Consider triangle $X Y Z$. Let x represent the length of segment $Y Z$, y represent the length of segment $X Z$, and z represent the length of segment $X Y$. Finally, let s represent the 'semi-perimeter' of the triangle. In other words, s is one-half the perimeter. Do each of the following.

1. Show that the area, A, of triangle $X Y Z$ can be found using the following formula.

$$
\mathbf{A}=\sqrt{\mathbf{s}(\mathbf{s}-\mathbf{x})(\mathbf{s}-\mathbf{y})(\mathbf{s}-\mathbf{z})}
$$

2. Use this formula, called Heron's Area Formula, to find the area of triangle $X Y Z$ given the lengths of the sides in each problem below. Include appropriate units with your answer. Show your work neatly organized. Express any irrational solutions rounded to three significant figures.
a. $x=3$ inches; $y=4$ inches ; $z=5$ inches
b. $x=5$ centimeters $; y=8$ centimeters $; z=5$ centimeters
c. $x=6$ feet ; $y=3$ feet; $z=7$ feet
d. $x=5$ meters ; $y=13$ meters $; z=12$ meters
e. $x=20$ miles ; $y=18$ miles ; $z=10$ miles
