Algebra I Lesson \#4 Unit 1 Class Worksheet \#4

For Worksheet \#5

Algebra I Unit 1 Exponents and Factors

Algebra I Unit 1 Exponents and Factors

$$
7 \cdot 7=7^{2}
$$

Algebra I Unit 1 Exponents and Factors

$$
\begin{aligned}
7 \cdot 7 & =7^{2} \\
7 \cdot 7 \cdot 7 & =7^{3}
\end{aligned}
$$

Algebra I Unit 1 Exponents and Factors

$$
\begin{aligned}
7 \cdot 7 & =7^{2} \\
7 \cdot 7 \cdot 7 & =7^{3} \\
7 \cdot 7 \cdot 7 \cdot 7 & =7^{4}
\end{aligned}
$$

Algebra I Unit 1 Exponents and Factors

$$
\begin{array}{r}
7 \cdot 7=7^{2} \\
7 \cdot 7 \cdot 7=7^{3} \\
7 \cdot 7 \cdot 7 \cdot 7=7^{4} \\
7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=7^{5}
\end{array}
$$

Algebra I Unit 1 Exponents and Factors

$$
\begin{aligned}
7 & =7^{1} \\
7 \cdot 7 & =7^{2} \\
7 \cdot 7 \cdot 7 & =7^{3} \\
7 \cdot 7 \cdot 7 \cdot 7 & =7^{4} \\
7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 & =7^{5}
\end{aligned}
$$

Algebra I Unit 1 Exponents and Factors

$7=71$	$4=41$
$7 \cdot 7=\mathbf{7}^{\mathbf{2}}$	$4 \cdot 4=4^{2}$
$7 \cdot 7 \cdot 7=7^{3}$	$4 \cdot 4 \cdot 4=\mathbf{4}^{3}$
$7 \cdot 7 \cdot 7 \cdot 7=7^{4}$	4-4.4.4 $=\mathbf{4}^{4}$
$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=\mathbf{7}^{5}$	$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=45$

$7=7^{1}$
$7 \cdot 7=\mathbf{7}^{2}$
$7 \cdot 7 \cdot 7=7^{3}$
$7 \cdot 7 \cdot 7 \cdot 7=7^{4}$
$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=7^{5}$

$$
\begin{aligned}
4 & =4^{1} \\
4 \cdot 4 & =4^{2} \\
4 \cdot 4 \cdot 4 & =4^{3}
\end{aligned}
$$

$4 \cdot 4 \cdot 4 \cdot 4=4^{4}$
$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=\mathbf{4}^{5}$

Algebra I Unit 1 Exponents and Factors

$7=71$	$4=41$	$\mathrm{x}=\mathrm{x}^{1}$
$7 \cdot 7=\mathbf{7}^{\mathbf{2}}$	$4 \cdot 4=\mathbf{4}^{2}$	$\mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{\mathbf{2}}$
$7 \cdot 7 \cdot 7=7^{3}$	$4 \cdot 4 \cdot 4=\mathbf{4}^{3}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{\mathbf{3}}$
$7 \cdot 7 \cdot 7 \cdot 7=\mathbf{7}^{4}$	$4 \cdot 4 \cdot 4 \cdot 4=4^{4}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{4}$
$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=75$	$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=45$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{5}$

$7=7^{1}$
$7 \cdot 7=7^{2}$
$7 \cdot 7 \cdot 7=7^{3}$
$7 \cdot 7 \cdot 7 \cdot 7=\mathbf{7}^{4}$
$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=7^{5}$

$$
\begin{aligned}
4 & =4^{1} \\
4 \cdot 4 & =4^{2} \\
4 \cdot 4 \cdot 4 & =4^{3}
\end{aligned}
$$

$4 \cdot 4 \cdot 4 \cdot 4=4^{4}$
$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=4^{5}$

$$
\begin{array}{r}
\mathbf{x}=\mathbf{x}^{1} \\
\mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{2} \\
\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{3} \\
\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{4} \\
\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{5}
\end{array}
$$

