Algebra I Lesson \#5 Unit 1

 Class Worksheet \#5For Worksheet \#6

Algebra I Unit 1 Other Useful Properties

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.
$8 \cdot-1=$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

Rule:

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
\begin{array}{ll}
8 \cdot-1=-8 & 3 \cdot-1=-3 \\
\text { Rule: }: & x \cdot-1=
\end{array}
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
\begin{array}{llll}
8 \cdot-1=-8 & 3 \cdot-1=-3 & -1 \cdot 5=-5 & -1 \cdot 2=-2 \\
\text { Rule: } & x \cdot-1=-x
\end{array}
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
\begin{array}{llll}
8 \cdot-1=-8 & 3 \cdot-1=-3 & -1 \cdot 5=-5 & -1 \cdot 2=-2 \\
\text { Rule: } & x \cdot-1=-x
\end{array}
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
\begin{aligned}
& 8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2 \\
& \text { Rule: } \quad x \cdot-1=-x \text { and }
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
\begin{gathered}
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2 \\
\text { Rule: } \quad x \cdot-1=-x \text { and }-1 \cdot x=
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
\begin{gathered}
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2 \\
\text { Rule: } \quad x \cdot-1=-x \text { and }-1 \cdot x=-x .
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
\begin{array}{clll}
8 \cdot-1=-8 & 3 \cdot-1=-3 \quad-1 \cdot 5=-5 & -1 \cdot 2=-2 \\
\text { Rule: } & x \cdot-1=-x \text { and }-1 \cdot x=-x .
\end{array}
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{x} .
$$

- x is the opposite of x.

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that $-x$ is negative.

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{x} .
$$

$-x$ is the opposite of x. Don't assume that -x is negative.
If x represents a negative number,

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{x} .
$$

$-x$ is the opposite of x. Don't assume that -x is negative.
If \mathbf{x} represents a negative number, then -x is positive !!

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=\mathbf{- x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{x}
$$

$-x$ is the opposite of x. Don't assume that -x is negative.
If \mathbf{x} represents a negative number, then -x is positive !!

Consider these examples.

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=\mathbf{- x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that $-x$ is negative.
If x represents a negative number, then -x is positive !!

Consider these examples.

$$
-8 \cdot-1=
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that -x is negative.
If \mathbf{x} represents a negative number, then -x is positive !!

Consider these examples.

$$
-8 \cdot-1=8
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=\mathbf{- x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that $-x$ is negative.
If x represents a negative number, then -x is positive !!

Consider these examples.

$$
-8 \cdot-1=8 \quad-3 \cdot-1=
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=\mathbf{- x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that $-x$ is negative.
If x represents a negative number, then -x is positive !!

Consider these examples.

$$
-8 \cdot-1=8 \quad-3 \cdot-1=3
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that $-x$ is negative.
If x represents a negative number, then -x is positive !!

Consider these examples.

$$
-8 \cdot-1=8 \quad-3 \cdot-1=3 \quad-1 \cdot-5=
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that -x is negative.
If \mathbf{x} represents a negative number, then -x is positive !!

Consider these examples.

$$
-8 \cdot-1=8 \quad-3 \cdot-1=3 \quad-1 \cdot-5=5
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that -x is negative.
If \mathbf{x} represents a negative number, then -x is positive !!

Consider these examples.

$$
-8 \cdot-1=8 \quad-3 \cdot-1=3 \quad-1 \cdot-5=5 \quad-1 \cdot-2=
$$

Algebra I Unit 1 Other Useful Properties

Multiplication by -1

Consider these examples.

$$
8 \cdot-1=-8 \quad 3 \cdot-1=-3 \quad-1 \cdot 5=-5 \quad-1 \cdot 2=-2
$$

$$
\text { Rule: } \mathbf{x} \cdot-\mathbf{1}=-\mathbf{x} \text { and }-\mathbf{1} \cdot \mathbf{x}=\mathbf{- x} .
$$

$-x$ is the opposite of x. Don't assume that -x is negative.
If \mathbf{x} represents a negative number, then -x is positive !!

Consider these examples.

$$
-8 \cdot-1=8 \quad-3 \cdot-1=3 \quad-1 \cdot-5=5 \quad-1 \cdot-2=2
$$

Algebra I Unit 1 Other Useful Properties

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.
$3 \cdot(4+2)=$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.
$3 \cdot(4+2)=3$.

