Algebra I Lesson #5 Unit 1 Class Worksheet #5 For Worksheet #6

Multiplication by -1

Multiplication by -1

Multiplication by -1

Consider these examples.

8 · -1 =

Multiplication by -1

Consider these examples.

 $8 \cdot -1 = -8$

Multiplication by -1

$$8 \cdot -1 = -8$$
 $3 \cdot -1 =$

Multiplication by -1

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$

Multiplication by -1

Consider these examples.

 $8 \cdot -1 = -8$ $3 \cdot -1 = -3$ $-1 \cdot 5 =$

Multiplication by -1

Consider these examples.

 $8 \cdot -1 = -8$ $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$

Multiplication by -1

Consider these examples.

 $8 \cdot -1 = -8$ $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$

Multiplication by -1

Consider these examples.

 $8 \cdot -1 = -8$ $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 =$

Multiplication by -1

Consider these examples.

 $8 \cdot -1 = -8$ $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Multiplication by -1

Consider these examples.

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Rule:

Multiplication by -1

Consider these examples.

 $8 \cdot -1 = -8$ $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Rule: $\mathbf{x} \cdot \mathbf{-1} =$

Multiplication by -1

Consider these examples.

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Rule: $x \cdot -1 = -x$

Multiplication by -1

Consider these examples.

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Rule: $x \cdot -1 = -x$

Multiplication by -1

Consider these examples.

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Rule: $\mathbf{x} \cdot -\mathbf{1} = -\mathbf{x}$ and

Multiplication by -1

Consider these examples.

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Rule: $\mathbf{x} \cdot \mathbf{-1} = \mathbf{-x}$ and $\mathbf{-1} \cdot \mathbf{x} =$

Multiplication by -1

Consider these examples.

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Rule: $\mathbf{x} \cdot -1 = -\mathbf{x}$ and $-1 \cdot \mathbf{x} = -\mathbf{x}$.

Multiplication by -1

Consider these examples.

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$

Rule: $\mathbf{x} \cdot -\mathbf{1} = -\mathbf{x}$ and $-\mathbf{1} \cdot \mathbf{x} = -\mathbf{x}$.

Multiplication by -1

Consider these examples.

$$8 \cdot -1 = -8$$
 $3 \cdot -1 = -3$ $-1 \cdot 5 = -5$ $-1 \cdot 2 = -2$
Rule: $x \cdot -1 = -x$ and $-1 \cdot x = -x$.

-x is the opposite of x.

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number,

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

$$-8 \cdot -1 = 8$$

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

Consider these examples.

 $-8 \cdot -1 = 8$ $-3 \cdot -1 =$

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

Consider these examples.

 $-8 \cdot -1 = 8$ $-3 \cdot -1 = 3$

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

Consider these examples.

 $-8 \cdot -1 = 8$ $-3 \cdot -1 = 3$ $-1 \cdot -5 =$

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

Consider these examples.

 $-8 \cdot -1 = 8$ $-3 \cdot -1 = 3$ $-1 \cdot -5 = 5$

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

Consider these examples.

 $-8 \cdot -1 = 8$ $-3 \cdot -1 = 3$ $-1 \cdot -5 = 5$ $-1 \cdot -2 =$

Multiplication by -1

Consider these examples.

8
$$\cdot$$
 -1 = -8 3 \cdot -1 = -3 -1 \cdot 5 = -5 -1 \cdot 2 = -2
Rule: x \cdot -1 = -x and -1 \cdot x = -x.

-x is the opposite of x. Don't assume that -x is negative.

If x represents a negative number, then -x is positive !!

$$-8 \cdot -1 = 8$$
 $-3 \cdot -1 = 3$ $-1 \cdot -5 = 5$ $-1 \cdot -2 = 2$

Algebra I Unit 1 Other Useful Properties The Distributive Laws
The Distributive Laws

The Distributive Laws

Consider these examples.

 $3 \cdot (4+2) =$

The Distributive Laws

Consider these examples.

 $3\cdot(4+2)=3\cdot$

The Distributive Laws

Consider these examples.

 $3\cdot(4+2)=3\cdot 6$

The Distributive Laws

Consider these examples.

 $3 \cdot (4+2) = 3 \cdot 6 =$

The Distributive Laws

Consider these examples.

