \cdot (x^5)^2$

18. $(2x^3)^5 =$

Simplify each of the following.

17.
$$(5x^5)^2 = 25x^{10}$$

= $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 =$ = $2^5 \cdot (x^3)^5$

Simplify each of the following.

17.
$$(5x^5)^2 = 25x^{10}$$

= $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 =$ = $2^5 \cdot (x^3)^5$

Simplify each of the following.

17.
$$(5x^5)^2 = 25x^{10}$$

= $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 =$ = $2^5 \cdot (x^3)^5$

Simplify each of the following.

17.
$$(5x^5)^2 = 25x^{10}$$

= $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 = 32$ = $2^5 \cdot (x^3)^5$

Simplify each of the following.

17.
$$(5x^5)^2 = 25x^{10}$$

= $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 = 32$ = $2^5 \cdot (x^3)^5$

Simplify each of the following.

17.
$$(5x^5)^2 = 25x^{10}$$

= $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 = 32$ = $2^5 \cdot (x^3)^5$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

17.
$$(5x^5)^2 = 25x^{10}$$

= $5^2 \cdot (x^5)^2$

18. $(2x^3)^5 = 32x^{15}$ = $2^5 \cdot (x^3)^5$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

- 17. $(5x^5)^2 = 25x^{10}$ = $5^2 \cdot (x^5)^2$
- 18. $(2x^3)^5 = 32x^{15}$ = $2^5 \cdot (x^3)^5$

19.
$$(-3x^2)^3 =$$

20.
$$(5x^3yz^2)^3 =$$

Simplify each of the following.

19. $(-3x^2)^3 =$ _____

20.
$$(5x^3yz^2)^3 =$$

Simplify each of the following.

19. $(-3x^2)^3 =$ _____

20.
$$(5x^3yz^2)^3 =$$

Simplify each of the following.

19.
$$(-3x^2)^3 =$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 =$$

Simplify each of the following.

19. $(-3x^2)^3 =$ = $(-3)^3 \cdot (x^2)^3$

20. $(5x^3yz^2)^3 =$

19.
$$(-3x^2)^3 =$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 =$$

19.
$$(-3x^2)^3 = \underline{-27}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 =$$

Simplify each of the following.

19. $(-3x^2)^3 = \underline{-27}$ = $(-3)^3 \cdot (x^2)^3$

20. $(5x^3yz^2)^3 =$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27}$$

= $(-3)^3 \cdot (x^2)^3$

20. $(5x^3yz^2)^3 =$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20. $(5x^3yz^2)^3 =$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20. $(5x^3yz^2)^3 =$ _____

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 =$$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20. $(5x^3yz^2)^3 =$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 =$$

= $5^3 \cdot (x^3)^3 \cdot y^3 \cdot (z^2)^3$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 =$$

= $5^3 \cdot (x^3)^3 \cdot y^3 \cdot (z^2)^3$

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 =$$

= $5^3 \cdot (x^3)^3 \cdot y^3 \cdot (z^2)^3$

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 = 125$$

= $5^3 \cdot (x^3)^3 \cdot y^3 \cdot (z^2)^3$

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^{3}yz^{2})^{3} = 125$$

= $5^{3} \cdot (x^{3})^{3} \cdot y^{3} \cdot (z^{2})^{3}$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^{3}yz^{2})^{3} = 125$$

= $5^{3} \cdot (x^{3})^{3} \cdot y^{3} \cdot (z^{2})^{3}$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^{3}yz^{2})^{3} = \underline{125x^{9}}$$

= $5^{3} \cdot (x^{3})^{3} \cdot y^{3} \cdot (z^{2})^{3}$

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 = \underline{125x^9}$$

= $5^3 \cdot (x^3)^3 \cdot y^3 \cdot (z^2)^3$

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^3yz^2)^3 = \underline{125x^9y^3}$$

= $5^3 \cdot (x^3)^3 \cdot y^3 \cdot (z^2)^3$

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^{3}yz^{2})^{3} = \underline{125x^{9}y^{3}}$$

= $5^{3} \cdot (x^{3})^{3} \cdot y^{3} \cdot (z^{2})^{3}$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^{3}yz^{2})^{3} = \underline{125x^{9}y^{3}}$$

= $5^{3} \cdot (x^{3})^{3} \cdot y^{3} \cdot (z^{2})^{3}$

Simplify each of the following.