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
3 \cdot(4+2)=3 \cdot 6
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.
$3 \cdot(4+2)=3 \cdot 6=$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
3 \cdot(4+2)=3 \cdot 6=18
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and }
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered} \longleftrightarrow 3 \cdot(4+2)
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{array} \\
\square
\end{gathered} \quad 3 \cdot(4+2)=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered} \quad \square 3 \cdot(4+2)=3 \cdot 4
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered} \longleftrightarrow 3 \cdot(4+2)=3 \cdot 4+
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered} \longleftrightarrow \square 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{array}
\end{gathered} \square 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

$$
5 \cdot(8+3)=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{array}
\end{gathered} \square 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

$$
5 \cdot(8+3)=5
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{array}
\end{gathered} \square 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

$$
5 \cdot(8+3)=5 \cdot 11
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18< \\
\begin{array}{c}
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{array} \quad \square
\end{gathered} \quad 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

$$
5 \cdot(8+3)=5 \cdot 11=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18< \\
\begin{array}{c}
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{array} \quad \square
\end{gathered} \quad 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

$$
5 \cdot(8+3)=5 \cdot 11=55
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered} \longleftrightarrow 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and }
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8+5 \cdot 3=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8+5 \cdot 3=40
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8+5 \cdot 3=40+
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8+5 \cdot 3=40+15
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8+5 \cdot 3=40+15=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8+5 \cdot 3=40+15=55
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8+5 \cdot 3=40+15=55
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and } \\
5 \cdot 8+5 \cdot 3=40+15=55
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and } \\
5 \cdot 8+5 \cdot 3=40+15=55
\end{gathered} \quad \square
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55< \\
\begin{array}{c}
\text { and } \\
5 \cdot 8+5 \cdot 3=40+15=55
\end{array} \longleftrightarrow 5 \cdot
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$5 \cdot(8+3)=5 \cdot 11=55$
$\begin{gathered}\text { and } \\ 5 \cdot 8+5 \cdot 3=40+15=55\end{gathered}$$\longleftrightarrow 5 \cdot(8+3)$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$\begin{gathered}5 \cdot(8+3)=5 \cdot 11=55 \\ \begin{array}{c}\text { and } \\ 5 \cdot 8+5 \cdot 3=40+15=55\end{array} \\ \square\end{gathered} \quad 5 \cdot(8+3)=$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$\begin{gathered}5 \cdot(8+3)=5 \cdot 11=55 \\ \text { and } \\ 5 \cdot 8+5 \cdot 3=40+15=55\end{gathered} \longleftrightarrow 5 \cdot(8+3)=5 \cdot 8$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$\begin{gathered}5 \cdot(8+3)=5 \cdot 11=55 \\ \begin{array}{c}\text { and } \\ 5 \cdot 8+5 \cdot 3=40+15=55\end{array} \\ \square\end{gathered} \longleftrightarrow \cdot(8+3)=5 \cdot 8+$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and } \\
5 \cdot 8+5 \cdot 3=40+15=55
\end{gathered} \longleftrightarrow 5 \cdot(8+3)=5 \cdot 8+5 \cdot 3
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

In general,

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

In general, $\mathbf{x} \cdot$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

In general, $\mathbf{x} \cdot(\mathrm{y}+\mathrm{z})$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

In general, $x \cdot(y+z)=$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

In general, $x \cdot(y+z)=\mathbf{x} \cdot \mathbf{y}$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

In general, $\mathbf{x} \cdot(\mathbf{y}+\mathbf{z})=\mathbf{x} \cdot \mathbf{y}+$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

In general, $\mathbf{x} \cdot(\mathbf{y}+\mathbf{z})=\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}$

Algebra I Unit 1 Other Useful Properties

The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered} \longleftrightarrow 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and } \\
5 \cdot 8+5 \cdot 3=40+15=55
\end{gathered} \longleftrightarrow 5 \cdot(8+3)=5 \cdot 8+5 \cdot 3
$$

In general, $\mathbf{x} \cdot(\mathbf{y}+\mathbf{z})=\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}$
This is the distributive law for multiplication over addition.