 $3 \cdot (4+2) = 3 \cdot 6 = 18$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 =$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 +$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 =$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \lt$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \lt$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$
 \checkmark $3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$
 \checkmark $3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$

 $5 \cdot (8+3) =$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$
 \checkmark $3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$

 $5\cdot(8+3)=5\cdot$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

 $5 \cdot (8+3) = 5 \cdot 11$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

 $5 \cdot (8+3) = 5 \cdot 11 =$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 =$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 35$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 =$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$
 $5 \cdot (8+3) = 5 \cdot 11 = 55$
and

$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
 $3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$
 $5 \cdot (8+3) = 5 \cdot 11 = 55$
and

$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$
and
$$3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$
and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55$$
The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot 11 = 55$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (9+2)$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 3$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \iff 5 \cdot (8+3) =$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

$$5 \cdot (8+3) = 5 \cdot 8$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

$$5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55$$

The Distributive Laws

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \quad \text{and} \quad 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \quad \text{and} \quad 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and

$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \quad \text{and} \quad 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

In general,

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and
$$5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55$$

In general, $\mathbf{x} \cdot$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

In general, $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z})$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

In general, $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) =$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

In general, $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y}$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

In general, $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{z}$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and
$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

In general, $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and

$$5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

In general, $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$

This is the distributive law for multiplication over addition.

The Distributive Laws

Consider these examples.

$$3 \cdot (4+2) = 3 \cdot 6 = 18 \iff 3 \cdot (4+2) = 3 \cdot 4 + 3 \cdot 2$$

and
$$3 \cdot 4 + 3 \cdot 2 = 12 + 6 = 18 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and
$$5 \cdot (8+3) = 5 \cdot 11 = 55 \iff 5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$$

and

$$5 \cdot (8+3) = 5 \cdot 11 = 55$$

 $5 \cdot (8+3) = 5 \cdot 8 + 5 \cdot 3$
 $5 \cdot 8 + 5 \cdot 3 = 40 + 15 = 55$

In general,
$$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$$

This is the distributive law for multiplication over addition.

$$\mathbf{x}(\mathbf{y} + \mathbf{z}) = \mathbf{x}\mathbf{y} + \mathbf{x}\mathbf{z}$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

The Distributive Laws

The Distributive Laws

Consider these examples.

 $3 \cdot (4-2) =$

The Distributive Laws

Consider these examples.

 $3\cdot(4-2)=3\cdot$

The Distributive Laws

Consider these examples.

 $3\cdot(4-2)=3\cdot 2$

The Distributive Laws

Consider these examples.

 $3 \cdot (4-2) = 3 \cdot 2 =$

The Distributive Laws

Consider these examples.

 $3\cdot(4-2)=3\cdot 2=6$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 =$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12 - 2$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12 - 6$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12 - 6 =$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$

The Distributive Laws

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$
 $3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$
 \checkmark $3 \cdot (4-2)$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
 $3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$
 \checkmark $3 \cdot (4-2) =$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$
The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

 $5 \cdot (8-3) =$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

 $5\cdot(8-3)=5\cdot$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

 $5\cdot(8-3)=5\cdot 5$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

 $5\cdot(8-3)=5\cdot5=$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$
and
$$5 \cdot 8 - 5 \cdot 3 =$$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$
and

 $5\cdot 8-5\cdot 3=40$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$
and

$$5\cdot 8-5\cdot 3=40-$$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$
and

$$5 \cdot 8 - 5 \cdot 3 = 40 - 15$$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

$$3 \cdot (8 - 3) = 3 \cdot 3 - 23$$

and
 $5 \cdot 8 - 5 \cdot 3 = 40 - 15 =$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
 $5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
 $5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
 $5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
 $5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$
and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

$$5 \cdot (8-3) = 5 \cdot 8 - 5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

The Distributive Laws

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general,

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general, $\mathbf{x} \cdot$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general, $\mathbf{x} \cdot (\mathbf{y} - \mathbf{z})$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general, $\mathbf{x} \cdot (\mathbf{y} - \mathbf{z}) =$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general, $\mathbf{x} \cdot (\mathbf{y} - \mathbf{z}) = \mathbf{x} \cdot \mathbf{y}$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general, $\mathbf{x} \cdot (\mathbf{y} - \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} - \mathbf{z}$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general, $\mathbf{x} \cdot (\mathbf{y} - \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{z}$

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$

and
$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general,
$$\mathbf{x} \cdot (\mathbf{y} - \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{z}$$

This is the distributive law for multiplication over subtraction.

