Algebra I Lesson \#3 Unit 1

 Class Worksheet \#3For Worksheet \#4

Algebra I Properties of Addition and Subtraction Unit 1

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
3+5=8 \text { and } 5+3=8
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore,

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 .
$$

$$
7+2=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore,

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore, $7+2=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 . \\
& 7+2=9 \text { and } 2+7=9 . \quad \text { Therefore, } 7+2=2+7 .
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore, $7+2=2+7$.
$6+8=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 . \\
& 7+2=9 \text { and } 2+7=9 . \quad \text { Therefore, } 7+2=2+7 . \\
& 6+8=14
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 . \\
& 7+2=9 \text { and } 2+7=9 . \quad \text { Therefore, } 7+2=2+7 . \\
& 6+8=14 \text { and }
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 \\
& 7+2=9 \text { and } 2+7=9 . \\
& 6+8=14 \text { and } 8+6=
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore, $7+2=2+7$.
$6+8=14$ and $8+6=14$.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 . \\
& 7+2=9 \text { and } 2+7=9 . \quad \text { Therefore, } 7+2=2+7 . \\
& 6+8=14 \text { and } 8+6=14 . \quad \text { Therefore, }
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 \\
& 7+2=9 \text { and } 2+7=9 . \quad \text { Therefore, } 7+2=2+7 . \\
& 6+8=14 \text { and } 8+6=14 . \quad \text { Therefore, } 6+8=
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3+5=8 \text { and } 5+3=8 . \quad \text { Therefore, } 3+5=5+3 \\
& 7+2=9 \text { and } 2+7=9 . \quad \text { Therefore, } 7+2=2+7 . \\
& 6+8=14 \text { and } 8+6=14 . \quad \text { Therefore, } 6+8=8+6 .
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore, $7+2=2+7$.
$6+8=14$ and $8+6=14$. Therefore, $6+8=8+6$.

In general,

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore, $7+2=2+7$.
$6+8=14$ and $8+6=14$. Therefore, $6+8=8+6$.

In general, $\mathbf{x}+\mathbf{y}=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore, $7+2=2+7$.
$6+8=14$ and $8+6=14$. Therefore, $6+8=8+6$.
In general, $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9 . \quad$ Therefore, $7+2=2+7$.
$6+8=14$ and $8+6=14$. Therefore, $6+8=8+6$.

In general, $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$.
This property is called

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore, $7+2=2+7$.
$6+8=14$ and $8+6=14$. Therefore, $6+8=8+6$.

In general, $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$.
This property is called the Commutative Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$3+5=8$ and $5+3=8$. Therefore, $3+5=5+3$.
$7+2=9$ and $2+7=9$. Therefore, $7+2=2+7$.
$6+8=14$ and $8+6=14$. Therefore, $6+8=8+6$.

In general, $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$.
This property is called the Commutative Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
(3+4)+5=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
(3+4)+5=7+5=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
(3+4)+5=7+5=12
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and }
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and }
\end{gathered}
$$

$$
3+(4+5)=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and }
\end{gathered}
$$

$$
3+(4+5)=3+9=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& \text { and } \\
& 3+(4+5)=3+9=12
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\left.\begin{array}{l}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array}\right\} \text { Therefore, }
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\left.\begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array}\right\} \text { Therefore, }(3+4)+5
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\left.\begin{array}{l}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array}\right\} \text { Therefore, }(3+4)+5=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\left.\begin{array}{l}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array}\right\} \text { Therefore, }(3+4)+5=3+(4+5) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& \text { and } \\
& 3+(4+5)=3+9=12 \\
& (5+2)+3
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{l}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& (5+2)+3=
\end{aligned} \text { Therefore, }(3+4)+5=3+(4+5) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{l}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& (5+2)+3=7+3=
\end{aligned} \text { Therefore, }(3+4)+5=3+(4+5) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{l}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& (5+2)+3=7+3=10
\end{aligned} \text { Therefore, }(3+4)+5=3+(4+5) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and }
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{l}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& \begin{array}{l}
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)
\end{array} \text { Therefore, }(3+4)+5=3+(4+5) .
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{l}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& \begin{array}{l}
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=
\end{array} \text { Therefore, }(3+4)+5=3+(4+5) .
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& \begin{array}{l}
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5
\end{array} \text { Therefore, }(3+4)+5=3+(4+5) .
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& \begin{array}{c}
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10
\end{array} \text { Therefore, }(3+4)+5=3+(4+5) .
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& 3+(4+5)=3+9=12 \\
& \text { and } \\
& (5+2)+3=7+3=10 \\
& 5+(2+3)=5+5=10 \\
& (4+3)+2
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& \text { and } \\
& 3+(4+5)=3+9=12 \\
& (5+2)+3=7+3=10 \\
& \text { and } \\
& 5+(2+3)=5+5=10 \\
& (4+3)+2=
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& \text { and } \\
& 3+(4+5)=3+9=12 \\
& (5+2)+3=7+3=10 \\
& \text { and } \\
& 5+(2+3)=5+5=10 \\
& (4+3)+2=7+2
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& \text { and } \\
& 3+(4+5)=3+9=12 \\
& (5+2)+3=7+3=10 \\
& \text { and } \\
& 5+(2+3)=5+5=10 \\
& (4+3)+2=7+2=9
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& \begin{array}{c}
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10
\end{array} \\
& \begin{array}{c}
(4+3)+2=7+2=9 \\
\text { and }
\end{array}
\end{aligned} \text { Therefore, }(3+4)+5=3+(4+5) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& \text { and } \\
& 3+(4+5)=3+9=12 \\
& (5+2)+3=7+3=10 \\
& \text { and } \\
& 5+(2+3)=5+5=10 \\
& (4+3)+2=7+2=9 \\
& \quad \text { and } \\
& 4+(3+2)
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& \text { and } \\
& 3+(4+5)=3+9=12 \\
& (5+2)+3=7+3=10 \\
& \text { and } \\
& 5+(2+3)=5+5=10 \\
& (4+3)+2=7+2=9 \\
& \text { and } \\
& 4+(3+2)=
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3+4)+5=7+5=12 \\
& \text { and } \\
& 3+(4+5)=3+9=12 \\
& (5+2)+3=7+3=10 \\
& \text { and } \\
& 5+(2+3)=5+5=10 \\
& (4+3)+2=7+2=9 \\
& \text { and } \\
& 4+(3+2)=4+5
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& \begin{array}{c}
\\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{array} \quad \text { Therefore, }(3+4)+5=3+(4+5) . \\
& \\
& 4
\end{aligned} \quad \text { Therefore, }(5+2)+3=5+(2+3) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& \begin{array}{c}
\\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{array}
\end{aligned} \quad \text { Therefore, }(3+4)+5=3+(4+5) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
\begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
\begin{array}{c}
\\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{array}>\text { Therefore, }(3+4)+5=3+(4+5) . \\
\end{gathered} \quad \text { Therefore, }(5+2)+3=5+(2+3) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
\begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
\begin{array}{c}
\\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10
\end{array} \\
\begin{array}{c}
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{array} \quad \text { Therefore, }(3+4)+5=3+(4+5) .
\end{gathered} \quad \text { Therefore, }(5+2)+3=5+(2+3) .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
\begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
5 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{array}>\text { Therefore, }(3+4)+5=3+(4+5) . \\
\end{gathered} \quad \text { Therefore, }(5+2)+3=5+(2+3) .
$$