Algebra I Unit 1 Other Useful Properties

The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4+2)=3 \cdot 6=18 \\
\text { and } \\
3 \cdot 4+3 \cdot 2=12+6=18
\end{gathered} \longleftrightarrow 3 \cdot(4+2)=3 \cdot 4+3 \cdot 2
$$

$$
\begin{gathered}
5 \cdot(8+3)=5 \cdot 11=55 \\
\text { and } \\
5 \cdot 8+5 \cdot 3=40+15=55
\end{gathered} \longleftrightarrow 5 \cdot(8+3)=5 \cdot 8+5 \cdot 3
$$

In general, $\mathbf{x} \cdot(\mathbf{y}+\mathbf{z})=\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}$
This is the distributive law for multiplication over addition.

$$
\mathbf{x}(\mathbf{y}+\mathbf{z})=\mathbf{x y}+\mathbf{x z}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.
$3 \cdot(4-2)=$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.
$3 \cdot(4-2)=3 \cdot$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
3 \cdot(4-2)=3 \cdot 2
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.
$3 \cdot(4-2)=3 \cdot 2=$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
3 \cdot(4-2)=3 \cdot 2=6
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\text { and }
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\text { and }
\end{gathered}
$$

$$
3 \cdot 4-3 \cdot 2=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\text { and } \\
3 \cdot 4-3 \cdot 2=12
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\text { and } \\
3 \cdot 4-3 \cdot 2=12-
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array}
\end{gathered} \longleftrightarrow 3 \cdot(4-2)
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \quad \longleftarrow
\end{gathered} \square 3 \cdot(4-2)=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \\
\hline
\end{gathered} \quad \begin{aligned}
& \square \cdot(4-2)=3 \cdot 4
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \quad \longleftarrow \\
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{gathered} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array}
\end{gathered} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array}
\end{gathered} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
$$

$$
5 \cdot(8-3)=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
\end{gathered}
$$

$$
5 \cdot(8-3)=5
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
\end{gathered}
$$

$$
5 \cdot(8-3)=5 \cdot 5
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
\end{gathered}
$$

$$
5 \cdot(8-3)=5 \cdot 5=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array}
\end{gathered} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
$$

$$
5 \cdot(8-3)=5 \cdot 5=25
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array}
\end{gathered} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and }
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8-5 \cdot 3=
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8-5 \cdot 3=40
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8-5 \cdot 3=40-
$$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8-5 \cdot 3=40-15
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8-5 \cdot 3=40-15=
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and }
\end{gathered}
$$

$$
5 \cdot 8-5 \cdot 3=40-15=25
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
\end{gathered}
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{gathered} \quad \longleftrightarrow
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{gathered} \longleftrightarrow 5 \cdot
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{gathered} \longleftrightarrow 5 \cdot(8-3)
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
\end{gathered}
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\begin{array}{c}
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{array} \longleftrightarrow 5 \cdot(8-3)= \\
\hline
\end{gathered} \quad \begin{gathered}
\\
5 \cdot 5
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
\end{gathered}
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\begin{array}{c}
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{array} \longleftrightarrow 5 \cdot(8-3)=5 \cdot 8
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
\end{gathered}
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\begin{array}{c}
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{array} \longleftrightarrow 5 \cdot(8-3)=5 \cdot 8-1 .
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \longleftrightarrow 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
\end{gathered}
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\begin{array}{c}
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{array} \longleftrightarrow 5 \cdot(8-3)=5 \cdot 8-5 \cdot 3
\end{gathered}
$$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

In general,

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

In general, $\mathbf{x} \cdot$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

In general, $\mathbf{x} \cdot(\mathbf{y}-\mathrm{z})$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

In general, $x \cdot(y-z)=$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \\
\hline
\end{gathered} \square 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\begin{array}{c}
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{array} \longleftrightarrow \\
\square
\end{gathered}
$$

In general, $\mathbf{x} \cdot(\mathbf{y}-\mathbf{z})=\mathbf{x} \cdot \mathbf{y}$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \\
\hline
\end{gathered} \square 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\begin{array}{c}
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{array} \longleftrightarrow \\
\square
\end{gathered}
$$

In general, $\mathbf{x} \cdot(\mathbf{y}-\mathbf{z})=\mathbf{x} \cdot \mathbf{y}-$

Algebra I Unit 1 Other Useful Properties The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \\
\hline
\end{gathered} \square 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\begin{array}{c}
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{array} \longleftrightarrow \\
\square
\end{gathered}
$$

In general, $\mathbf{x} \cdot(\mathbf{y}-\mathbf{z})=\mathbf{x} \cdot \mathbf{y}-\mathbf{x} \cdot \mathbf{z}$

Algebra I Unit 1 Other Useful Properties
 The Distributive Laws

Consider these examples.