The Distributive Laws

Consider these examples.

$$3 \cdot (4-2) = 3 \cdot 2 = 6$$
and
$$3 \cdot (4-2) = 3 \cdot 4 - 3 \cdot 2$$

$$3 \cdot 4 - 3 \cdot 2 = 12 - 6 = 6$$

$$5 \cdot (8-3) = 5 \cdot 5 = 25$$

and
$$5 \cdot 8 - 5 \cdot 3 = 40 - 15 = 25$$

In general,
$$\mathbf{x} \cdot (\mathbf{y} - \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{z}$$

This is the distributive law for multiplication over subtraction.

$$\mathbf{x}(\mathbf{y}-\mathbf{z}) = \mathbf{x}\mathbf{y} - \mathbf{x}\mathbf{z}$$

Algebra I Unit 1 Other Useful Properties The Opposite of a Sum

The Opposite of a Sum

The Opposite of a Sum

Consider these examples.

-(3 + 4)

The Opposite of a Sum

Consider these examples.

-(3 + 4) =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7
The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3 + -4

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3 + -4 =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3 + -4 = -7

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4)

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 +

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 -(3+4) = -3 + -4

-(2+9)

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4

-(2 + 9) =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4

-(2+9) = -11

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4

-(2+9) = -11 and

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4

-(2+9) = -11 and -2 + -9

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4

-(2+9) = -11 and -2 + -9 =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4

-(2+9) = -11 and -2 + -9 = -11

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4-(2+9) = -11 and -2+-9 = -11

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9)

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3 + -4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general,

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 (2+9) = -2+-9In general, -(x+y)

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 -(2+9) = -2+-9

In general, -(x + y) =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general,
$$-(x + y) = -x + y$$

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general,
$$-(x + y) = -x + -y$$

The Opposite of a Sum

Consider these examples.

$$-(3+4) = -7$$
 and $-3+-4 = -7$
 $-(3+4) = -3+-4$
 $-(2+9) = -11$ and $-2+-9 = -11$
 $-(2+9) = -2+-9$

In general, -(x + y) = -x + -yThis is called the opposite of a sum property.

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8 + -3)

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8 + -3) =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8 + -3) = -5

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and
The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 \longrightarrow -(8+-3)

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 \longrightarrow -(8+-3) =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 \longrightarrow -(8+-3) = -8

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 \longrightarrow -(8+-3) = -8+

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ $-(8+-3) = -8+3$

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ \longrightarrow $-(8+-3) = -8+3$
-(-7+10)

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ \longrightarrow $-(8+-3) = -8+3$
 $-(-7+10) =$

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ $-(8+-3) = -8+3$

-(-7+10) = -3

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ $-(8+-3) = -8+3$

-(-7+10) = -3 and

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ $-(8+-3) = -8+3$

-(-7+10) = -3 and 7 + -10

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ $-(8+-3) = -8+3$

-(-7+10) = -3 and 7 + -10 =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ $-(8+-3) = -8+3$

-(-7+10) = -3 and 7 + -10 = -3

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 -(8+-3) = -8+3-(-7+10) = -3 and 7+-10 = -3

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 -(8+-3) = -8+3-(-7+10) = -3 and 7+-10 = -3 -(-7+10)

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 \longrightarrow -(8+-3) = -8+3-(-7+10) = -3 and 7+-10 = -3 \longrightarrow -(-7+10) =

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 -(8+-3) = -8+3-(-7+10) = -3 and 7+-10 = -3 -(-7+10) = 7

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

Consider these examples.

-(8+-3) = -5 and -8+3 = -5 \longrightarrow -(8+-3) = -8+3-(-7+10) = -3 and 7+-10 = -3 \longrightarrow -(-7+10) = 7+

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ \longrightarrow $-(8+-3) = -8+3$
 $-(-7+10) = -3$ and $7+-10 = -3$ \longrightarrow $-(-7+10) = 7+-10$

The Opposite of a Sum

Consider these examples.

-(3+4) = -7 and -3+-4 = -7 \longrightarrow -(3+4) = -3+-4-(2+9) = -11 and -2+-9 = -11 \longrightarrow -(2+9) = -2+-9

In general, -(x + y) = -x + -y

This is called the opposite of a sum property.