In general,

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{gathered}
$$

In general, $(x+y)+z$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12
\end{array} \\
& \left.\begin{array}{c}
\\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{array}\right\rangle \text { Therefore, }(3+4)+5=3+(4+5) . \\
&
\end{aligned} \quad \text { Therefore, }(5+2)+3=5+(2+3) .
$$

In general, $(x+y)+z=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{gathered}
$$

$$
\text { In general, }(x+y)+z=x+(y+z)
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{gathered}
$$

In general, $(x+y)+z=x+(y+z)$.
This property is called

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{gathered}
$$

In general, $(x+y)+z=x+(y+z)$.
This property is called the Associative Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
(3+4)+5=7+5=12 \\
\text { and } \\
3+(4+5)=3+9=12 \\
(5+2)+3=7+3=10 \\
\text { and } \\
5+(2+3)=5+5=10 \\
(4+3)+2=7+2=9 \\
\text { and } \\
4+(3+2)=4+5=9
\end{gathered}
$$

$$
\text { In general, }(x+y)+z=x+(y+z)
$$

This property is called the Associative Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$5+0=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

In general,

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

$$
\text { In general, } x+0
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

In general, $\mathbf{x}+0=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

In general, $\mathbf{x}+\mathbf{0}=\mathbf{x}$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

In general, $x+0=x$ and

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

$$
\text { In general, } x+0=x \text { and } 0+x
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

In general, $x+0=x$ and $0+x=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

$$
\text { In general, } x+0=x \text { and } 0+x=x .
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

$$
\text { In general, } x+0=x \text { and } 0+x=x .
$$

This is called

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

In general, $\mathbf{x}+\mathbf{0}=\mathbf{x}$ and $\mathbf{0}+\mathbf{x}=\mathbf{x}$.

This is called the Identity Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
5+0=5 \quad 8+0=8 \quad 0+7=7 \quad 0+2=2
$$

In general, $\mathbf{x}+\mathbf{0}=\mathbf{x}$ and $0+\mathbf{x}=\mathbf{x}$.

This is called the Identity Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.
$2+-2=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=0
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=0 \quad-7+7=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=0 \quad-7+7=0
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=0 \quad-7+7=0 \quad-8+8=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=0 \quad-7+7=0 \quad-8+8=0
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=0 \quad-7+7=0 \quad-8+8=0
$$

In general,

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=0 \quad-7+7=0 \quad-8+8=0
$$

$$
\text { In general, } x+-x
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
2+-2=0 \quad 5+-5=0 \quad-7+7=0 \quad-8+8=0
$$

$$
\text { In general, } x+-x=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \quad-7+7=0 \quad-8+8=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

This is called

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

This is called the Inverse Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

This is called the Inverse Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

This is called the Inverse Law of Addition.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

This is called the Inverse Law of Addition.
$-x$ is called

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \quad-7+7=0 \quad-8+8=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

This is called the Inverse Law of Addition.
$-x$ is called the opposite of x

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \quad-7+7=0 \quad-8+8=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

This is called the Inverse Law of Addition.
-x is called the opposite of x or

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
2+-2=0 \quad 5+-5=0 \quad-7+7=0 \quad-8+8=0 \\
\text { In general, } x+-x=0 .
\end{gathered}
$$

This is called the Inverse Law of Addition.
$-x$ is called the opposite of x or the additive inverse of x.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
8-3=
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
8-3=5
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
8-3=5
$$

