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Multiplication by -1 
 8 · -1 = -8  3 · -1 = -3  -1 · 5 = -5  -1 · 2 = -2 
Rule:   x · -1 = -x  and  -1 · x = -x.  
 -x is the opposite of x.  Don’t assume that -x is negative.  If x represents a negative 
number, then -x is positive !!  Consider these examples. 
 -8 · -1 = 8  -3 · -1 = 3  -1 · -5 = 5  -1 · -2 = 2 
 
Consider the following examples. 
 3 · (4 + 2) = 3 · 6 = 18  and  3 · 4 + 3 · 2 = 12 + 6 = 18 
  Therefore,   3 · (4 + 2) = 3 · 4 + 3 · 2 
 5 · (8 + 3) = 5 · 11 = 55  and  5 · 8 + 5 · 3 = 40 + 15 = 55 
  Therefore,   5 · (8 + 3) = 5 · 8 + 5 · 3 
 3 · (4 – 2) = 3 · 2 = 6  and  3 · 4 – 3 · 2 = 12 – 6 = 6 
  Therefore,   3 · (4 – 2) = 3 · 4 – 3 · 2 
 5 · (8 – 3) = 5 · 5 = 25  and  5 · 8 – 5 · 3 = 40 – 15 = 25 
  Therefore,   5 · (8 – 3) = 5 · 8 – 5 · 3 
Rule:   x(y + z) = xy + xz  and  x(y – z) = xy – xz 
 The first rule is The Distributive Law for Multiplication Over Addition. 
 The second rule is The Distributive Law for Multiplication Over Subtraction. 
 
Consider the following examples. 
 -(3 + 4) = -7   and  -3 + -4 = -7  Therefore, -(3 + 4) = -3 + -4  
 -(2 + 9) = -11  and  -2 + -9 = -11 Therefore, -(2 + 9) = -2 + -9 
Rule:  -(x + y) = -x + -y  This is called The Opposite of a Sum Property. 
Once again, don’t assume that -x and -y represent negative numbers.  Consider the 
following examples. 
 -(8 + -3) = -5  and  -8 + 3 = -5  Therefore, -(8 + -3) = -8 + 3 
 -(-7 + 10) = -3  and 7 + -10 = -3  Therefore, -(-7 + 10) = 7 + -10 
   The Opposite of a Sum Property:   -(x + y) = -x + -y 
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The properties we have learned can be used to simplify algebraic expressions.  Consider 
the following examples. 
 

Use the appropriate distributive law to write an equivalent expression without 
parentheses. 
 

1.  3(x + 4) = 3 · x + 3 · 4 = 3x + 12   2.  6(x – 5) = 6 · x – 6 · 5 = 6x – 30 
 

3.  5(2x + 7) = 5 · 2x + 5 · 7 = 10x + 35  4.  7(3x – 4) = 7 · 3x – 7 · 4 = 21x – 28 
 

5.  -2(x + 5) = -2 · x + -2 · 5 = -2x + -10 = -2x – 10    
 

6.  -3(5x – 4) = -3 · 5x – -3 · 4 = -15x – -12 = -15x + 12 
 
Notice on problems 5 and 6 that a ‘double sign’ is not left in the final answer.  The 
definition of subtraction is used to avoid this.  Adding -10 is equivalent to subtracting 10.  
Subtracting -12 is equivalent to adding 12. 
 

Use the appropriate distributive law to perform the indicated multiplication.  Then 
combine like terms.  Remember that the commutative and associative properties of 
addition allow you to change the order and the grouping of terms that are being added.  
When necessary, the definition of subtraction can be used to change subtraction to 
addition and to express the final answer without any ‘double signs’. 
 

7.   5(3x + 2y) + 2(x + 5y) =     8.  3(2a – 7b) + 3(7a + 3b) = 
     (15x + 10y) + (2x + 10y)         (6a – 21b) + (21a + 9b) 
     (15x + 2x) + (10y + 10y) = 17x + 20y       (6a + -21b) + (21a + 9b) 
             (6a + 21a) + (-21b + 9b) = 27a + -12b =  
                  27a – 12b 
 

Use the definition of subtraction to change the given subtraction problems to addition.  
Then use the opposite of a sum property.  Finally, combine like terms. 
 

9.   (5x + 7y) – (2x + 3y) =    10.   (2b + 9) – (5b – 2) = 
      (5x + 7y) + -(2x + 3y) =           (2b + 9) + -(5b + -2) = 
      (5x + 7y) + (-2x + -3y) =           (2b + 9) + (-5b + 2) = 
      (5x + -2x) + (7y + -3y) = 3x + 4y          (2b + -5b) + (9 + 2) = -3b + 11 
 

11.   2(3x – 8) – 3(4x – 5) =    12.  5(4x + 6) – 3(5x + 1) = 
       2(3x + -8) + -3(4x + -5) =          5(4x + 6) + -3(5x + 1) = 
       (6x + -16) + (-12x + 15) =          (20x + 30) + (-15x + -3) = 
       (6x + -12x) + (-16 + 15) = -6x + -1 = -6x – 1       (20x + -15x) + (30 + -3) = 5x + 27 
 
 