Don't assume that -x and -y represent negative numbers.

$$-(8+-3) = -5$$
 and $-8+3 = -5$ $-(8+-3) = -8+3$
 $-(-7+10) = -3$ and $7+-10 = -3$ $-(-7+10) = 7+-10$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. 3(x+4) =

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. 3(x+4) = 3x

1.
$$3(x+4) = 3x + 4$$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. 3(x+4) = 3x + 12

1.
$$3(x+4) = 3x+12$$

1.
$$3(x+4) = 3x + 12$$
 2. $6(x-5) =$

1.
$$3(x+4) = 3x + 12$$
 2. $6(x-5) = 6x$

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = \frac{3x+12}{2}$$
 2. $6(x-5) = \frac{6x-30}{6}$

3. 5(2x+7) =

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = \frac{3x+12}{2}$$
 2. $6(x-5) = \frac{6x-30}{6}$

3. 5(2x+7) = 10x
Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = \frac{3x+12}{2}$$
 2. $6(x-5) = \frac{6x-30}{6}$

3. 5(2x+7) = 10x +

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x+7) = 10x + 35

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x+7) = 10x+35

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) =

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 10x + 35

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

3. 5(2x + 7) = 10x + 354. 7(3x - 4) = 21x - 28

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) =

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x +

1.
$$3(x+4) = 3x+12$$

2. $6(x-5) = 6x-30$

- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x + -10

- 1. 3(x+4) = 3x+122. 6(x-5) = 6x-30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x + -10

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x + -10 =

- 1. 3(x+4) = 3x + 122. 6(x-5) = 6x - 30
- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x + -10 = -2x

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

5.
$$-2(x+5) = -2x + -10 = -2x - 2x - -2x - -2x$$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

3. 5(2x + 7) = 10x + 354. 7(3x - 4) = 21x - 28

5.
$$-2(x+5) = -2x + -10 = -2x - 10$$

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x + -10 = -2x 10

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x+12$$
 2. $6(x-5) = 6x-30$

5.
$$-2(x+5) = -2x + -10 = -2x - 10$$

6.
$$-3(5x-4) =$$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

5.
$$-2(x+5) = -2x + -10 = -2x - 10$$

6.
$$-3(5x-4) = -15x$$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x+12$$
 2. $6(x-5) = 6x-30$

5.
$$-2(x+5) = -2x + -10 = -2x - 10$$

6.
$$-3(5x-4) = -15x -$$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x+12$$
 2. $6(x-5) = 6x-30$

5.
$$-2(x+5) = -2x + -10 = -2x - 10$$

6.
$$-3(5x-4) = -15x - -12$$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x+12$$
 2. $6(x-5) = 6x-30$

5.
$$-2(x+5) = -2x + -10 = -2x - 10$$

6.
$$-3(5x-4) = -15x - -12$$

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x + -10 = -2x 10

6.
$$-3(5x-4) = -15x - -12 =$$

1.
$$3(x+4) = 3x+12$$
 2. $6(x-5) = 6x-30$

- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x + -10 = -2x 10

6.
$$-3(5x-4) = -15x - -12 = -15x$$

1.
$$3(x+4) = 3x+12$$
 2. $6(x-5) = 6x-30$

- 3. 5(2x + 7) = 10x + 35 4. 7(3x 4) = 21x 28
- 5. -2(x+5) = -2x + -10 = -2x 10

6.
$$-3(5x-4) = -15x - -12 = -15x +$$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x + 12$$

2. $6(x-5) = 6x - 30$

3. 5(2x + 7) = 10x + 354. 7(3x - 4) = 21x - 28

5.
$$-2(x+5) = -2x + -10 = -2x - 10$$

6.
$$-3(5x-4) = -15x - -12 = -15x + 12$$

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1.
$$3(x+4) = 3x+12$$
 2. $6(x-5) = 6x-30$

5.
$$-2(x+5) = -2x + -10 = -2x - 10$$

6.
$$-3(5x-4) = -15x - -12 = -15x + 12$$

Perform the indicated operations. Express your answers in simplest form.

Perform the indicated operations. Express your answers in simplest form.

7. 5(3x + 2y) + 2(x + 5y) =

Perform the indicated operations. Express your answers in simplest form.