In general, $\mathbf{x} \cdot(\mathbf{y}-\mathbf{z})=\mathbf{x} \cdot \mathbf{y}-\mathbf{x} \cdot \mathbf{z}$
This is the distributive law for multiplication over subtraction.

Algebra I Unit 1 Other Useful Properties

The Distributive Laws

Consider these examples.

$$
\begin{gathered}
3 \cdot(4-2)=3 \cdot 2=6 \\
\begin{array}{c}
\text { and } \\
3 \cdot 4-3 \cdot 2=12-6=6
\end{array} \\
\hline
\end{gathered} \square 3 \cdot(4-2)=3 \cdot 4-3 \cdot 2
$$

$$
\begin{gathered}
5 \cdot(8-3)=5 \cdot 5=25 \\
\begin{array}{c}
\text { and } \\
5 \cdot 8-5 \cdot 3=40-15=25
\end{array} \longleftrightarrow \\
\square 5 \cdot(8-3)=5 \cdot 8-5 \cdot 3
\end{gathered}
$$

$$
\text { In general, } \mathbf{x} \cdot(\mathbf{y}-\mathbf{z})=\mathbf{x} \cdot \mathbf{y}-\mathbf{x} \cdot \mathbf{z}
$$

This is the distributive law for multiplication over subtraction.

$$
x(y-z)=x y-x z
$$

Algebra I Unit 1 Other Useful Properties

Algebra I Unit 1 Other Useful Properties The Opposite of a Sum

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \quad \text { and }
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \quad \text { and } \quad-3+-4
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \quad \text { and } \quad-3+-4=
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \quad \text { and } \quad-3+-4=-7
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \quad \text { and } \quad-3+-4=-7 \quad \square
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square-(3+4)
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$-(2+9)$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$-(2+9)=$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$-(2+9)=-11$ and

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11 \text { and }-2+-9
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11 \text { and }-2+-9=
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11 \text { and }-2+-9=-11
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11 \text { and }-2+-9=-11
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$$
-(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

In general,

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

In general, $-(\mathbf{x}+\mathbf{y})$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

In general, $\quad-(x+y)=$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, } \quad-(x+y)=-x
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

In general, $-(x+y)=-x+$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, } \quad-(x+y)=-x+-y
$$

This is called the opposite of a sum property.

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$-(2+9)=-11$ and $-2+-9=-11 \quad-(2+9)=-2+-9$

$$
\text { In general, } \quad-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
-(3+4)=-7 \text { and }-3+-4=-7 \quad \square \quad-(3+4)=-3+-4
$$

$-(2+9)=-11$ and $-2+-9=-11 \quad-(2+9)=-2+-9$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.
-(8+-3)

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \quad \text { and }
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \text { and }-8+3=
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \text { and }-8+3=-5
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \text { and }-8+3=-5
$$

\square

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \text { and }-8+3=-5 \quad \square \quad-(8+-3)=-8+
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
-(8+-3)=-5 \text { and }-8+3=-5 \quad \square \quad-(8+-3)=-8+3
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \square-(8+-3)=-8+3 \\
& -(-7+10)
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and }
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=-3
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \square-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=-3 \square
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=-3 \quad-(-7+10)
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=-3 \quad-(-7+10)=
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=-3 \quad-(-7+10)=7
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=-3 \quad-(-7+10)=7+
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=-3 \square-(-7+10)=7+-10
\end{aligned}
$$

Algebra I Unit 1 Other Useful Properties
 The Opposite of a Sum

Consider these examples.

$$
\begin{aligned}
& -(3+4)=-7 \text { and }-3+-4=-7 \quad-(3+4)=-3+-4 \\
& -(2+9)=-11 \text { and }-2+-9=-11 \quad-(2+9)=-2+-9
\end{aligned}
$$

$$
\text { In general, }-(x+y)=-x+-y
$$

This is called the opposite of a sum property.
Don't assume that -x and -y represent negative numbers.
Consider these examples.