Algebra I Unit 1 Exponents and Factors

$7=7^{1}$	$4=4{ }^{1}$	$\mathrm{x}=\mathrm{x}^{1}$
$7 \cdot 7=\mathbf{7}^{2}$	$4 \cdot 4=4{ }^{2}$	$\mathrm{x} \cdot \mathrm{x}=\mathrm{x}^{2}$
$7 \cdot 7 \cdot 7={ }^{3}$	$4 \cdot 4 \cdot 4=\mathbf{4}^{3}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{\mathbf{3}}$
$7 \cdot 7 \cdot 7 \cdot 7=7^{4}$	$\mathbf{4 \cdot 4 \cdot 4 \cdot 4 = 4 4}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{4}$
$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=\mathbf{7}^{5}$	4-4.4.4.4 $\mathbf{4}^{5}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{5}$

$7=71$
$7 \cdot 7=7^{2}$
$7 \cdot 7 \cdot 7=7^{3}$
$7 \cdot 7 \cdot 7 \cdot 7=7^{4}$
$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=7^{5}$

$$
\begin{aligned}
4 & =4^{1} \\
4 \cdot 4 & =4^{2} \\
4 \cdot 4 \cdot 4 & =4^{3} \\
4 \cdot 4 \cdot 4 \cdot 4 & =4^{4} \\
4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 & =4^{5} \\
4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 & =4^{5}
\end{aligned}
$$

$$
\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{5}
$$

Algebra I Unit 1 Exponents and Factors

Algebra I Unit 1 Exponents and Factors

$7=71$	$4=41$	$\mathrm{x}=\mathrm{x}^{1}$
$7 \cdot 7=7^{2}$	$4 \cdot 4=4{ }^{2}$	$\mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{2}$
$7 \cdot 7 \cdot 7=7^{3}$	$4 \cdot 4 \cdot 4=4^{3}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{\mathbf{3}}$
$7 \cdot 7 \cdot 7 \cdot 7=\mathbf{7}^{4}$	$4 \cdot 4 \cdot 4 \cdot 4=4^{4}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{4}$
$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=\mathbf{7}^{5}$	$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=\mathbf{4}^{5}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{5}$
	$4 \cdot 4 \cdot 4 \cdot 4=$ factors	exponent

Algebra I Unit 1 Exponents and Factors

$7=71$	$4=4{ }^{1}$	$\mathrm{x}=\mathrm{x}^{1}$
$7 \cdot 7=\mathbf{7}^{2}$	$4 \cdot 4=4{ }^{2}$	$\mathrm{x} \cdot \mathrm{x}=\mathrm{x}^{2}$
$7 \cdot 7 \cdot 7=7^{3}$	$4 \cdot 4 \cdot 4=4^{3}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{\mathbf{3}}$
$7 \cdot 7 \cdot 7 \cdot 7=7^{4}$	$4 \cdot 4 \cdot 4 \cdot 4=4{ }^{4}$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{4}$
$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=75$	$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=45$	$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}=\mathbf{x}^{5}$
	$4 \cdot 4 \cdot 4 \cdot 4=$ factors	exponent

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

$$
\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}=
$$

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

$$
\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}=
$$

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

$$
\underbrace{\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}}_{\mathbf{x}^{\mathbf{3}}} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}=
$$

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

$\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}=$ \qquad

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

$\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}=$

Algebra I Unit 1 Exponents and Factors

Simplifying Algebraic Expressions

$\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}=$ \qquad

Algebra I Unit 1 Exponents and Factors
Simplifying Algebraic Expressions

$\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}=$ \qquad 6

Algebra I Unit 1 Exponents and Factors
Simplifying Algebraic Expressions

$\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}=$ \qquad

6

$$
\mathbf{a}^{5}
$$

Algebra I Unit 1 Exponents and Factors
Simplifying Algebraic Expressions

$\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}=$ \qquad

6

$$
\mathbf{a}^{5}
$$

Algebra I Unit 1 Exponents and Factors
Simplifying Algebraic Expressions

$\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}=$ \qquad 6
\mathbf{a}^{5}
c^{4}

