
This problem challenges you to find the angles formed when two lines intersect. Of course, as the diagram below shows, if the lines are not perpendicular, then there are two congruent acute angles and two congruent obtuse angles.

Consider two oblique lines L_1 and L_2 with inclinations α_1 and α_2 and slopes m_1 and m_2 , respectively. (Please see the diagram below.)

In this diagram, α_1 is an obtuse angle and α_2 is an acute angle. Of course, this is only one of many different situations. Assume that L_1 and L_2 are oblique, intersecting lines. For questions #1 and #2 below, you may make the following further assumptions.

(a) L_1 and L_2 are not perpendicular to each other.

(b)
$$\alpha_1 > \alpha_2$$
.

Answer the following questions. Describe your complete process neatly organized.

1. Find a relationship that gives angle θ in terms of α_1 and α_2 . For the purpose of this question, θ is an angle shown that is formed by the intersection of the lines. It may be acute or obtuse. Because of assumption (a) above, θ is not a right angle.

2. Derive a relationship between tan θ and the slopes m_1 and m_2 .

3. Make the necessary adjustments in your equation for question 2 so that θ is an acute angle formed at the intersection.

4. Investigate and explain the impact on your equation in #3 if $\alpha_1 < \alpha_2$.

5. Investigate and explain the impact on your equation in #3 if L_1 and L_2 are perpendicular.