A point moves along the y-axis with velocity $v(t)=5-5 \arctan (0.25 t)$ units per second where $0 \leq t \leq 10$. Assume that a positive velocity indicates 'upward' motion and a negative velocity indicates 'downward' motion. You are also given that the point is $\mathbf{1 0}$ units 'above' the origin when $\mathbf{t}=\mathbf{0}$. Answer the following questions. (Where appropriate, in addition to representing the exact value, round your answers to three significant figures.)

1. Sketch a graph of v .
2. Evaluate $\mathbf{v}(4)$ and $\mathbf{v}(8)$. Include appropriate units.
3. What is the speed of the point when $t=4$ seconds? Is the speed increasing or decreasing when $t=4$ seconds?
4. What is the speed of the point when $t=8$ seconds? Is the speed increasing or decreasing when $t=8$ seconds?
5. Find the value of t when the point reaches its 'highest' position. What is that position?
6. What is the total distance the point moves from $t=0$ to $t=10$ seconds?
7. How far is the point from its starting position when $t=10$ seconds?
8. Let $\mathbf{a}=\mathbf{g}(\mathbf{t})$ represent the acceleration of the point. Find an appropriate equation for this function.
9. Evaluate $\mathbf{g (4)}$ and $\mathbf{g (8) .}$. Include appropriate units.
10. Let $y=f(t)$ represent the position of the point at time t seconds. Evaluate $f(4)$ and $f(8)$.

Bonus: Write an equation for f and sketch its graph from $t=0$ to $t=10$ seconds.