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^{3}yz^{2})^{3} = \underline{125x^{9}y^{3}z^{6}}$$

= $5^{3} \cdot (x^{3})^{3} \cdot y^{3} \cdot (z^{2})^{3}$

19.
$$(-3x^2)^3 = \underline{-27x^6}$$

= $(-3)^3 \cdot (x^2)^3$

20.
$$(5x^{3}yz^{2})^{3} = \underline{125x^{9}y^{3}z^{6}}$$

= $5^{3} \cdot (x^{3})^{3} \cdot y^{3} \cdot (z^{2})^{3}$

21.
$$(-2x^3y^2)^4 =$$

22.
$$(-xy^3z^2)^5 =$$

Simplify each of the following.

21. $(-2x^3y^2)^4 =$

22.
$$(-xy^3z^2)^5 =$$

Simplify each of the following.

- 21. $(-2x^3y^2)^4 =$
- 22. $(-xy^3z^2)^5 =$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

Simplify each of the following.

- 21. $(-2x^3y^2)^4 =$ = $(-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$
- 22. $(-xy^3z^2)^5 =$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

- 21. $(-2x^3y^2)^4 =$ = $(-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$
- 22. $(-xy^3z^2)^5 =$ _____

- 21. $(-2x^3y^2)^4 =$ = $(-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$
- 22. $(-xy^3z^2)^5 =$

- 21. $(-2x^3y^2)^4 = 16$ = $(-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$
- 22. $(-xy^3z^2)^5 =$

- 21. $(-2x^3y^2)^4 = 16$ = $(-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$
- 22. $(-xy^3z^2)^5 =$

Simplify each of the following.

- 21. $(-2x^{3}y^{2})^{4} = \underline{16}$ = $(-2)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}$
- 22. $(-xy^3z^2)^5 =$

Simplify each of the following.

21. $(-2x^3y^2)^4 = 16x^{12}$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22. $(-xy^3z^2)^5 =$ _____

Simplify each of the following.

- $21. \quad (-2x^3y^2)^4 = \underline{16x^{12}}$
 - $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$
- 22. $(-xy^3z^2)^5 =$ _____

Simplify each of the following.

21.
$$(-2x^{3}y^{2})^{4} = 16x^{12}y^{8}$$

= $(-2)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}$

22. $(-xy^3z^2)^5 =$

Simplify each of the following.

21. $(-2x^3y^2)^4 = 16x^{12}y^8$

$$= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$$

22. $(-xy^3z^2)^5 =$ _____

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22. $(-xy^3z^2)^5 =$
Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22. $(-xy^3z^2)^5 =$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22. $(-xy^3z^2)^5 =$ = $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

Simplify each of the following.

$$21. \quad (-2x^3y^2)^4 = \underline{16x^{12}y^8}$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22. $(-xy^3z^2)^5 =$ = $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Simplify each of the following.

$$21. \quad (-2x^3y^2)^4 = \underline{16x^{12}y^8}$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22. $(-xy^3z^2)^5 =$ = $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22. $(-xy^3z^2)^5 = -1$ = $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22.
$$(-xy^{3}z^{2})^{5} = -1$$

= $(-1)^{5} \cdot x^{5} \cdot (y^{3})^{5} \cdot (z^{2})^{5}$

Simplify each of the following.

$$21. \quad (-2x^3y^2)^4 = \underline{16x^{12}y^8}$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22.
$$(-xy^3z^2)^5 = -1x^5$$

= $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Simplify each of the following.

$$21. \quad (-2x^3y^2)^4 = \underline{16x^{12}y^8}$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22.
$$(-xy^3z^2)^5 = -1x^5$$

= $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22.
$$(-xy^3z^2)^5 = -1x^5$$

= $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22.
$$(-xy^{3}z^{2})^{5} = -1x^{5}y^{15}$$

= $(-1)^{5} \cdot x^{5} \cdot (y^{3})^{5} \cdot (z^{2})^{5}$

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22.
$$(-xy^{3}z^{2})^{5} = -1x^{5}y^{15}$$

= $(-1)^{5} \cdot x^{5} \cdot (y^{3})^{5} \cdot (z^{2})^{5}$

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = 16x^{12}y^8$$

 $= (-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22.
$$(-xy^3z^2)^5 = -1x^5y^{15}z^{10}$$

= $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Simplify each of the following.

21.
$$(-2x^3y^2)^4 = \underline{16x^{12}y^8}$$

= $(-2)^4 \cdot (x^3)^4 \cdot (y^2)^4$

22. $(-xy^3z^2)^5 = -x^5y^{15}z^{10}$ = $(-1)^5 \cdot x^5 \cdot (y^3)^5 \cdot (z^2)^5$

Simplify each of the following.