$$
\begin{aligned}
& -(8+-3)=-5 \text { and }-8+3=-5 \quad-(8+-3)=-8+3 \\
& -(-7+10)=-3 \text { and } 7+-10=-3 \quad-(-7+10)=7+-10
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 \mathrm{x}+$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

$$
\begin{array}{ll}
\text { 1. } 3(x+4)=3 x+12 & \text { 2. } 6(x-5)=6 x-30 \\
\text { 3. } 5(2 x+7)=10 x+35 & \text { 4. } 7(3 x-4)=21 x-28
\end{array}
$$

5. $-2(x+5)=-2 x+-10=-2 x-10$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x-$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x--12$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x--12$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x--12=$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $5(2 x+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x--12=-15 x$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x--12=-15 x+$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x--12=-15 x+12$

Algebra I Class Worksheet \#5 Unit 1

Use the appropriate distributive law to write an equivalent expression without parentheses. (Don't leave any 'double signs' in your answers.)

1. $3(x+4)=3 x+12$
2. $6(x-5)=6 x-30$
3. $\mathbf{5}(\mathbf{2 x}+7)=10 x+35$
4. $7(3 x-4)=21 x-28$
5. $-2(x+5)=-2 x+-10=-2 x-10$
6. $-3(5 x-4)=-15 x--12=-15 x+12$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
7. $5(3 x+2 y)+2(x+5 y)=$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
& =
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
& =15 x+10 y+2 x
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
&= 15 x+10 y+2 x+10 y= \\
&=
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& \mathbf{5}(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& \mathbf{5}(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y
\end{aligned}
$$

8. $\mathbf{3}(2 a-7 b)+3(7 a+3 b)=$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& \mathbf{5}(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y
\end{aligned}
$$

8. $\mathbf{3}(2 a-7 b)+3(7 a+3 b)=$ $=$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y \\
\text { 8. } & 3(2 a-7 b)+3(7 a+3 b)= \\
= & 6 \mathbf{a}
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y
\end{aligned}
$$

8. $\mathbf{3}(\mathbf{2 a}-7 \mathbf{b})+\mathbf{3}(7 \mathbf{a}+3 \mathrm{~b})=$ $=6 \mathbf{a}-$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& \mathbf{5}(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y \\
\text { 8. } & 3(2 a-7 b)+3(7 a+3 b)= \\
= & 6 \mathbf{a}-21 b
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y
\end{aligned}
$$

8. $\mathbf{3}(\mathbf{2 a}-7 b)+3(7 a+3 b)=$ $=6 a-21 b+$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 7. } \begin{aligned}
&\mathbf{(3 x}+2 y)+2(x+5 y)= \\
&= 15 x+10 y+2 x+10 y= \\
&= 17 x+20 y \\
& \text { 8. } \quad 3(2 a-7 b)+3(7 a+3 b)= \\
&= 6 a-21 b+21 a
\end{aligned}
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y
\end{aligned}
$$

