Consider the situation described as follows.
Function f is defined by the equation $f(x)=1 / x^{2}$. Line s is the line tangent to the graph of f at the point $P\left(w, 1 / w^{2}\right)$. Point Q is the perpendicular projection of point P into the x-axis. In other words, point Q has coordinates ($\mathbf{w}, \mathbf{0}$). Point R, with coordinates ($k, 0$), is the point where line s intersects the x -axis.

Answer the following. Make sure you show your entire process neatly organized.

1. Graph f.
2. Find the value of k when $w=3$.
3. Express k in terms of \mathbf{w}, if $\mathbf{w}>0$.
4. Suppose that w is increasing at a constant rate of 7 units per second. How fast is k changing the instant that $w=5$?
5. How fast is the area of triangle $P Q R$ changing at the same instant?