23. $-(-2x)^6 =$ _____

24. $-(-3x^4)^3 =$

23.
$$-(-2x)^6 =$$

24.
$$-(-3x^4)^3 =$$

23.
$$-(-2x)^6 =$$

= $-1 \cdot (-2x)^6$

24.
$$-(-3x^4)^3 =$$

23.
$$-(-2x)^6 =$$

= $-1 \cdot (-2x)^6$ Do this first

24.
$$-(-3x^4)^3 =$$

Simplify each of the following.

23.
$$-(-2x)^6 =$$

= $-1 \cdot (-2x)^6$ Do this first

24.
$$-(-3x^4)^3 =$$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

Simplify each of the following.

23.
$$-(-2x)^6 =$$
 _____ Do this first.
= $-1 \cdot (-2)^6 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

Simplify each of the following.

23. $-(-2x)^6 =$ = $-1 \cdot (-2x)^6 =$ = $-1 \cdot (-2)^6 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

23.
$$-(-2x)^6 =$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3$ _____ Do this first.

Simplify each of the following.

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3$ _____ Do this first

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

Simplify each of the following.

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$
 _____ Do this first
= $-1 \cdot (-3)^3 \cdot (x^4)^3$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= -1

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= -1

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= $-1 \cdot (-27)$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= $-1 \cdot (-27)$

Simplify each of the following.

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= $-1 \cdot (-27)$

Simplify each of the following.

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= $-1 \cdot (-27) \cdot x^{12}$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 =$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= $-1 \cdot (-27) \cdot x^{12}$
23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 = 27x^{12}$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= $-1 \cdot (-27) \cdot x^{12}$

23.
$$-(-2x)^6 = \underline{-64x^6}$$

= $-1 \cdot (-2x)^6 =$
= $-1 \cdot (-2)^6 \cdot x^6 =$
= $-1 \cdot 64 \cdot x^6$

24.
$$-(-3x^4)^3 = \underline{27x^{12}}$$

= $-1 \cdot (-3x^4)^3 =$
= $-1 \cdot (-3)^3 \cdot (x^4)^3 =$
= $-1 \cdot (-27) \cdot x^{12}$

Simplify each of the following.

25. $(2x^3y)^3(3x^3y^5)^2 =$

Simplify each of the following.

25. $(2x^3y)^3(3x^3y^5)^2 =$

Simplify each of the following.

Simplify each of the following.

26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25. $(2x^3y)^3(3x^3y^5)^2 =$ = $[2^3 \cdot (x^3)^3 \cdot y^3]$

26.
$$(-5x^3)(-4x)^2 =$$

Simplify each of the following.

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}]$.
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25. $(2x^3y)^3(3x^3y^5)^2 =$

 $= [2^3 \cdot (x^3)^3 \cdot y^3] \cdot [3^2 \cdot (x^3)^2 \cdot (y^5)^2] =$

26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25. $(2x^3y)^3(3x^3y^5)^2 =$

 $= [2^3 \cdot (x^3)^3 \cdot y^3] \cdot [3^2 \cdot (x^3)^2 \cdot (y^5)^2] =$

Simplify each of the following.

25. $(2x^3y)^3(3x^3y^5)^2 =$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = [8
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$$

= $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$
= $[8$

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$$

= $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$
= $[8$

26. $(-5x^3)(-4x)^2 =$ _____

Simplify each of the following.

25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}$

26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}$
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}$
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}y^{3}]$
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}y^{3}]$
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}y^{3}] \cdot [9]$
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}y^{3}] \cdot [9]$
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}y^{3}] \cdot [9]$

26.
$$(-5x^3)(-4x)^2 =$$

Simplify each of the following.

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}y^{3}] \cdot [9x^{6}]$
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} =$ = $[2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ = $[8x^{9}y^{3}] \cdot [9x^{6}]$
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25. $(2x^3y)^3(3x^3y^5)^2 =$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

- $= [8x^9y^3] \cdot [9x^6y^{10}]$
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^3y)^3(3x^3y^5)^2 =$
 - $= [2^3 \cdot (x^3)^3 \cdot y^3] \cdot [3^2 \cdot (x^3)^2 \cdot (y^5)^2] =$
 - $= [8x^9y^3] \cdot [9x^6y^{10}]$
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

- 25. $(2x^3y)^3(3x^3y^5)^2 =$
 - $= [2^3 \cdot (x^3)^3 \cdot y^3] \cdot [3^2 \cdot (x^3)^2 \cdot (y^5)^2] =$
 - $= [8x^9y^3] \cdot [9x^6y^{10}]$
- 26. $(-5x^3)(-4x)^2 =$

Rule: When multiplying two monomials, you can <u>rearrange</u> <u>the factors</u>.