8. $\mathbf{3}(\mathbf{2 a}-7 b)+3(7 a+3 b)=$

$$
=6 a-21 b+21 a+
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\begin{aligned}
& \text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
&= 15 x+10 y+2 x+10 y= \\
&= 17 x+20 y \\
& \text { 8. } \quad 3(2 a-7 b)+3(7 a+3 b)= \\
&= 6 a-21 b+21 a+9 b
\end{aligned}
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
&= 15 x+10 y+2 x+10 y= \\
&= 17 x+20 y \\
& \text { 8. } 3(2 a-7 b)+3(7 a+3 b)= \\
&= 6 a-21 b+21 a+9 b= \\
&=
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y \\
\text { 8. } & 3(2 a-7 b)+3(7 a+3 b)= \\
= & 6 a-21 b+21 a+9 b= \\
= & 27 a
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& \mathbf{5}(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y \\
\text { 8. } & 3(2 a-7 b)+3(7 a+3 b)= \\
= & 6 \mathbf{a}-21 b+21 a+9 b= \\
= & 27 a+
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& 5(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y \\
\text { 8. } & 3(2 a-7 b)+3(7 a+3 b)= \\
= & 6 a-21 b+21 a+9 b= \\
= & 27 a+-12 b
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& \mathbf{5}(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y \\
\text { 8. } & 3(2 a-7 b)+3(7 a+3 b)= \\
= & 6 a-21 b+21 a+9 b= \\
= & 27 a+-12 b \\
= & 27 a-12 b
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 7. } \begin{aligned}
& \mathbf{5}(3 x+2 y)+2(x+5 y)= \\
= & 15 x+10 y+2 x+10 y= \\
= & 17 x+20 y \\
\text { 8. } & 3(2 a-7 b)+3(7 a+3 b)= \\
= & 6 a-21 b+21 a+9 b= \\
= & 27 a+-12 b \\
= & 27 a-12 b
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
9. $(5 x+7 y)-(2 x+3 y)=$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
9. $(5 x+7 y)-(2 x+3 y)=$ $=(5 x+7 y)$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
9. $(5 x+7 y)-(2 x+3 y)=$ $=(5 x+7 y)+(-2 x+$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
9. $(5 x+7 y)-(2 x+3 y)=$

$$
=(5 x+7 y)+(-2 x+-3 y)
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
&(5 x+7 y)-(2 x+3 y)= \\
&=(5 x+7 y)+(-2 x+-3 y)= \\
&=
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
9. $(5 x+7 y)-(2 x+3 y)=$

$$
\begin{aligned}
& =(5 x+7 y)+(-2 x+-3 y)= \\
& =3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
=(2 b+9)
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
9. $(5 x+7 y)-(2 x+3 y)=$

$$
\begin{aligned}
& =(5 x+7 y)+(-2 x+-3 y)= \\
& =3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
=(2 b+9)+
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
9. $(5 x+7 y)-(2 x+3 y)=$

$$
\begin{aligned}
& =(5 x+7 y)+(-2 x+-3 y)= \\
& =3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
=(2 b+9)+(-5 b
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
=(2 b+9)+(-5 b+2)
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
\begin{aligned}
& =(2 b+9)+(-5 b+2)= \\
& =
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
\begin{aligned}
& =(2 b+9)+(-5 b+2)= \\
& =-3 b
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
\begin{aligned}
& =(2 b+9)+(-5 b+2)= \\
& =-3 b+
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
=(2 b+9)+(-5 b+2)=
$$

$$
=-3 b+11
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 9. } \begin{aligned}
& (5 x+7 y)-(2 x+3 y)= \\
= & (5 x+7 y)+(-2 x+-3 y)= \\
= & 3 x+4 y
\end{aligned}
$$

10. $(2 b+9)-(5 b-2)=$

$$
\begin{aligned}
& =(2 b+9)+(-5 b+2)= \\
& =-3 b+11
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
11. $2(3 x-8)-3(4 x-5)=$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
11. $2(3 x-8)-3(4 x-5)=$ $=(6 x$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
11. $2(3 x-8)-3(4 x-5)=$ $=(6 x-16)$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
11. $2(3 x-8)-3(4 x-5)=$ $=(6 x-16)+$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
11. $2(3 x-8)-3(4 x-5)=$
$=(6 x-16)+(-12 x$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.
11. $2(3 x-8)-3(4 x-5)=$
$=(6 x-16)+(-12 x+15)$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
&=(6 x-16)+(-12 x+15)= \\
&=
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x+30)
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x+30)+
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x+30)+(-15 x
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x+30)+(-15 x-3)
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x+30)+(-15 x-3)=
$$

$$
=
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x+30)+(-15 x-3)=
$$

$$
=5 \mathrm{x}
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x+30)+(-15 x-3)=
$$

$$
=5 x+27
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

12. $5(4 x+6)-3(5 x+1)=$

$$
=(20 x+30)+(-15 x-3)=
$$

$$
=5 x+27
$$

Algebra I Class Worksheet \#5 Unit 1

Perform the indicated operations. Express your answers in simplest form.

$$
\text { 11. } \begin{aligned}
& 2(3 x-8)-3(4 x-5)= \\
= & (6 x-16)+(-12 x+15)= \\
= & -6 x-1
\end{aligned}
$$

Good luck on your homework !!
 $=(20 x+30)+(-15 x-3)=$
 $$
=5 x+27
$$