and

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5
\end{gathered}
$$

Therefore, 8 - 3

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5
\end{gathered} \quad>\text { Therefore, } 8-3=8+-3
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
4-7=
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
\\
4-7=-3
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
\\
4-7=-3 \\
\text { and }
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
4-7=-3 \\
\text { and } \\
4+-7=
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
4-7=-3 \\
\text { and } \\
4+-7=-3
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{array}{cc}
\begin{array}{c}
8-3=5 \\
\text { and } \\
8+-3=5
\end{array} & \text { Therefore, } 8-3=8+-3 . \\
\\
\begin{array}{c}
7-7=-3 \\
\text { and } \\
4+-7=-3
\end{array} & \text { Therefore, } 4-7=4+-7 .
\end{array}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
4-7=-3 \\
\text { and } \\
4+-7=-3 \\
-3-5=
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
4-7=-3 \\
\text { and } \\
4+-7=-3 \\
-3-5=-8
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
4-7=-3 \\
\text { and } \\
4+-7=-3 \\
-3-5=-8 \\
\text { and }
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
\\
4-7=-3 \\
\text { and } \\
4+-7=-3 \\
-3-5=-8 \\
\text { and } \\
-3+-5=
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{gathered}
8-3=5 \\
\text { and } \\
8+-3=5 \\
\\
4-7=-3 \\
\text { and } \\
4+-7=-3 \\
\\
-3-5=-8 \\
\text { and } \\
-3+-5=-8
\end{gathered}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{array}{cl}
\begin{array}{c}
8-3=5 \\
\text { and } \\
8+-3=5
\end{array} \\
\\
4-7=-3 \\
\begin{array}{c}
\text { and } \\
4+-7=-3
\end{array} & \text { Therefore, } 8-3=8+-3 . \\
\begin{array}{l}
\\
-3-5=-8 \\
\text { and } \\
-3+-5=-8
\end{array} & \text { Therefore, } 4-7=4+-7 .
\end{array}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{array}{cl}
\begin{array}{c}
8-3=5 \\
\text { and } \\
8+-3=5
\end{array} \\
\\
4-7=-3 \\
\begin{array}{c}
\text { and } \\
4+-7=-3
\end{array} & \text { Therefore, } 8-3=8+-3 . \\
\begin{array}{c}
\\
-3-5=-8 \\
\text { and } \\
-3+-5=-8
\end{array} & \text { Therefore, } 4-7=4+-7 .
\end{array}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{l}
8-3=5 \\
\text { and } \\
8+-3=5
\end{array} \\
& \begin{array}{l}
\text { } \\
-7=-3 \\
\text { and } \\
4+-7=-3
\end{array} \\
& \begin{array}{l}
-3-5=-8 \\
\text { and } \\
-3+-5=-8
\end{array} \\
& \quad \text { Therefore, } 8-3=8+-3 . \\
& \quad \text { Th general, }
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8-3=5 \\
\text { and } \\
8+-3=5
\end{array} \\
& \begin{array}{c}
\text { Therefore, } 8-3=8+-3 . \\
4-7=-3 \\
\text { and } \\
4+-7=-3
\end{array} \\
& \begin{array}{c}
-3-5=-8 \\
\text { and } \\
-3+-5=-8
\end{array} \\
& \quad \text { Therefore, } 4-7=4+-7 .
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

In general, $\mathbf{x}-\mathbf{y}=$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8-3=5 \\
\text { and } \\
8+-3=5
\end{array} \\
& \begin{array}{c}
\text { Therefore, } 8-3=8+-3 . \\
4-7=-3 \\
\text { and } \\
4+-7=-3
\end{array} \\
& \begin{array}{c}
-3-5=-8 \\
\text { and } \\
-3+-5=-8
\end{array} \\
& \quad \text { Therefore, } 4-7=4+-7 .
\end{aligned}
$$

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8-3=5 \\
\text { and } \\
8+-3=5
\end{array} \\
& \begin{array}{c}
\text { Therefore, } 8-3=8+-3 . \\
4-7=-3 \\
\text { and } \\
4+-7=-3
\end{array} \\
& \begin{array}{c}
-3-5=-8 \\
\text { and } \\
-3+-5=-8
\end{array} \\
& \quad \text { Therefore, } 4-7=4+-7 .
\end{aligned}
$$

This property is called

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& 8-3=5 \\
& \text { and } \\
& 8+-3=5 \\
& 4-7=-3 \\
& \text { and } \\
& 4+-7=-3 \\
& -3-5=-8 \\
& \text { and } \\
& -3+-5=-8 \\
& \text { Therefore, } 8-3=8+\mathbf{- 3} \text {. } \\
& \text { Therefore, } 4-7=4+-7 \text {. } \\
& \text { In general, } \mathbf{x}-\mathbf{y}=\mathbf{x}+\mathbf{- y} \text {. }
\end{aligned}
$$

This property is called the Definition of Subtraction.

Algebra I Properties of Addition and Subtraction Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8-3=5 \\
\text { and } \\
8+-3=5
\end{array} \\
& \begin{array}{c}
\text { Therefore, } 8-3=8+-3 . \\
4-7=-3 \\
\text { and } \\
4+-7=-3
\end{array} \\
& \begin{array}{l}
-3-5=-8 \\
\text { and } \\
-3+-5=-8
\end{array} \\
& \quad \text { Therefore, } 4-7=4+-7 .
\end{aligned}
$$

This property is called the Definition of Subtraction.

Algebra I Properties of Multiplication and Division Unit 1

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
3 \cdot 5=15 \text { and }
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
3 \cdot 5=15 \text { and } 5 \cdot 3=15
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore,

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3 \cdot 5=15 \text { and } 5 \cdot 3=15 . \quad \text { Therefore, } 3 \cdot 5=5 \cdot 3 . \\
& 7 \cdot 2=14 \text { and } 2 \cdot 7=14 .
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14 . \quad$ Therefore,

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 3 \cdot 5=15 \text { and } 5 \cdot 3=15 . \quad \text { Therefore, } 3 \cdot 5=5 \cdot 3 \\
& 7 \cdot 2=14 \text { and } 2 \cdot 7=14 . \quad \text { Therefore, } 7 \cdot 2=2 \cdot 7 .
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15 . \quad$ Therefore, $3 \cdot 5=5 \cdot 3$
$7 \cdot 2=14$ and $2 \cdot 7=14 . \quad$ Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore,

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore, $6 \cdot 8=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore, $6 \cdot 8=8 \cdot 6$.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore, $6 \cdot 8=8 \cdot 6$.
In general,

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore, $6 \cdot 8=8 \cdot 6$.
In general, $\mathbf{x} \cdot \mathbf{y}=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore, $6 \cdot 8=8 \cdot 6$.
In general, $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore, $6 \cdot 8=8 \cdot 6$.
In general, $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$.
This property is called the