Simplify each of the following.

- 25. $(2x^3y)^3(3x^3y^5)^2 =$
 - $= [2^3 \cdot (x^3)^3 \cdot y^3] \cdot [3^2 \cdot (x^3)^2 \cdot (y^5)^2] =$
 - $= [8x^9y^3] \cdot [9x^6y^{10}] =$
 - $=(8{\cdot}9)(x^9{\cdot}x^6)(y^3{\cdot}y^{10})=$
- 26. $(-5x^3)(-4x)^2 =$

Rule: When multiplying two monomials, you can <u>rearrange</u> <u>the factors</u>.

- 25. $(2x^3y)^3(3x^3y^5)^2 =$
 - $= [2^3 \cdot (x^3)^3 \cdot y^3] \cdot [3^2 \cdot (x^3)^2 \cdot (y^5)^2] =$
 - $= [8x^9y^3] \cdot [9x^6y^{10}] =$
 - $= (8 \cdot 9)(x^9 \cdot x^6)(y^3 \cdot y^{10}) =$
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^3y)^3(3x^3y^5)^2 =$
 - $= [2^3 \cdot (x^3)^3 \cdot y^3] \cdot [3^2 \cdot (x^3)^2 \cdot (y^5)^2] =$
 - $= [8x^9y^3] \cdot [9x^6y^{10}] =$
 - = (8.9) (x⁹·x⁶)(y³·y¹⁰) =
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72}$ $= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ $= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$ $= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$
- 26. $(-5x^3)(-4x)^2 =$

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72}$ $= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ $= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$ $= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72}$ $= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ $= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$ $= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}}$ $= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ $= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$ $= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

- 25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}}$ $= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ $= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$ $= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$
- 26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

26.
$$(-5x^3)(-4x)^2 =$$
Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

26. $(-5x^3)(-4x)^2 =$

Simplify each of the following.

25. $(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$ $= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$ $= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$ $= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$

26. $(-5x^3)(-4x)^2 =$ _____

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

26. $(-5x^3)(-4x)^2 =$ _____

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

26. $(-5x^3)(-4x)^2 =$ _____

$$= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$$

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

26. $(-5x^3)(-4x)^2 =$

$$= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$$

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

- 26. $(-5x^3)(-4x)^2 =$
 - $= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$
 - $= [-5x^3] \cdot [16x^2] =$

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

- 26. $(-5x^3)(-4x)^2 =$
 - $= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$
 - $= [-5x^3] \cdot [16x^2] =$

Rule: When multiplying two monomials, you can <u>rearrange</u> <u>the factors</u>.

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

26. $(-5x^3)(-4x)^2 =$ _____

$$= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$$

$$= [-5x^3] \cdot [16x^2] =$$

 $= [(-5) \cdot (16)][x^3 \cdot x^2] =$

Rule: When multiplying two monomials, you can <u>rearrange</u> <u>the factors</u>.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

- 26. $(-5x^3)(-4x)^2 =$
 - $= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$
 - $= [-5x^3] \cdot [16x^2] =$
 - $= [(-5) \cdot (16)][x^3 \cdot x^2] =$

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$

- 26. $(-5x^3)(-4x)^2 =$ _____
 - $= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$
 - $= [-5x^3] \cdot [16x^2] =$
 - $= [(-5) \cdot (16)] [x^3 \cdot x^2] =$

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$
26. $(-5x^{3})(-4x)^{2} = -80$

$$= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$$

$$= [-5x^3] \cdot [16x^2] =$$

$$= [(-5) \cdot (16)] [x^3 \cdot x^2] =$$

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$
26. $(-5x^{3})(-4x)^{2} = \underline{-80}$

$$= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$$

$$= [-5x^3] \cdot [16x^2] =$$

$$= [(-5) \cdot (16)] [x^3 \cdot x^2] =$$

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$
26. $(-5x^{3})(-4x)^{2} = -80$

$$= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$$

- $= [-5x^3] \cdot [16x^2] =$
- $= [(-5) \cdot (16)] [x^3 \cdot x^2] =$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

Simplify each of the following.