Algebra I Unit 1 Exponents and Factors
Simplifying Algebraic Expressions

$\mathbf{3} \cdot \mathbf{2} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}=$ \qquad 6
\mathbf{a}^{5}
b

$$
\mathbf{c}^{4}
$$

Algebra I Unit 1 Exponents and Factors
Simplifying Algebraic Expressions

Algebra I Unit 1 Exponents and Factors
Simplifying Algebraic Expressions

Algebra I Unit 1 Properties of Zero

Algebra I Unit 1 Properties of Zero

Zero and Addition

Algebra I Unit 1 Properties of Zero

Zero and Addition

$$
\begin{array}{llll}
7+0=7 & 5+0=5 & 0+3=3 & 0+8=8
\end{array}
$$

Algebra I Unit 1 Properties of Zero

Zero and Addition

$$
\begin{array}{clll}
7+0=7 & 5+0=5 & 0+3=3 & 0+8=8 \\
\text { Rule: } & x+0=x \text { and } 0+x=x .
\end{array}
$$

Algebra I Unit 1 Properties of Zero

Zero and Addition

$$
\begin{array}{clll}
7+0=7 & 5+0=5 & 0+3=3 & 0+8=8 \\
\text { Rule: } & x+0=x \text { and } 0+x=x .
\end{array}
$$

The Identity Law of Addition

Algebra I Unit 1 Properties of Zero

Zero and Addition

Algebra I Unit 1 Properties of Zero

Zero and Addition

$$
8+-8=0 \quad 3+-3=0 \quad-2+2=0 \quad-5+5=0
$$

Algebra I Unit 1 Properties of Zero

Zero and Addition

$$
8+-8=0 \quad 3+-3=0 \quad-2+2=0 \quad-5+5=0
$$

Rule: $\mathbf{x}+\mathbf{x}=\mathbf{0}$

Algebra I Unit 1 Properties of Zero

Zero and Addition

$$
8+-8=0 \quad 3+-3=0 \quad-2+2=0 \quad-5+5=0
$$

$$
\text { Rule: } \quad \mathbf{x}+-\mathbf{x}=\mathbf{0}
$$

The Inverse Law of Addition

Algebra I Unit 1 Properties of Zero

Zero and Subtraction

Algebra I Unit 1 Properties of Zero

Zero and Subtraction

$$
7-0=7 \quad 5-0=5
$$

Algebra I Unit 1 Properties of Zero

Zero and Subtraction

$$
7-0=7
$$

$$
5-0=5
$$

$$
0-3=-3
$$

$$
0-8=-8
$$

Algebra I Unit 1 Properties of Zero

Zero and Subtraction

$$
\begin{array}{llll}
7-0=7 & 5-0=5 & 0-3=-3 & 0-8=-8
\end{array}
$$

Rule: $\quad \mathbf{x}-\mathbf{0}=\mathbf{x}$

Algebra I Unit 1 Properties of Zero

Zero and Subtraction

$$
\begin{gathered}
7-0=7 \begin{array}{lll}
5-0=5 & 0-3=-3 & 0-8=-8 \\
& \text { Rule: } x-0=x \text { and } 0-x=-x
\end{array}
\end{gathered}
$$

Algebra I Unit 1 Properties of Zero

Zero and Division

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .

Algebra I Unit 1 Properties of Zero

Zero and Division

Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !!

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.

Algebra I Unit 1 Properties of Zero

Zero and Division

Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of $\mathbf{0}$.

Algebra I Unit 1 Properties of Zero

Zero and Division

Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of $\mathbf{0}$. Clearly, any number works !!

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of $\mathbf{0}$.
Clearly, any number works !! We say that $0 \div 0$ is also undefined.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of $\mathbf{0}$.
Clearly, any number works !! We say that $0 \div 0$ is also undefined.
Rule: Division by zero is undefined.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 0 .
Clearly, any number works !! We say that $0 \div 0$ is also undefined.
Rule: Division by zero is undefined.
Consider the division problem $0 \div 5$.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 0 .
Clearly, any number works !! We say that $0 \div 0$ is also undefined.
Rule: Division by zero is undefined.
Consider the division problem $0 \div 5$.
The answer, if it exists must multiply by 5 to give a product of $\mathbf{0}$.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of $\mathbf{0}$.
Clearly, any number works !! We say that $0 \div 0$ is also undefined.
Rule: Division by zero is undefined.
Consider the division problem $0 \div 5$.
The answer, if it exists must multiply by 5 to give a product of $\mathbf{0}$.
Clearly the answer is 0 .