7. 5(3x + 2y) + 2(x + 5y) =

=

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= 15x

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= 15x +

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x+2y)+2(x+5y)=$$

= 15x + 10y

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= 15x + 10y +

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= 15x + 10y + 2x
7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x +$

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y$

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$

=

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x$

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x +$

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

=

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a - 7b) + 3(7a + 3b) =$$

= 6a

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a - 7b) + 3(7a + 3b) =$$

= 6a -

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a - 7b) + 3(7a + 3b) =$$

= $6a - 21b$

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a - 7b) + 3(7a + 3b) =$$

= $6a - 21b +$

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

= 6a - 21b + 21a

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

= 6a - 21b + 21a +

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

= 6a - 21b + 21a + 9b

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

$$= 6a - 21b + 21a + 9b =$$

=

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

$$= 6a - 21b + 21a + 9b =$$

$$= 27a$$

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

$$= 6a - 21b + 21a + 9b =$$

= 27a +

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

$$= 6a - 21b + 21a + 9b =$$

$$= 27a + -12b$$

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

$$= 6a - 21b + 21a + 9b =$$

$$= 27a + -12b$$

= 27a - 12b

Perform the indicated operations. Express your answers in simplest form.

7.
$$5(3x + 2y) + 2(x + 5y) =$$

= $15x + 10y + 2x + 10y =$
= $17x + 20y$

8.
$$3(2a-7b) + 3(7a+3b) =$$

$$= 6a - 21b + 21a + 9b =$$

$$= 27a + -12b$$

= $\frac{27a - 12b}{27a - 12b}$

Perform the indicated operations. Express your answers in simplest form.

9. (5x + 7y) - (2x + 3y) =

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y)$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) +$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x)$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x +$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y)$

Perform the indicated operations. Express your answers in simplest form.

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$

=

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x +$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b+9) - (5b-2) =$$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b + 9) - (5b - 2) =$$

= $(2b + 9)$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b + 9) - (5b - 2) =$$

= $(2b + 9) +$
9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b + 9) - (5b - 2) =$$

= $(2b + 9) + (-5b)$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b+9) - (5b-2) =$$

= $(2b+9) + (-5b+2)$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b + 9) - (5b - 2) =$$

= $(2b + 9) + (-5b + 2) =$
=

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b + 9) - (5b - 2) =$$

= $(2b + 9) + (-5b + 2) =$
= $-3b$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b + 9) - (5b - 2) =$$

= $(2b + 9) + (-5b + 2) =$
= $-3b +$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b + 9) - (5b - 2) =$$

= $(2b + 9) + (-5b + 2) =$
= $-3b + 11$

9.
$$(5x + 7y) - (2x + 3y) =$$

= $(5x + 7y) + (-2x + -3y) =$
= $3x + 4y$

10.
$$(2b + 9) - (5b - 2) =$$

= $(2b + 9) + (-5b + 2) =$
= $-3b + 11$

Perform the indicated operations. Express your answers in simplest form.

11. 2(3x-8) - 3(4x-5) =

11.
$$2(3x-8) - 3(4x-5) =$$

= (6x

11.
$$2(3x-8) - 3(4x-5) =$$

= (6x - 16)

11.
$$2(3x-8) - 3(4x-5) =$$

= (6x - 16) +

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x-16) + (-12x)$

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x-16) + (-12x+15)$

Perform the indicated operations. Express your answers in simplest form.

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$

=

Perform the indicated operations. Express your answers in simplest form.

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$

= -6x

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

11.
$$2(3x - 8) - 3(4x - 5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

11.
$$2(3x - 8) - 3(4x - 5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

= (20x

11.
$$2(3x - 8) - 3(4x - 5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

= (20x + 30)

11.
$$2(3x - 8) - 3(4x - 5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

= $(20x+30) +$

11.
$$2(3x - 8) - 3(4x - 5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

= $(20x+30) + (-15x)$

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

= $(20x+30) + (-15x-3)$

Perform the indicated operations. Express your answers in simplest form.

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

= $(20x+30) + (-15x-3) =$

=

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

= $(20x+30) + (-15x-3) =$
= $5x$

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x + 6) - 3(5x + 1) =$$

= $(20x + 30) + (-15x - 3) =$
= $5x + 27$

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

12.
$$5(4x+6) - 3(5x+1) =$$

= $(20x+30) + (-15x-3) =$
= $5x + 27$

Perform the indicated operations. Express your answers in simplest form.

11.
$$2(3x-8) - 3(4x-5) =$$

= $(6x - 16) + (-12x + 15) =$
= $-6x - 1$

Good luck on your homework !!

$$= (20x + 30) + (-15x - 3) =$$

$$= 5x + 27$$