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$
26. $(-5x^{3})(-4x)^{2} = -80x^{5}$

$$= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$$

$$= [-5x^3] \cdot [16x^2] =$$

 $= [(-5) \cdot (16)] [x^3 \cdot x^2] =$

Rule: When <u>multiplying two powers</u> of a variable, you just <u>add the exponents</u>. $(x^a)(x^b) = x^{(a+b)}$

25.
$$(2x^{3}y)^{3}(3x^{3}y^{5})^{2} = \underline{72x^{15}y^{13}}$$

$$= [2^{3} \cdot (x^{3})^{3} \cdot y^{3}] \cdot [3^{2} \cdot (x^{3})^{2} \cdot (y^{5})^{2}] =$$

$$= [8x^{9}y^{3}] \cdot [9x^{6}y^{10}] =$$

$$= (8 \cdot 9)(x^{9} \cdot x^{6})(y^{3} \cdot y^{10}) =$$
26. $(-5x^{3})(-4x)^{2} = \underline{-80x^{5}}$

$$= [-5x^3] \cdot [(-4)^2 \cdot x^2] =$$

$$= [-5x^3] \cdot [16x^2] =$$

$$= [(-5) \cdot (16)][x^3 \cdot x^2] =$$

Simplify each of the following.

27. $(-x^3y^2)^4(-x^4y^3)^3 =$

 $28. \quad (-3x^4)^3(-5x^3) = _$

Simplify each of the following.

27. $(-x^3y^2)^4(-x^4y^3)^3 =$

 $= [(-1)^4 \cdot (x^3)^4 \cdot (y^2)^4]$

 $28. \quad (-3x^4)^3(-5x^3) = _$

Simplify each of the following.

27. $(-x^3y^2)^4(-x^4y^3)^3 =$

 $= [(-1)^4 \cdot (x^3)^4 \cdot (y^2)^4] \cdot$

 $28. \quad (-3x^4)^3(-5x^3) = _$

Simplify each of the following.

27.
$$(-x^3y^2)^4(-x^4y^3)^3 =$$

 $= [(-1)^4 \cdot (x^3)^4 \cdot (y^2)^4] \cdot [(-1)^3 \cdot (x^4)^3 \cdot (y^3)^3]$

 $28. \quad (-3x^4)^3(-5x^3) = _$

Simplify each of the following.

27.
$$(-x^3y^2)^4(-x^4y^3)^3 =$$

 $= [(-1)^4 \cdot (x^3)^4 \cdot (y^2)^4] \cdot [(-1)^3 \cdot (x^4)^3 \cdot (y^3)^3] =$

Simplify each of the following.

27.
$$(-x^3y^2)^4(-x^4y^3)^3 =$$

 $= [(-1)^4 \cdot (x^3)^4 \cdot (y^2)^4] \cdot [(-1)^3 \cdot (x^4)^3 \cdot (y^3)^3] =$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}]$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}]$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1]$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1]$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1]$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1x^{12}$

$$28. \quad (-3x^4)^3(-5x^3) = _$$
Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1x^{12}$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1x^{12}y^{9}]$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Rule: When multiplying two monomials, you can <u>rearrange</u> <u>the factors</u>.

Simplify each of the following.

27.
$$(-x^3y^2)^4(-x^4y^3)^3 =$$

= $[(-1)^4 \cdot (x^3)^4 \cdot (y^2)^4] \cdot [(-1)^3 \cdot (x^4)^3 \cdot (y^3)^3] =$

$$= [1x^{12}y^8] \cdot [-1x^{12}y^9] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^8 \cdot y^9) =$$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Rule: When multiplying two monomials, you can <u>rearrange</u> <u>the factors</u>.

- 27. $(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$ = $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$ = $[1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$
 - $= (1)(-1)(x^{12} \cdot x^{12})(y^8 \cdot y^9) =$
- $28. \quad (-3x^4)^3(-5x^3) = _$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} =$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$
= $(1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = -1$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = -1$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = -1$$

= $[(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$
= $[1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$
= $(1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = -1x^{24}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = -1x^{24}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = -1x^{24}y^{17}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

$$28. \quad (-3x^4)^3(-5x^3) = _$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

Simplify each of the following.