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of $\mathbf{0}$.
Clearly, any number works !! We say that $0 \div 0$ is also undefined.
Rule: Division by zero is undefined.
Consider the division problem $0 \div 5$.
The answer, if it exists must multiply by 5 to give a product of $\mathbf{0}$.
Clearly the answer is 0 . Similarly, $0 \div 8=0$ and $0 \div 7=0$.

Algebra I Unit 1 Properties of Zero

Zero and Division
Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of $\mathbf{0}$.
Clearly, any number works !! We say that $0 \div 0$ is also undefined.
Rule: Division by zero is undefined.
Consider the division problem $0 \div 5$.
The answer, if it exists must multiply by 5 to give a product of $\mathbf{0}$.
Clearly the answer is 0 . Similarly, $0 \div 8=0$ and $0 \div 7=0$.
Rule: If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{0} \div \mathbf{x}=\mathbf{0}$.

Algebra I Unit 1 Properties of Zero

Zero and Division

Consider the division problem $18 \div 6$. The answer is 3 because $3 \cdot 6=18$.
Now try the division problem $5 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 5 .
Clearly this number does not exist !! We say that $5 \div 0$ is undefined.
Now try the division problem $0 \div 0$.
The answer, if it exists, must multiply by 0 to give a product of 0 .
Clearly, any number works !! We say that $0 \div 0$ is also undefined.
Rule: Division by zero is undefined.
Consider the division problem $0 \div 5$.
The answer, if it exists must multiply by 5 to give a product of $\mathbf{0}$.
Clearly the answer is 0 . Similarly, $0 \div 8=0$ and $0 \div 7=0$.
Rule: If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{0} \div \mathbf{x}=\mathbf{0}$. (Zero divided by any other number is zero.)

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$
4. $\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}=$
5. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
6. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$
4. $\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}=$
5. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
6. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$
4. $\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}=$
5. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
6. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$
4. $\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}=$
5. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
6. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=$ $(5 \cdot 3)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15$
$(5 \cdot 3)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15$
$(5 \cdot 3) \cdot(a \cdot a)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2}$
$(5 \cdot 3) \cdot(a \cdot a)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=$
(2-4)
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8$
(2-4)
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x)$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5}$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x)$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5}$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$
$(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$ (3•x)

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$
$(3 \cdot x) \cdot(4 \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$
(3•x)

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$

$$
(3 \cdot x) \cdot(4 \cdot y)
$$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=$
$(3 \cdot x) \cdot(4 \cdot y)=(3 \cdot 4)$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=12$
$(3 \cdot x) \cdot(4 \cdot y)=(3 \cdot 4)$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=12$
$(3 \cdot x) \cdot(4 \cdot y)=(3 \cdot 4) \cdot(x \cdot y)$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=12 x y$
$(3 \cdot x) \cdot(4 \cdot y)=(3 \cdot 4) \cdot(x \cdot y)$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=12 x y$
$(3 \cdot x) \cdot(4 \cdot y)=(3 \cdot 4) \cdot(x \cdot y)$

Algebra I Class Worksheet \#4 Unit 1

Simplify each of the following. (Remember that you can change the order and the grouping of the factors using the commutative and the associative properties of multiplication.)

1. $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}=\mathbf{p}^{8}$
2. $5 \cdot a \cdot a \cdot 3 \cdot b \cdot b \cdot b=15 a^{2} b^{3}$ $(5 \cdot 3) \cdot(a \cdot a) \cdot(b \cdot b \cdot b)$
3. $(3 x)(4 x)=12 x^{2}$
$(3 \cdot x) \cdot(4 \cdot x)=(3 \cdot 4) \cdot(x \cdot x)$

4. $2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot 4 \cdot y=8 x^{5} y$
$(2 \cdot 4) \cdot(x \cdot x \cdot x \cdot x \cdot x) \cdot y$
5. $(3 x)(4 y)=12 x y$
$(3 \cdot x) \cdot(4 \cdot y)=(3 \cdot 4) \cdot(x \cdot y)$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $\mathbf{2}^{5}=$
9. $4^{1}=$
10. $10^{3}=$
11. $0 \div 8=$
12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\text { 7. } 2^{5}=
$$