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$3 \cdot 5=15$ and $5 \cdot 3=15$. Therefore, $3 \cdot 5=5 \cdot 3$.
$7 \cdot 2=14$ and $2 \cdot 7=14$. Therefore, $7 \cdot 2=2 \cdot 7$.
$6 \cdot 8=48$ and $8 \cdot 6=48$. Therefore, $6 \cdot 8=8 \cdot 6$.
In general, $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$.
This property is called the Commutative Law of Multiplication.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$(3 \cdot 4) \cdot 5=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$(3 \cdot 4) \cdot 5=12 \cdot 5$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
(3 \cdot 4) \cdot 5=12 \cdot 5=60
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and }
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and }
\end{gathered}
$$

$$
3 \cdot(4 \cdot 5)=3 \cdot 20
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$(3 \cdot 4) \cdot 5=12 \cdot 5=60$
and
Therefore,
$3 \cdot(4 \cdot 5)=3 \cdot 20=60$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$(3 \cdot 4) \cdot 5=12 \cdot 5=60$
and
Therefore, $(3 \cdot 4) \cdot 5=$
$3 \cdot(4 \cdot 5)=3 \cdot 20=60$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$(3 \cdot 4) \cdot 5=12 \cdot 5=60$
and
Therefore, $(3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5)$.
$3 \cdot(4 \cdot 5)=3 \cdot 20=60$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$(3 \cdot 4) \cdot 5=12 \cdot 5=60$
and
$3 \cdot(4 \cdot 5)=3 \cdot 20=60$
$(5 \cdot 2) \cdot 3=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and } \\
3 \cdot(4 \cdot 5)=3 \cdot 20=60
\end{array} \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30
\end{aligned} \text { Therefore, }(3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5) .
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and } \\
3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
(5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
\text { and }
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and } \\
3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
(5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
\text { and } \\
5 \cdot(2 \cdot 3)=5 \cdot 6=30
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and } \\
3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
(5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
\text { and } \\
5 \cdot(2 \cdot 3)=5 \cdot 6=30
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
\begin{array}{c}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and } \\
3 \cdot(4 \cdot 5)=3 \cdot 20=60
\end{array} \\
\left.\begin{array}{c}
(5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
\text { and } \\
5 \cdot(2 \cdot 3)=5 \cdot 6=30
\end{array}\right\rangle \text { Therefore, }(3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5) .
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and } \\
3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
(5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
\text { and } \\
5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
(4 \cdot 3) \cdot 2=12 \cdot 2=24
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and } \\
3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
(5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
\text { and } \\
5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
(4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
\text { and }
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
(3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
\text { and } \\
3 \cdot(4 \cdot 5)=3 \cdot 20=60
\end{array} \\
& \begin{array}{l}
(5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
\text { and } \\
5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
(4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
\text { and } \\
4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{array} \quad \text { Therefore, }(3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5) . \\
&
\end{aligned} \quad \text { Therefore, }(5 \cdot 2) \cdot 3=5 \cdot(2 \cdot 3) .
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{aligned}
$$

Therefore, $(5 \cdot 2) \cdot 3=5 \cdot(2 \cdot 3)$.

Therefore, $(4 \cdot 3) \cdot 2=4 \cdot(3 \cdot 2)$.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{aligned}
$$

Therefore, $(3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5)$.

Therefore, $(5 \cdot 2) \cdot 3=5 \cdot(2 \cdot 3)$.

Therefore, $(4 \cdot 3) \cdot 2=4 \cdot(3 \cdot 2)$.

In general,

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{aligned}
$$

Therefore, $(3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5)$.

Therefore, $(5 \cdot 2) \cdot 3=5 \cdot(2 \cdot 3)$.

Therefore, $(4 \cdot 3) \cdot 2=4 \cdot(3 \cdot 2)$.

In general, $(x \cdot y) \cdot z=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{aligned}
$$

In general, $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{aligned}
$$

In general, $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
This property is called the

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& (3 \cdot 4) \cdot 5=12 \cdot 5=60 \\
& \text { and } \\
& 3 \cdot(4 \cdot 5)=3 \cdot 20=60 \\
& (5 \cdot 2) \cdot 3=10 \cdot 3=30 \\
& \text { and } \\
& 5 \cdot(2 \cdot 3)=5 \cdot 6=30 \\
& (4 \cdot 3) \cdot 2=12 \cdot 2=24 \\
& \text { and } \\
& 4 \cdot(3 \cdot 2)=4 \cdot 6=24
\end{aligned}
$$

$$
\text { In general, }(x \cdot y) \cdot z=x \cdot(y \cdot z)
$$

This property is called the Associative Law of Multiplication.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
5 \cdot \mathbf{1}=
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
5 \cdot \mathbf{1}=5
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
5 \cdot 1=5 \quad 8 \cdot 1=
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
5 \cdot 1=5 \quad 8 \cdot 1=8
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
5 \cdot \mathbf{1}=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2 \\
& \text { In general, }
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2 \\
& \text { In general, } x \cdot 1=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2 \\
& \text { In general, } x \cdot 1=x
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2 \\
& \text { In general, } x \cdot 1=x \text { and }
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2 \\
\text { In general, } x \cdot 1=x \text { and } 1 x=
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2 \\
\text { In general, } x \cdot 1=x \text { and } 1 x=x .
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2 \\
\text { In general, } x \cdot 1=x \text { and } 1 x=x .
\end{gathered}
$$

This is called the

Algebra I Properties of Multiplication and Division Unit 1

 Consider the following examples.$$
\begin{gathered}
5 \cdot 1=5 \quad 8 \cdot 1=8 \quad 1 \cdot 7=7 \quad 1 \cdot 2=2 \\
\text { In general, } x \cdot 1=x \text { and } 1 x=x .
\end{gathered}
$$

This is called the Identity Law of Multiplication.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$2 \cdot 1 / 2=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.
$2 \cdot 1 / 2=1$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
2 \cdot 1 / 2=1 \quad 5 \cdot 1 / 5=
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
2 \cdot 1 / 2=1 \quad 5 \cdot 1 / 5=1
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
2 \cdot 1 / 2=1 \quad 5 \cdot 1 / 5=1 \quad 7 \cdot 1 / 7=
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
2 \cdot 1 / 2=1 \quad 5 \cdot 1 / 5=1 \quad 7 \cdot 1 / 7=1
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
2 \cdot 1 / 2=1 \quad 5 \cdot 1 / 5=1 \quad 7 \cdot 1 / 7=1 \quad 8 \cdot 1 / 8=
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
2 \cdot 1 / 2=1 \quad 5 \cdot 1 / 5=1 \quad 7 \cdot 1 / 7=1 \quad 8 \cdot 1 / 8=1
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1 \\
& \text { In general, }
\end{array}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1
\end{array}
$$

