Consider the following examples.

 $2^1 = 2$ $\mathbf{x}^1 = \mathbf{x}$ $2^2 = 2 \cdot 2$ $\mathbf{x}^2 = \mathbf{x} \cdot \mathbf{x}$ $2^3 = 2 \cdot 2 \cdot 2$ $x^3 = x \cdot x \cdot x$ $2^4 = 2 \cdot 2 \cdot 2 \cdot 2$ $\mathbf{x}^4 = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$ $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ $\mathbf{x}^5 = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$ $2^6 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ $\mathbf{x}^6 = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$ $2^7 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ $\mathbf{x}^7 = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$ $2^8 = 2 \cdot 2$ $\mathbf{x}^8 = \mathbf{x} \cdot \mathbf{x}$ $x^9 = x \cdot x$

Letøs take a closer look.

Here is a quick definition.

$$\mathbf{x}^1 = \mathbf{x}$$

If k is a whole number greater than 1, then

$$\mathbf{x}^{\mathbf{k}} = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$$

k factors

Simplify each of the following. (Remember that we can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} = \mathbf{p}^8$ 2. $\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} = \mathbf{x}^5 \mathbf{y}^3$ 3. $5 \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{3} \cdot \mathbf{b} \cdot \mathbf{b} = \mathbf{b}$ 4. $2 \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^5 \mathbf{y}^3$ 5. $(3\mathbf{x})(4\mathbf{x}) = (3 \cdot 4) \cdot (\mathbf{x} \cdot \mathbf{x}) = 12\mathbf{x}^2$ 6. $(3\mathbf{x})(4\mathbf{y}) = (3 \cdot 4) \cdot \mathbf{x} \cdot \mathbf{y} = 12\mathbf{xy}$

Evaluate each of the following. (Evaluate means to \exists ind the value of \emptyset)

7. $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 = 32$ 8. $1^3 = 1 \cdot 1 \cdot 1 = 1$ 9. $4^1 = 4$ 10. $10^3 = 10 \cdot 10 \cdot 10 = 1,000$

Algebra INotes #4page 2Properties of ZeroUnit 1Zero and Addition7+0=75+0=50+3=30+8=8Rule:x+0=x and 0+x=x.8+-8=03+-3=0-2+2=0-5+5=0Rule:x+-x=0 and -x+x=0.x+x=0.x + x = 0

-x is the opposite of x or the additive inverse of x.

Zero and Subtraction 7-0=7 5-0=5 0-3=-3 0-8=-8Rule: x-0=x and 0-x=-x.

Zero and Multiplication $8 \cdot 0 = 0$ $3 \cdot 0 = 0$ $0 \cdot 5 = 0$ $0 \cdot 2 = 0$ Rule: $x \cdot 0 = 0$ and $0 \cdot x = 0$.

Zero and Division

Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6 = 18$.

Now try the division problem $5 \div 0$. The answer, if it exists, must multiply by 0 to give a product of 5. Clearly this number does not exist !! We say that $5 \div 0$ is undefined.

Now try the division problem $0 \div 0$. The answer, if it exists, must multiply by 0 to give a product of 0. Clearly, any number works !! We say that $0 \div 0$ is also undefined.

Rule: Division by zero is undefined.

Consider the division problem $0 \div 5$. The answer, if it exists must multiply by 5 to give a product of 0. Clearly the answer is 0. Similarly, $0 \div 8 = 0$ and $0 \div 7 = 0$.

Rule: If $x \neq 0$, then $0 \div x = 0$. (Zero divided by any other number is zero.)