9. $4^{1}=$
10. $0 \div 8=$
11. $1^{3}=$
12. $10^{3}=$
13. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $\mathbf{2}^{5}=$
$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
9. $4^{1}=$
11. $0 \div 8=$
8. $\mathbf{1}^{3}=$
10. $10^{3}=$
12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\text { 7. } 2^{5}=32
$$

$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
9. $4^{1}=$
11. $0 \div 8=$
8. $1^{3}=$
10. $10^{3}=$
12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\begin{aligned}
& \text { 7. } 2^{5}=32 \\
& 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
\end{aligned}
$$

9. $4^{1}=$
10. $10^{3}=$
11. $0 \div 8=$
12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\begin{aligned}
& \text { 7. } 2^{5}=32 \\
& 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
\end{aligned}
$$

9. $4^{1}=$
10. $0 \div 8=$
11. $1^{3}=$
$1 \cdot 1 \cdot 1$
12. $10^{3}=$
13. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\begin{aligned}
& \text { 7. } 2^{5}=32 \\
& 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
\end{aligned}
$$

9. $4^{1}=$
10. $0 \div 8=$
11. $1^{3}=1$
$1 \cdot 1 \cdot 1$
12. $10^{3}=$
13. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $2^{5}=32$

2•2•2•2•2
9. $4^{1}=$
11. $0 \div 8=$
8. $1^{3}=1$
$1 \cdot 1 \cdot 1$
10. $10^{3}=$
12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $2^{5}=32$
2•2•2•2•2
8. $1^{3}=1$
$1 \cdot 1 \cdot 1$
9. $4^{1}=4$
10. $10^{3}=$
11. $0 \div 8=$
12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $\mathbf{2}^{5}=32$

2•2•2•2•2
9. $4^{1}=4$
11. $0 \div 8=$
8. $1^{3}=1$
$1 \cdot \mathbf{1} \cdot \mathbf{1}$
10. $10^{3}=$
12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $\mathbf{2}^{5}=32$

2•2•2•2•2
9. $4^{1}=4$
11. $0 \div 8=$

$$
\text { 8. } \mathbf{1}^{3}=1
$$

10. $10^{3}=$

$$
10 \cdot 10 \cdot 10
$$

12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $\mathbf{2}^{5}=32$

2•2•2•2•2
9. $4^{1}=4$
11. $0 \div 8=$

> 8. $\quad 1^{3}=1$
> $1 \cdot \mathbf{1} \cdot \mathbf{1}$
10. $10^{3}=1,000$

$$
10 \cdot 10 \cdot 10
$$

12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\begin{aligned}
& \text { 7. } 2^{5}=32 \\
& 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
\end{aligned}
$$

$$
\text { 9. } 4^{1}=4
$$

$$
\text { 11. } 0 \div 8=
$$

$$
\begin{aligned}
& \text { 8. } \quad 1^{3}=1 \\
& \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1}
\end{aligned}
$$

$$
\text { 10. } 10^{3}=1,000
$$

$$
10 \cdot 10 \cdot 10
$$

12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\begin{aligned}
& \text { 7. } 2^{5}=32 \\
& 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
\end{aligned}
$$

9. $4^{1}=4$
10. $0 \div 8=0$
11. $1^{3}=1$

1•1•1
10. $10^{3}=1,000$

$$
10 \cdot 10 \cdot 10
$$

12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $\mathbf{2}^{5}=32$
2•2•2•2•2
8. $\begin{array}{r}\mathbf{1}^{3}=1 \\ 1 \cdot \mathbf{1} \cdot \mathbf{1}\end{array}$
10. $10^{3}=1,000$

$$
10 \cdot 10 \cdot 10
$$

11. $0 \div 8=0$
12. $8 \div 0=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
7. $2^{5}=32$
$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
8. $1^{3}=1$
1•1•1
9. $4^{1}=4$
10. $10^{3}=1,000$
$10 \cdot 10 \cdot 10$
11. $0 \div 8=0$
12. $8 \div 0=$ not possible