In general, $x \cdot 1 / x=$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 2 \cdot 1 / 2=1 \quad 5 \cdot 1 / 5=1 \quad 7 \cdot 1 / 7=1 \quad 8 \cdot 1 / 8=1 \\
& \\
& \text { In general, } x \cdot 1 / x=1 .
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1
\end{array}
$$

$$
\text { In general, } x \cdot 1 / x=1 .(x \text { can not be } 0 .)
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1
\end{array}
$$

$$
\text { In general, } x \cdot 1 / x=1 .(x \text { can not be } 0 .)
$$

This is called the

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1
\end{array}
$$

$$
\text { In general, } x \cdot 1 / x=1 .(x \text { can not be } 0 .)
$$

This is called the Inverse Law of Multiplication.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1
\end{array}
$$

$$
\text { In general, } x \cdot 1 / x=1 .(x \text { can not be } 0 .)
$$

This is called the Inverse Law of Multiplication.
$1 / x$ is called the

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1
\end{array}
$$

$$
\text { In general, } x \cdot 1 / x=1 .(x \text { can not be } 0 .)
$$

This is called the Inverse Law of Multiplication.
$1 / x$ is called the reciprocal of x

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1
\end{array}
$$

$$
\text { In general, } x \cdot 1 / x=1 .(x \text { can not be } 0 .)
$$

This is called the Inverse Law of Multiplication.
$1 / x$ is called the reciprocal of x or

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{array}{llll}
2 \cdot 1 / 2=1 & 5 \cdot 1 / 5=1 & 7 \cdot 1 / 7=1 & 8 \cdot 1 / 8=1
\end{array}
$$

$$
\text { In general, } x \cdot 1 / x=1 .(x \text { can not be } 0 .)
$$

This is called the Inverse Law of Multiplication.
$1 / \mathbf{x}$ is called the reciprocal of x or the multiplicative inverse of x.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
8 \div 3=
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
8 \div 3=8 / 3
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div \underset{\text { and }}{3}=8 / 3 \\
\hline
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 8 \div 3=8 / 3 \\
& \text { and } \\
& 8 \cdot(1 / 3)=8 / 3 \\
& 4 \div 7=
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3 \\
4 \div 7=4 / 7
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3 \\
4 \div 7=4 / 7 \\
\begin{array}{c}
\text { and }
\end{array}
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3 \\
\\
4 \div 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3 \\
\\
4 \div 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=4 / 7
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3
\end{array} \\
& \\
& 4 \div 7=4 / 7 \\
& \begin{array}{c}
\text { and } \\
4 \cdot(1 / 7)=4 / 7
\end{array} \\
& \\
& 3 \div 5=
\end{aligned} \quad \text { Therefore, } 8 \div 3=8 \cdot 1 / 3
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3
\end{array} \\
& \begin{array}{l}
\text { (1/3 } \\
4 \div 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=4 / 7
\end{array} \\
& \begin{array}{l}
\text { Therefore, } 8 \div 3=8 \cdot 1 / 3 \\
3 \div 5=3 / 5
\end{array} \quad \text { Therefore, } 4 \div 7=4 \cdot 1 / 7 .
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 8 \div 3=8 / 3 \\
& 8 \cdot(1 / 3)=8 / 3 \\
& 4 \div 7=4 / 7 \\
& \text { and } \\
& 4 \cdot(1 / 7)=4 / 7 \\
& 3 \div 5=3 / 5 \\
& \text { and }
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3 \\
\\
4 \div 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=4 / 7 \\
\\
3 \div 5=3 / 5 \\
\text { and } \\
3 \cdot(1 / 5)=
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3 \\
\\
4 \div 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=4 / 7 \\
3 \div 5=3 / 5 \\
\text { and } \\
3 \cdot(1 / 5)=3 / 5
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{gathered}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3 \\
4 \div 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=4 / 7 \\
3 \div 5=3 / 5 \\
\text { and } \\
3 \cdot(1 / 5)=3 / 5 \\
\text { In general, } x \div y=
\end{gathered}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& 8 \div 3=8 / 3 \\
& \text { and } \\
& 8 \cdot(1 / 3)=8 / 3 \\
& 4 \div 7=4 / 7 \\
& \text { and } \\
& 4 \cdot(1 / 7)=4 / 7 \\
& 3 \div 5=3 / 5 \\
& \text { and } \\
& 3 \cdot(1 / 5)=3 / 5 \\
& \text { In general, } x \div y=x \cdot
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3
\end{array} \\
& \begin{array}{l}
4 \div 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=4 / 7
\end{array} \\
& \begin{array}{l}
3 \div 5=3 / 5 \\
\text { and } \\
3 \cdot(1 / 5)=3 / 5
\end{array} \\
& \text { Ther } \\
& \text { In general, } x \div y=x \cdot 1 / y .
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3
\end{array} \\
& \begin{array}{l}
\text { Therefore, } 8 \div 3=8 \cdot 1 / 3 . \\
4 \cdot 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=4 / 7 \\
3 \div 5=3 / 5 \\
\text { and } \\
3 \cdot(1 / 5)=3 / 5
\end{array} \quad \text { Therefore, } 4 \div 7=4 \cdot 1 / 7 . \\
& \text { In general, } x \div y=x \cdot 1 / y \cdot(y \text { can not be } 0 .)
\end{aligned}
$$

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{c}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3
\end{array} \\
& \begin{array}{l}
4 \div 7=4 / 7 \\
\text { and } \\
4 \cdot(1 / 7)=4 / 7
\end{array} \\
& \begin{array}{l}
3 \div 5=3 / 5 \\
\text { and } \\
3 \cdot(1 / 5)=3 / 5
\end{array} \quad \text { Therefore, } 8 \div 3=8 \cdot \\
& \text { In general, } x \div y=x \cdot 1 / y \cdot(y \text { can not be } 0 .)
\end{aligned}
$$

This property is called the

Algebra I Properties of Multiplication and Division Unit 1

Consider the following examples.

