Algebra I Notes \#3 page 1 Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$
$7+2=9$ and $2+7=9$. Therefore, $7+2=2+7$
$\mathbf{2 0}+\mathbf{3 5}=\mathbf{5 5}$ and $\mathbf{3 5}+\mathbf{2 0}=\mathbf{5 5}$. Therefore, $\mathbf{2 0}+\mathbf{3 5}=\mathbf{3 5}+\mathbf{2 0}$
In general, $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$. This property is called the Commutative Law of Addition.
Consider the following examples.
$(3+4)+5=7+5=12$ and $3+(4+5)=3+9=12$. Therefore, $(3+4)+5=3+(4+5)$
$(7+2)+8=9+8=17$ and $7+(2+8)=7+10=17$. Therefore, $(7+2)+8=7+(2+8)$
$(1+3)+6=4+6=10$ and $1+(3+6)=1+9=10$. Therefore, $(1+3)+6=1+(3+6)$
In general, $(x+y)+z=x+(y+z)$. This is called the Associative Law of Addition.
Consider the following examples.
$5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2$
In general, $x+0=x$ and $0+x=x$. This is called the Identity Law of Addition.
Consider the following examples.
$5+-5=0 \quad 8+-8=0 \quad-7+7=0 \quad-2+2=2$
In general, $x+-x=0$. This is called the Inverse Law of Addition.
$-x$ is called the opposite of x or the additive inverse of x.
Consider the following examples.
$8-3=5$ and $8+-3=5$. Therefore, $8-3=8+-3$.
$12-8=4$ and $12+-8=4$. Therefore, $12-8=12+-8$.
$3-5=-2$ and $3+-5=-2$. Therefore, $3-5=3+-5$.
In general, $x-y=x+-y$. This is called the Definition of Subtraction.
Here is a summary of these properties. In all cases, the variables used represent numbers.
Commutative Law of Addition: $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$
Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Inverse Law of Addition: $x+-x=0$
Definition of Subtraction: $x-y=x+-y$

Algebra I Notes \#3 page 2 Properties of Multiplication and Division Unit 1

 Consider the following examples.$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$
$\mathbf{7} \cdot \mathbf{2}=\mathbf{1 4}$ and $2 \cdot \mathbf{7}=\mathbf{1 4}$. Therefore, $7 \cdot 2=2 \cdot 7$
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore, $6 \cdot 8=8 \cdot 6$
In general, $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$. This property is called the Commutative Law of Multiplication.
Consider the following examples.
$(3 \cdot 4) \cdot 5=12 \cdot 5=60$ and $3 \cdot(4 \cdot 5)=3 \cdot 20=60$. Therefore, $(3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5)$
$(7 \cdot 2) \cdot 8=14 \cdot 8=112$ and $7 \cdot(2 \cdot 8)=7 \cdot 16=112$. Therefore, $(7 \cdot 2) \cdot 8=\mathbf{7} \cdot \mathbf{(2 \cdot 8)}$
$(9 \cdot 3) \cdot 6=27 \cdot 6=162$ and $9 \cdot(3 \cdot 6)=9 \cdot 18=162$. Therefore, $(9 \cdot 3) \cdot 6=9 \cdot(3 \cdot 6)$
In general, $(x \cdot y) \cdot z=x \cdot(y \cdot z)$. This is called the Associative Law of Multiplication.
Consider the following examples.
$5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2$
In general, $x \cdot 1=x$ and $1 x=x$. This is called the Identity Law of Multiplication.
Consider the following examples.
$\mathbf{5} \cdot \mathbf{1 / 5}=\mathbf{1} \quad \mathbf{8} \cdot \mathbf{1 / 8}=1 \quad 1 / 7 \cdot 7=1 \quad 1 / 2 \cdot 2=1$
In general, $x \cdot 1 / x=1$. This is called the Inverse Law of Multiplication. $1 / x$ is called the reciprocal of x or the multiplicative inverse of x. (x can not be 0 .)

Consider the following examples.
$8 \div 3=8 / 3$ and $8 \cdot(1 / 3)=8 / 3$. Therefore, $8 \div 3=8 \cdot 1 / 3$.
$4 \div 7=4 / 7$ and $4 \cdot(1 / 7)=4 / 7$. Therefore, $4 \div 7=4 \cdot 1 / 7$.
$3 \div 5=3 / 5$ and $3 \cdot(1 / 5)=3 / 5$. Therefore, $3 \div 5=3 \cdot 1 / 5$.
In general, $x \div y=x \cdot 1 / y$. This is called the Definition of Division. (y can not be 0 .)
Here is a summary of these properties. In all cases, the variables used represent numbers.
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Multiplication: ($x \cdot y$) $\cdot \mathbf{z}=\mathbf{x} \cdot(\mathbf{y} \cdot \mathbf{z})$
Identity Law of Multiplication: $1 \mathrm{x}=\mathrm{x}$
Inverse Law of Multiplication: If $\mathbf{x} \neq 0$, then $\mathbf{x} \cdot \mathbf{1 / x}=1$.
Definition of Division: If $y \neq 0$, then $x \div y=x \cdot 1 / y$.