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\begin{aligned}
& \text { 7. } 2^{5}=32 \\
& 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
\end{aligned}
$$

$$
\text { 8. } 1^{3}=1
$$

$$
\mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1}
$$

$$
\text { 9. } 4^{1}=4
$$

$$
\text { 10. } 10^{3}=1,000
$$

$$
10 \cdot 10 \cdot 10
$$

$$
\text { 11. } 0 \div 8=0
$$

12. $8 \div 0=$ not possible

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $\mathrm{x} \div 5=$
15. $(x+5)(x-5)=$
14. $\frac{x-5}{x+5}=$
16. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $\mathrm{x} \div 5=$
15. $(x+5)(x-5)=$
14. $\frac{x-5}{x+5}=$
16. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

$$
\text { 13. } \begin{aligned}
& x \div 5= \\
& 5 \div 5
\end{aligned}
$$

15. $(x+5)(x-5)=$
16. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $\mathrm{x} \div 5=1$

$$
5 \div 5
$$

15. $(x+5)(x-5)=$
16. $\frac{x-5}{x+5}=$
17. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $\mathrm{x} \div 5=1$
$5 \div 5$
14. $\frac{x-5}{x+5}=$
15. $(x+5)(x-5)=$
16. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $\mathrm{x} \div 5=1$
$5 \div 5$
15. $(x+5)(x-5)=$

$$
\text { 14. } \begin{aligned}
& \frac{x-5}{x+5}= \\
& 0 \div 10
\end{aligned}=
$$

16. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $\mathrm{x} \div 5=1$
$5 \div 5$

$$
\text { 14. } \frac{x-5}{x+5}=0
$$

15. $(x+5)(x-5)=$
16. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $x \div 5=1$
$5 \div 5$
15. $(x+5)(x-5)=$
14. $\frac{x-5}{x+5}=0$
$\mathbf{0} \div 10$
16. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

13. $\mathrm{x} \div 5=1$

$$
5 \div 5
$$

14. $\frac{x-5}{x+5}=0$
$\mathbf{0} \div \mathbf{1 0}$
15. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

13. $\mathrm{x} \div 5=1$

$$
5 \div 5
$$

14. $\frac{x-5}{x+5}=0$
$\mathbf{0} \div \mathbf{1 0}$
15. $5 \div(x-5)=$
$10 \cdot 0$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $x \div 5=1$
$5 \div 5$
14. $\frac{x-5}{x+5}=0$
$\mathbf{0} \div 10$
15. $(x+5)(x-5)=0$
$10 \cdot 0$
16. $5 \div(x-5)=$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

13. $\mathrm{x} \div 5=1$

$5 \div 5$
14. $\frac{x-5}{x+5}=0$
$0 \div 10$
15. $(x+5)(x-5)=0$
$10 \cdot 0$
16. $5 \div(x-5)=$

$$
5 \div 0
$$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)

13. $\mathrm{x} \div 5=1$

$5 \div 5$
14. $\frac{x-5}{x+5}=0$
$\mathbf{0} \div \mathbf{1 0}$
15. $(x+5)(x-5)=0$
$10 \cdot 0$
16. $5 \div(x-5)=$ not possible

$$
5 \div 0
$$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $x \div 5=1$
$5 \div 5$
15. $(x+5)(x-5)=0$
$10 \cdot 0$
14. $\frac{x-5}{x+5}=0$
$\mathbf{0} \div \mathbf{1 0}$

$$
\begin{aligned}
& \text { 16. } \begin{array}{l}
5 \div(x-5)=\text { not possible } \\
5 \div 0
\end{array} \text { (x) }
\end{aligned}
$$

Algebra I Class Worksheet \#4 Unit 1

Find the value of each expression when $x=5$. If the value cannot be found, write 'not possible'. (Evaluate means to 'find the value of '.)
13. $x \div 5=1$
$5 \div 5$
Good luck on your homework !!

$$
\text { 16. } \begin{aligned}
& 5 \div(x-5)=\text { not possible } \\
& 5 \div 0
\end{aligned}
$$