$$
\begin{aligned}
& \begin{array}{l}
8 \div 3=8 / 3 \\
\text { and } \\
8 \cdot(1 / 3)=8 / 3
\end{array} \\
& \begin{array}{l}
\text { Therefore, } 8 \div 3=8 \cdot 1 / 3 . \\
\begin{array}{l}
7=4 / 7 \\
\text { and } \\
(1 / 7)=4 / 7
\end{array} \\
\begin{array}{l}
3 \div 5=3 / 5 \\
\text { and } \\
3 \cdot(1 / 5)=3 / 5
\end{array} \\
\text { In general, } x \div y=x \cdot 1 / y . \text { Therefore, } 4 \div 7=4 \cdot 1 / 7 . \\
\text { This property is called the Definition of Division. }
\end{array} \text { Therefore, } 3 \div 5=3 \cdot 1 / 5 .
\end{aligned}
$$

Algebra I Property Review Unit 1

Algebra I Property Review Unit 1

Commutative Law of Addition:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$
Associative Law of Multiplication:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$
Associative Law of Multiplication: $(x \cdot y) \cdot z=x \cdot(y \cdot z)$

Algebra I Property Review Unit 1

Commutative Law of Addition: $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$
Associative Law of Multiplication: $(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot(\mathbf{y} \cdot \mathbf{z})$
Identity Law of Addition:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$
Associative Law of Multiplication: $(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot(\mathbf{y} \cdot \mathbf{z})$
Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$

Algebra I Property Review Unit 1

Commutative Law of Addition: $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$
Associative Law of Multiplication: $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$
Associative Law of Multiplication: $(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot(\mathbf{y} \cdot \mathbf{z})$
Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$ Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$

```
Associative Law of Addition: (x+y)+z=x+(y+z)
Associative Law of Multiplication: (x y)}\mathbf{y}=\mathbf{z}=\mathbf{x}\cdot(\mathbf{y}\cdot\textrm{z}
```

Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$
Inverse Law of Addition:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$ Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$

```
Associative Law of Addition: (x+y)+z=x+(y+z)
Associative Law of Multiplication: (x y)}\mathbf{y}=\mathbf{z}=\mathbf{x}\cdot(\mathbf{y}\cdot\textrm{z}
```

Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$
Inverse Law of Addition: $\mathbf{x}+\mathbf{x}=\mathbf{0}$

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
Associative Law of Addition: $(x+y)+z=x+(y+z)$
Associative Law of Multiplication: $(x \cdot y) \cdot z=x \cdot(y \cdot z)$
Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$
Inverse Law of Addition: $\mathbf{x}+\mathbf{x}=\mathbf{0}$
Inverse Law of Multiplication:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$ Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$

```
Associative Law of Addition: (x+y)+z=x+(y+z)
Associative Law of Multiplication: (x}\cdot\mathbf{y})\cdot\mathbf{z}=\mathbf{x}\cdot(\mathbf{y}\cdot\mathbf{z}
```

Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$
Inverse Law of Addition: $\mathbf{x + - x}=\mathbf{0}$
Inverse Law of Multiplication: If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x} \cdot \mathbf{1 / x}=\mathbf{1}$.

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$ Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$

$$
\begin{aligned}
& \text { Associative Law of Addition: }(x+y)+z=x+(y+z) \\
& \text { Associative Law of Multiplication: }(x \cdot y) \cdot z=x \cdot(y \cdot z)
\end{aligned}
$$

Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$
Inverse Law of Addition: $x+-x=0$
Inverse Law of Multiplication: If $x \neq 0$, then $x \cdot 1 / x=1$.
Definition of Subtraction:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$

$$
\begin{aligned}
& \text { Associative Law of Addition: }(x+y)+z=x+(y+z) \\
& \text { Associative Law of Multiplication: }(x \cdot y) \cdot z=x \cdot(y \cdot z)
\end{aligned}
$$

Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$
Inverse Law of Addition: $\mathbf{x}+\mathbf{x}=\mathbf{0}$
Inverse Law of Multiplication: If $x \neq 0$, then $x \cdot 1 / x=1$.
Definition of Subtraction: $x i ̈ y=x+-y$.

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$ Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$

```
Associative Law of Addition: (x+y)+z=x+(y+z)
Associative Law of Multiplication: (x}\cdot\mathbf{y})\cdot\mathbf{z}=\mathbf{x}\cdot(\mathbf{y}\cdot\mathbf{z}
```

Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$

Inverse Law of Addition: $\mathbf{x}+\mathbf{x}=\mathbf{0}$
Inverse Law of Multiplication: If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x} \cdot \mathbf{1 / x}=\mathbf{1}$.
Definition of Subtraction: $x i ̈ y=x+-y$.
Definition of Division:

Algebra I Property Review Unit 1

Commutative Law of Addition: $x+y=y+x$
Commutative Law of Multiplication: $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$

```
Associative Law of Addition: (x+y)+z=x+(y+z)
Associative Law of Multiplication: (x}\cdot\mathbf{y})\cdot\mathbf{z}=\mathbf{x}\cdot(\mathbf{y}\cdot\mathbf{z}
```

Identity Law of Addition: $\mathbf{x}+\mathbf{0}=\mathbf{x}$
Identity Law of Multiplication: $1 x=x$
Inverse Law of Addition: $\mathbf{x}+\mathbf{x}=\mathbf{0}$
Inverse Law of Multiplication: If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x} \cdot \mathbf{1 / x}=\mathbf{1}$.
Definition of Subtraction: $x i ̈ y=x+-y$.
Definition of Division: If $y \neq 0$, then $x \div y=x \cdot 1 / y$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.
The Identity Law of Addition

1. $\mathrm{x}+0=\mathrm{x}$
2. $1 x=x$
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.
The Identity Law of Addition

1. $\mathrm{x}+0=\mathrm{x}$
2. $1 x=x$
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
\qquad 3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.
The Identity Law of Addition

1. $\mathrm{x}+0=\mathrm{x}$

The Identity Law of Multiplication
2. $1 x=x$
3. $x+-x=0$
\qquad 4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.
The Identity Law of Addition

1. $\mathrm{x}+0=\mathrm{x}$

The Identity Law of Multiplication
2. $1 x=x$

The Inverse Law of Addition
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.
The Identity Law of Addition

1. $x+0=x$

The Identity Law of Multiplication
2. $1 x=x$

The Inverse Law of Addition
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
\qquad 5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication

1. $\mathrm{x}+0=\mathrm{x}$
2. $1 x=x$
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.
The Identity Law of Addition

1. $\mathrm{x}+0=\mathrm{x}$

The Identity Law of Multiplication
2. $1 x=x$

The Inverse Law of Addition
3. $x+-x=0$

The Inverse Law of Multiplication
4. If $x \neq 0$, then $x(1 / x)=1$.

