Consider the following definition.

The inclination of a line is defined as follows:
If a line is horizontal, then its inclination is 0°.
If a line is not horizontal, then its inclination is the angle measured counter clockwise from the x-axis to the line.
Note that the inclination of a line is never negative and always less than $\mathbf{1 8 0}^{\boldsymbol{\circ}}$.
The symbol α is used to represent the inclination of a line. The inclination is usually expressed in degrees, but may also be expressed in radians.

Let α_{1}, α_{2}, and α_{3} represent the inclinations of lines L_{1}, L_{2}, and L_{3}, shown below.
Since line L_{1} is a horizontal line, its inclination $\alpha_{1}=0^{\circ}$.
The inclination of line L_{2} is an obtuse angle. $\alpha_{2} \approx 153^{\circ}$.
The inclination of line L_{3} is an acute angle. $\alpha_{3}=45^{\circ}$.

You have to do each of the following.

1. Derive a relationship between the slope of a line and its inclination.
2. Use your relationship to find the inclination of the following lines. Where appropriate, round your answers to three significant digits.
(a) $y=2 x$
(b) $x=3$
(c) $y=-5$
(d) $y=-2 x$
(e) $3 x+5 y=-10$
(f) $5 x-2 y=-6$

Show your complete process, including your reasoning, neatly organized.

