Advanced Challenge Level 2 Problem \#14 page 1

For this problem of the week, you are given three velocity-time graphs. Assume that $\mathbf{v}>0$ implies movement to the right and $\mathbf{v}<0$ implies movement to the left. Any reference to starting point refers to the position of the particle when $t=0$. Good luck.
A particle moves on a straight line in such a way that its velocity (in feet per second), as a function of time (in seconds) is shown by function f below.

Answer the following questions.

1. Fill out the following table.

	$\mathbf{0} \leq \mathbf{t} \leq \mathbf{3}$	$\mathbf{3} \leq \mathbf{t} \leq \mathbf{6}$	$\mathbf{6} \leq \mathbf{t} \leq \mathbf{9}$	$\mathbf{9} \leq \mathbf{t} \leq \mathbf{1 2}$	$\mathbf{0} \leq \mathbf{t} \leq \mathbf{1 2}$
a. average acceleration					
b. distance moved c. average velocity					
d. average speed					
e. final distance from starting point					

2. Evaluate each of the following: $f(2)=$ \qquad $f(5)=$ \qquad $\mathrm{f}(8)=$ \qquad $\mathrm{f}(11)=$ \qquad
3. Evaluate each of the following: \qquad $f^{\prime}(5)=$ \qquad $f^{\prime}(8)=$ \qquad $f^{\prime}(11)=$ \qquad
4. Evaluate each of the following.

$$
\int_{0}^{3} f(x) d x=_\int_{3}^{6} f(x) d x=_\int_{6}^{9} f(x) d x=_\int_{9}^{12} f(x) d x=_\int_{0}^{12} f(x) d x=
$$

Advanced Challenge Problem \#45 page 2

A particle moves on a horizontal line in such a way that its velocity (in feet per second), as a function of time (in seconds) is shown by function g below.

Answer the following questions.
5. Fill out the following table.

	$0 \leq \mathbf{t} \leq \mathbf{3}$	$\mathbf{3} \leq \mathbf{t} \leq \mathbf{6}$	$\mathbf{6 \leq t \leq 9} \leq 9 \leq \mathrm{t} \leq \mathbf{1 2}$	$0 \leq \mathbf{t} \leq \mathbf{1 2}$	
a. average acceleration					
b. distance moved					
c. average velocity					
d. average speed e. final distance from starting point					

6. Evaluate each of the following: $g(2)=$ \qquad $g(5)=$ \qquad $g(8)=$ \qquad $\mathrm{g}(11)=$ \qquad
7. Evaluate each of the following: \qquad $g^{\prime}(5)=$ \qquad $g^{\prime}(8)=$ \qquad $g^{\prime}(11)=$
8. Evaluate each of the following.
$\int_{0}^{3} g(x) d x=_\int_{3}^{6} g(x) d x=_\int_{6}^{9} g(x) d x=\quad \int_{9}^{12} g(x) d x=_\int_{0}^{12} g(x) d x=$

Advanced Challenge Problem \#45 page 3

A particle moves on a horizontal line in such a way that its velocity (in feet per second), as a function of time (in seconds) is shown by function h below.

Answer the following questions.
9. Fill out the following table.

	$\mathbf{0} \leq \mathbf{t} \leq \mathbf{3}$	$\mathbf{3} \leq \mathbf{t} \leq \mathbf{6}$	$\mathbf{6} \leq \mathbf{t} \leq \mathbf{9}$	$\mathbf{9} \leq \mathbf{t} \leq \mathbf{1 2}$	$\mathbf{0} \leq \mathbf{t} \leq \mathbf{1 2}$
a. average acceleration					
b. distance moved					
c. average velocity					
d. average speed e. final distance from starting point					

10. Evaluate each of the following: $h(2)=$ \qquad $h(5)=$ \qquad $\mathbf{h}(8)=$ \qquad $h(11)=$ \qquad
11. Evaluate each of the following: $h^{\prime}(2)=$ \qquad $h^{\prime}(5)=$ \qquad $h^{\prime}(8)=$ \qquad $h^{\prime}(11)=$ \qquad
12. Evaluate each of the following.
$\int_{0}^{3} h(x) d x=_\int_{3}^{6} h(x) d x=_\int_{6}^{9} h(x) d x=\quad \int_{9}^{12} h(x) d x=_\int_{0}^{12} h(x) d x=$