The Commutative Law of Addition
5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.
The Identity Law of Addition

1. $x+0=x$

The Identity Law of Multiplication
2. $1 x=x$

The Inverse Law of Addition
3. $x+-x=0$

The Inverse Law of Multiplication
The Commutative Law of Addition 4. If $x \neq 0$, then $x(1 / x)=1$. 5. $x+y=y+x$
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.
The Identity Law of Addition

1. $\mathrm{x}+0=\mathrm{x}$

The Identity Law of Multiplication
2. $1 x=x$

The Inverse Law of Addition
3. $x+-x=0$

The Inverse Law of Multiplication
4. If $x \neq 0$, then $x(1 / x)=1$.

The Commutative Law of Addition
5. $x+y=y+x$

The Commutative Law of Multiplication
6. $x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Commutive Law of Multiplication
\square
\qquad 8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Associative Law of Addition
\qquad
\qquad 9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Associative Law of Addition
\qquad 7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Associative Law of Addition
The Associative Law of Multiplication

1. $\mathrm{x}+0=\mathrm{x}$
2. $1 x=x$
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $\quad x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Associative Law of Addition
The Associative Law of Multiplication

1. $\mathrm{x}+0=\mathrm{x}$
2. $1 x=x$
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $\quad x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition

The Identity Law of Multiplication

The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Associative Law of Addition
The Associative Law of Multiplication
The Definition of Subtraction
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Associative Law of Addition
The Associative Law of Multiplication
The Definition of Subtraction
The Definition of Subtraction
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Associative Law of Addition
The Associative Law of Multiplication
The Definition of Subtraction
The Definition of Division

1. $\mathrm{x}+0=\mathrm{x}$
2. $1 x=x$
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $\quad x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Write the full name of each property.

The Identity Law of Addition
The Identity Law of Multiplication
The Inverse Law of Addition
The Inverse Law of Multiplication
The Commutative Law of Addition
The Commutative Law of Multiplication
The Associative Law of Addition
The Associative Law of Multiplication
The Definition of Subtraction
The Definition of Division

1. $\mathrm{x}+0=\mathrm{x}$
2. $1 x=x$
3. $x+-x=0$
4. If $x \neq 0$, then $x(1 / x)=1$.
5. $x+y=y+x$
6. $\quad x y=y x$
7. $(x+y)+z=x+(y+z)$
8. $(x y) z=x(y z)$
9. $x-y=x+-y$
10. If $y \neq 0$, then $x \div y=x(1 / y)$.

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=$ \qquad
13. $(73+89)+27=$ \qquad
12. $15 \cdot(705 \div 15)=$ \qquad
14. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=$ \qquad
13. $(73+89)+27=$ \qquad
12. $15 \cdot(705 \div 15)=$ \qquad
14. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=$ \qquad

$$
(78+-78)+35
$$

13. $(73+89)+27=$ \qquad
14. $15 \cdot(705 \div 15)=$ \qquad
15. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(\mathbf{3 5}-78)=\mathbf{3 5}$

$$
(78+-78)+35
$$

13. $(73+89)+27=$ \qquad
14. $15 \cdot(705 \div 15)=$ \qquad
15. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=35$

$$
(78+-78)+35
$$

13. $(73+89)+27=$ \qquad
14. $15 \cdot(705 \div 15)=$ \qquad
15. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=35$

$$
(78+-78)+35
$$

13. $(73+89)+27=$ \qquad
14. $15 \cdot(705 \div 15)=$ $\left(15 \cdot \frac{1}{15}\right) \cdot 705$
15. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=35$

$$
(78+-78)+35
$$

13. $(73+89)+27=$ \qquad
14. $15 \cdot(705 \div 15)=\underline{705}$
$\left(15 \cdot \frac{1}{15}\right) \cdot 705$
15. $(25 \cdot 63) \cdot 4=$

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=35$

$$
(78+-78)+35
$$

13. $(73+89)+27=$ \qquad
14. $15 \cdot(705 \div 15)=705$
$\left(15 \cdot \frac{1}{15}\right) \cdot 705$
15. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=35$

$$
(78+-78)+35
$$

13. $(73+89)+27=$

$$
89+(73+27)
$$

12. $15 \cdot(705 \div 15)=705$
$\left(15 \cdot \frac{1}{15}\right) \cdot 705$
13. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(\mathbf{3 5}-78)=35$

$$
(78+-78)+35
$$

13. $\mathbf{(7 3}+\mathbf{8 9})+\mathbf{2 7}=\mathbf{1 8 9}$

$$
89+(73+27)
$$

12. $\mathbf{1 5} \cdot(705 \div 15)=705$
$\left(15 \cdot \frac{1}{15}\right) \cdot 705$
13. $(25 \cdot 63) \cdot 4=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(\mathbf{3 5}-78)=35$

$$
(78+-78)+35
$$

13. $\mathbf{(7 3}+\mathbf{8 9})+\mathbf{2 7}=\mathbf{1 8 9}$
$89+(73+27)$
14. $15 \cdot(705 \div 15)=705$
$\left(15 \cdot \frac{1}{15}\right) \cdot 705$
15. $(25 \cdot 63) \cdot 4=$

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=35$

$$
(78+-78)+35
$$

13. $\mathbf{(7 3}+\mathbf{8 9})+\mathbf{2 7}=\mathbf{1 8 9}$

$$
89+(73+27)
$$

12. $\mathbf{1 5} \cdot(705 \div 15)=705$
$\left(15 \cdot \frac{1}{15}\right) \cdot 705$
13. $(25 \cdot 63) \cdot 4=$
$63 \cdot(25 \cdot 4)$