 $= [(-3)^3 \cdot (x^4)^3]$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

Every <u>factor</u> inside the parenthesis is raised to the power of the exponent outside the parenthesis. $(ab)^n = a^n b^n$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) = \underline{\qquad}$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) = \underline{\qquad}$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) = \underline{\qquad}$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27]$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27]$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27]$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}]$$

Rule: When a <u>power of a variable is raised to another power</u>, you just <u>multiply the exponents</u>. $(x^a)^b = x^{ab}$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot [-5x^{3}] =$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

 $= [-27x^{12}] \cdot [-5x^3] =$

Rule: When multiplying two monomials, you can <u>rearrange</u> <u>the factors</u>.

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot [-5x^{3}] =$$

$$= (-27)(-5)(x^{12} \cdot x^{3}) =$$

Rule: When multiplying two monomials, you can <u>rearrange</u> <u>the factors</u>.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot [-5x^{3}] =$$

$$= (-27)(-5)(x^{12} \cdot x^{3}) =$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) =$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot [-5x^{3}] =$$

$$= [-27)(-5)(x^{12} \cdot x^{3}) =$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) = \underline{135}$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot [-5x^{3}] =$$

$$= [-27)(-5)(x^{12} \cdot x^{3}) =$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) = \underline{135}$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot [-5x^{3}] =$$

$$= (-27)(-5)(x^{12} \cdot x^{3}) =$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) = \underline{135}$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot [-5x^{3}] =$$

$$= (-27)(-5)(x^{12} \cdot x^{3}) =$$

Simplify each of the following.

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$
28. $(-3x^{4})^{3}(-5x^{3}) = \underline{135x^{15}}$

$$= [(-3)^{3} \cdot (x^{4})^{3}] \cdot [-5x^{3}] =$$

$$= [-27x^{12}] \cdot [-5x^{3}] =$$

$$= (-27)(-5)(x^{12} \cdot x^{3}) =$$

27.
$$(-x^{3}y^{2})^{4}(-x^{4}y^{3})^{3} = \underline{-x^{24}y^{17}}$$

$$= [(-1)^{4} \cdot (x^{3})^{4} \cdot (y^{2})^{4}] \cdot [(-1)^{3} \cdot (x^{4})^{3} \cdot (y^{3})^{3}] =$$

$$= [1x^{12}y^{8}] \cdot [-1x^{12}y^{9}] =$$

$$= (1)(-1)(x^{12} \cdot x^{12})(y^{8} \cdot y^{9}) =$$

- 28. $(-3x^4)^3(-5x^3) = \underline{135x^{15}}$ = $[(-3)^3 \cdot (x^4)^3] \cdot [-5x^3] =$ = $[-27x^{12}] \cdot [-5x^3] =$
 - $= (-27)(-5)(x^{12} \cdot x^3) =$
Simplify each of the following.

29. $-6^2 =$ _____

30.
$$(-6)^2 =$$

Simplify each of the following.

29. $-6^2 =$ _____ 30. $(-6)^2 =$ _____

Simplify each of the following.

29. $-6^2 =$ _____ 30. $(-6)^2 =$ _____

Simplify each of the following.

29. $-6^2 =$ = (-1)(6)(6) **30.** (-6)² =

Simplify each of the following.

29. $-6^2 =$ = (-1)(6)(6) **30.** (-6)² =

Simplify each of the following.

29. $-6^2 =$ = (-1)(6)(6) **30.** (-6)² = _____ = (-6)(-6)

Simplify each of the following.

29. $-6^2 =$ = (-1)(6)(6) **30.** (-6)² = _____ = (-6)(-6)

Simplify each of the following.

29. $-6^2 =$ = (-1)(6)(6) **30.** (-6)² = _____ = (-6)(-6)

Simplify each of the following.

29. $-6^2 = -36$ = (-1)(6)(6) 30. (-6)² = _____ = (-6)(-6)

Simplify each of the following.

29. $-6^2 = \underline{-36}$ = (-1)(6)(6) 30. $(-6)^2 = \underline{\qquad}$ = (-6)(-6)

Simplify each of the following.

29. $-6^2 = \underline{-36}$ = (-1)(6)(6) **30.** $(-6)^2 = \underline{36}$ = (-6)(-6)

Simplify each of the following.

29.
$$-6^2 = -36$$

= $(-1)(6)(6)$

30.
$$(-6)^2 = 36$$

= $(-6)(-6)$

Simplify each of the following.

29.
$$-6^2 = -36$$

= $(-1)(6)(6)$

30.
$$(-6)^2 = 36$$

= $(-6)(-6)$

Good luck on your homework !!