Algebra I Notes \#4 page 1 Factors and Exponents Unit 1

Consider the following examples.

$$
\begin{array}{ll}
2^{1}=2 & \mathrm{x}^{1}=\mathrm{x} \\
2^{2}=2 \cdot 2 & \mathrm{x}^{2}=\mathrm{x} \cdot \mathrm{x} \\
2^{3}=2 \cdot 2 \cdot 2 & \mathrm{x}^{3}=\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \\
2^{4}=2 \cdot 2 \cdot 2 \cdot 2 & \mathrm{x}^{4}=\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \\
2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 & \mathrm{x}^{5}=\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \\
2^{6}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 & \mathrm{x}^{6}=\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \\
2^{7}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 & \mathrm{x}^{7}=\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x} \\
2^{8}=2 \cdot 2 & \mathrm{x}^{8}=\mathrm{x} \cdot \mathrm{x} \\
2^{9}=2 \cdot 2 & \mathrm{x}^{9}=\mathrm{x} \cdot \mathrm{x} \cdot \mathrm{x}
\end{array}
$$

Letố take a closer look.

Here is a quick definition.

$$
x^{1}=x
$$

If k is a whole number greater than 1 , then

Simplify each of the following. (Remember that we can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}=\mathbf{x}^{5} \mathbf{y}^{3}$
3. $\mathbf{5} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{3} \cdot \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b}=$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)=15 a^{2} b^{3}$
4. $2 \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{4} \cdot \mathbf{y}=$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y=8 x^{5} y$
5. $(\mathbf{3 x})(\mathbf{4 x})=(\mathbf{3} \cdot \mathbf{4}) \cdot(\mathbf{x} \cdot \mathbf{x})=\mathbf{1 2} \mathrm{x}^{2}$
6. $\mathbf{(3 x)}(\mathbf{4 y})=(\mathbf{3} \cdot \mathbf{4}) \cdot \mathbf{x} \cdot \mathbf{y}=\mathbf{1 2 x y}$

Evaluate each of the following. (Evaluate means to ớind the value of $\hat{\mathbf{o}}$)
7. $\mathbf{2}^{5}=\mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2}=\mathbf{3 2}$
8. $1^{3}=1 \cdot 1 \cdot 1=1$
9. $4^{1}=4$
10. $\mathbf{1 0}^{\mathbf{3}}=\mathbf{1 0} \cdot \mathbf{1 0} \cdot \mathbf{1 0}=\mathbf{1 , 0 0 0}$

Algebra I Notes \#4 page 2 Properties of Zero Unit 1

Zero and Addition

$7+0=7$
$5+0=5$
$0+3=3$
$0+8=8$
Rule: $x+0=x$ and $0+x=x$.
$8+-8=0 \quad 3+-3=0 \quad-2+2=0 \quad-5+5=0$
Rule: $x+-x=0$ and $-x+x=0$.
$-x$ is the opposite of x or the additive inverse of x.

Zero and Subtraction

$7-0=7$
$5-0=5$
$0-3=-3$
$0-8=-8$

Rule: $\quad x-0=x$ and $0-x=-x$.

Zero and Multiplication

$8 \cdot 0=0$
$3 \cdot 0=0$
$0 \cdot 5=0$
$0 \cdot 2=0$

Rule: $\mathbf{x} \cdot \mathbf{0}=\mathbf{0}$ and $0 \cdot x=0$.

Zero and Division

Consider the division problem $18 \div 6$. The answer is $\mathbf{3}$ because $3 \cdot 6=18$.
Now try the division problem $\mathbf{5} \div \mathbf{0}$. The answer, if it exists, must multiply by $\mathbf{0}$ to give a product of $\mathbf{5}$. Clearly this number does not exist !! We say that $\mathbf{5} \div \mathbf{0}$ is undefined.

Now try the division problem $\mathbf{0} \div \mathbf{0}$. The answer, if it exists, must multiply by $\mathbf{0}$ to give a product of $\mathbf{0}$. Clearly, any number works !! We say that $\mathbf{0} \div \mathbf{0}$ is also undefined.

Rule: Division by zero is undefined.
Consider the division problem $\mathbf{0} \div 5$. The answer, if it exists must multiply by $\mathbf{5}$ to give a product of $\mathbf{0}$. Clearly the answer is $\mathbf{0}$. Similarly, $\mathbf{0} \div \mathbf{8}=\mathbf{0}$ and $\mathbf{0} \div 7=\mathbf{0}$.
Rule: If $x \neq 0$, then $0 \div x=0$. (Zero divided by any other number is zero.)