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=35$

$$
(78+-78)+35
$$

13. $\mathbf{(7 3}+\mathbf{8 9})+\mathbf{2 7}=\mathbf{1 8 9}$

$$
89+(73+27)
$$

12. $\mathbf{1 5} \cdot(705 \div 15)=705$
$\left(15 \cdot \frac{1}{15}\right) \cdot 705$
13. $(25 \cdot 63) \cdot 4=\underline{6300}$
$63 \cdot(25 \cdot 4)$

Algebra I Class Worksheet \#3 Unit 1

Find the value of each of the following. (The basic properties of addition or multiplication can be used to simplify the process.)
11. $78+(35-78)=35$

$$
(78+-78)+35
$$

13. $\mathbf{(7 3}+\mathbf{8 9})+\mathbf{2 7}=\mathbf{1 8 9}$

$$
89+(73+27)
$$

12. $15 \cdot(705 \div 15)=705$
$\left(15 \cdot \frac{1}{15}\right) \cdot 705$
13. $(25 \cdot 63) \cdot 4=\underline{6300}$
$63 \cdot(25 \cdot 4)$

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=$ \qquad 16. $(8 x)(5 y)=$ \qquad
17. $(9 d+7)+(5 d-7)=$ \qquad 18. $24 p \div 8=$ \qquad
19. $(6 x+5 y)+(5 y-6 x)=$ \qquad 20. $(1 / 4)(8 x)=$

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=$ \qquad
17. $(9 d+7)+(5 d-7)=$ \qquad
19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
16. $(8 x)(5 y)=$ \qquad
18. $24 p \div 8=$ \qquad
20. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=$ \qquad
19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
16. $(8 x)(5 y)=$ \qquad
18. $24 p \div 8=$ \qquad
20. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$

$$
(4 x+8 x)+(-6 y+9 y)
$$

17. $(9 d+7)+(5 d-7)=$ \qquad
18. $(6 x+5 y)+(5 y-6 x)=$ \qquad
19. $(8 x)(5 y)=$ \qquad
20. $24 p \div 8=$ \qquad
21. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=$ \qquad
19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
16. $(8 x)(5 y)=$ \qquad
18. $24 p \div 8=$ \qquad
20. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=$ \qquad
19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
16. $(8 x)(5 y)=$ $(8 \cdot 5) \cdot(x \cdot y)$
18. $24 p \div 8=$ \qquad
20. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=$ \qquad
19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
16. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
18. $24 p \div 8=$ \qquad
20. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$

$$
(4 x+8 x)+(-6 y+9 y)
$$

17. $(9 d+7)+(5 d-7)=$ \qquad
18. $(6 x+5 y)+(5 y-6 x)=$ \qquad
19. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
20. $24 p \div 8=$ \qquad
21. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=$ $(9 d+5 d)+(7+-7)$
19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
16. $(8 x)(5 y)=\underline{40 x y}$ $(8 \cdot 5) \cdot(x \cdot y)$
18. $24 p \div 8=$ \qquad
20. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$

$$
(4 x+8 x)+(-6 y+9 y)
$$

17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
20. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=$ \qquad
22. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
20. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=$ \qquad
22. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$

$$
(4 x+8 x)+(-6 y+9 y)
$$

17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
20. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=$ \qquad (24 $\cdot \frac{1}{8}$) p
22. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$

$$
(4 x+8 x)+(-6 y+9 y)
$$

17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
20. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=3 p$ (24 $\cdot \frac{1}{8}$) p
22. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$
20. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=$ \qquad (24 $\cdot \frac{1}{8}$) p
22. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$

$$
(4 x+8 x)+(-6 y+9 y)
$$

17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad

$$
(6 x+-6 x)+(5 y+5 y)
$$

16. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
17. $24 p \div 8=$ \qquad (24- $\frac{1}{8}$) p
18. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=$ \qquad $(9 d+5 d)+(7+-7)$
19. $(6 x+5 y)+(5 y-6 x)=10 y$

$$
(6 x+-6 x)+(5 y+5 y)
$$

16. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
17. $24 p \div 8=$ \qquad (24- $\frac{1}{8}$) p
18. $(1 / 4)(8 x)=$ \qquad

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$

$$
(4 x+8 x)+(-6 y+9 y)
$$

17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad 10 y $(6 x+-6 x)+(5 y+5 y)$
20. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=3 p$ (24- $\frac{1}{8}$) p
22. $(1 / 4)(8 x)=$

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad $(6 x+-6 x)+(5 y+5 y)$
20. $(8 x)(5 y)=40 x y$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=$ \qquad (24 $\cdot \frac{1}{8}$) p
22. $(1 / 4)(8 x)=$

$$
\left(\frac{1}{4} \cdot 8\right) \cdot x
$$

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad $(6 x+-6 x)+(5 y+5 y)$
20. $(8 x)(5 y)=\underline{40 x y}$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=3 p$ (24- $\frac{1}{8}$) p
22. $(1 / 4)(8 x)=2 x$
$\left(\frac{1}{4} \cdot 8\right) \cdot x$

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
17. $(9 d+7)+(5 d-7)=14 d$

$$
(9 d+5 d)+(7+-7)
$$

19. $(6 x+5 y)+(5 y-6 x)=$ \qquad $(6 x+-6 x)+(5 y+5 y)$
20. $(8 x)(5 y)=\underline{40 x y}$ $(8 \cdot 5) \cdot(x \cdot y)$
21. $24 p \div 8=3 p$ (24- $\frac{1}{8}$) p
22. $(1 / 4)(8 x)=2 x$ $\left(\frac{1}{4} \cdot 8\right) \cdot x$

Algebra I Class Worksheet \#3 Unit 1

Use the basic properties of addition or multiplication to simplify each of the following expressions.
15. $(4 x-6 y)+(8 x+9 y)=12 x+3 y$ $(4 x+8 x)+(-6 y+9 y)$
16. $(8 x)(5 y)=\underline{40 x y}$ $(8 \cdot 5) \cdot(x \cdot y)$
17. $(9 d+7)+(5 d-7)=14 d$ 18. $24 p \div 8=3 p$ Good luck on your homework !!
19. $(6 x+5 y)+(5 y-6 x)=$ \qquad
0y
20. $(1 / 4)(8 x)=$ \qquad $\left(\frac{1}{4} \cdot 8\right) \cdot x$

